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Department of Computer Science, Federal University of Paraná, Curitiba – Brazil
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Abstract. In this work we present a sampling algorithm for estimating
the local clustering of each vertex of a graph. Let G be a graph with
n vertices, m edges, and maximum degree ∆. We present an algorithm
that, given G and fixed constants 0 < ε, δ, p < 1, outputs the values for
the local clustering coefficient within ε error with probability 1 − δ, for
every vertex v of G, provided that the (exact) local clustering of v is
not “too small.” We use VC dimension theory to give a bound for the
number of edges required to be sampled by the algorithm. We show that
the algorithm runs in time O(∆ lg∆+m). We also show that the running
time drops to, possibly, sublinear time if we restrict G to belong to some
well-known graph classes. In particular, for planar graphs the algorithm
runs in time O(∆). In the case of bounded-degree graphs the running
time is O(1) if a bound for the value of ∆ is given as a part of the input,
and O(n) otherwise.

Keywords: clustering coefficient · approximation algorithm · sampling
· VC dimension.

1 Introduction

The occurrence of clusters in networks is a central field of investigation in the
area of network theory [9, 31]. The existence of such phenomena motivated the
creation of a variety of measures in order to quantify its prevalence; the clustering
coefficient [6, 2, 24] is one of the most popular of these measures.

There are global and local versions of the clustering coefficient. Given a graph,
its global clustering coefficient is a value that quantifies the overall clustering of
the graph in terms of the number of existing triangles. If the objective, however,
is to analyze features of complex networks such as modularity, community struc-
ture, assortativity, and hierarchical structure, then the concept of local clustering
coefficient is a better fit. This measure quantifies the degree in which a vertex
is a part of a cluster in a graph. Simply speaking, the measure is related to the
ratio of the number of triangles existing in the neighborhood of the target vertex
to the total number of pair of nodes in the neighborhood. A precise definition
for this measure is provided in Definition 1.

An exact algorithm for computing the local clustering coefficient of each
vertex of a graph typically runs in cubic time. When dealing with large scale
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graphs, however, this is inefficient in practice, and high-quality approximations
obtained with high confidence are usually sufficient. More specifically, given an
error parameter ε, a confidence parameter δ, and an adjustable lower bound
parameter p (treated as constants), the idea is to sample a subset of edges in the
graph such that the values for the local clustering coefficient can be estimated
within ε error from the exact value with probability 1 − δ, for each vertex that
respects a certain function of the parameter p. At the core of our strategy we
use VC-dimension theory to give a bound on the size of the sample in order to
meet the desired quality guarantees.

1.1 Related Work

The local clustering coefficient was originally proposed by Watts and Strogatz
(1998) [31] in order to determine if a graph has the property of being small-world.
Intuitively, this coefficient measures how close the neighborhood of a vertex is
to being a clique. Over the years, many variants of this measure have been
proposed, making it somewhat difficult to provide a unified comparison between
all these approaches under the light of algorithmic complexity.

One of these variations is the study of Soffer and Vázquez (2005) [30] on
the influence of the degree of a vertex on the local clustering computation, a
modification on the original measure where the degree-correlation is filtered out.
The work of Li et al. (2018) [16] provides a measure combining the local clus-
tering coefficient and the local-degree sum of a vertex, but focused on a specific
application of influence spreading. Other extensions of the measure and their
applications in particular scenarios include link prediction [8, 33] and commu-
nity detection [23, 36, 25, 11, 20]. In the theoretical front, working on random
graphs, Kartun–Gilles and Bianconi (2019) [12] gives a statistical analysis of the
topology of nodes in networks from different application scenarios. There are also
many recent bounds for the average clustering of power-law graphs [14, 3, 10, 7],
a graph model that represents many social and natural phenomena.

The algorithmic complexity of the exact computation of the local clustering
coefficient of each vertex of a graph typically runs in cubic time. In our work,
however, we are interested in faster approximation algorithms for obtaining good
quality estimations. Let n = |V | and m = |E| in a graph G. In the work of
Kutzkov and Pagh (2013) [15], the authors show an ε-approximation streaming
algorithm for the local clustering coefficient of each vertex of degree at least d
in expected time O( m

αε2 log 1
ε log n

δ ), where α is the local clustering coefficient of
such vertex. This holds with probability at least 1 − δ. In the work of Zhang
et al. (2017) [34], the authors propose an ε-approximation MapReduce–based
algorithm for the problem, and empirically compare its performance with other
approximation algorithms designed using this type of approach [13, 28].

Results for the computation of the top k vertices with the highest local
clustering coefficient were also proposed [35, 17, 4]. In particular, Zhang et al.
(2015) [35] use VC dimension and the ϵ-sample theorem on their algorithm
analysis, but in a different sample space than the one that we are facing here, and
for a scenario which is not exactly the one that we are tackling. In fact, sample
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complexity analysis has been shown to be an effective tool in the design of some
graph algorithms, e.g. the computation of betweenness [26, 27] and percolation
centralities [19, 5].

1.2 Our Results

In this paper we present an algorithm that samples edges from an input graph
G and, for fixed constants 0 < ε, δ, p < 1, outputs an estimate l̃(v) for the
exact value l(v) of the local clustering coefficient of each vertex v ∈ V , such
that |l(v)− l̃(v)| ≤ εl(v), with probability at least 1−δ whenever l(v) is at least
pm/

(
δv
2

)
, where δv is the degree of v. The main theme in our work is that, by using

Vapnik–Chervonenkis (VC) dimension theory, we can obtain an upper bound for
the sample size that is tighter than the ones given by standard Hoeffding and
union-bound sampling techniques. In particular, we show that the sample size
does not depend of the size of G, but on a specific property of it, more precisely,
its maximum degree ∆.

In Section 3.1 we give a definition for the VC dimension of a graph and show
in Theorem 2 that, for any graph, the VC dimension is at most ⌊lg (∆− 1)⌋+ 1.
The sample size used in the algorithm depends, roughly speaking, on this value.
In Corollary 1, we show that our analysis is tight by presenting an explicit
construction of a class of graphs for which the VC dimension reaches this upper
bound. Even so, we also provide a tighter analysis for the case in which the input
graph belongs to certain graph classes. In the class of bounded-degree graphs the
VC dimension is bounded by a constant. In the case of planar graphs, we show,
in Corollary 2, that the VC dimension is at most 2.

In Section 3.2, we show that the running time for the general case of our
algorithm is O(∆ lg∆ + m). In Corollaries 3 and 4 we present an analysis for
planar graphs and for bounded-degree graphs, cases where the running time
drops to, possibly, sublinear time. In the case of planar graphs, our algorithm
has running time O(∆). In the case of bounded-degree graphs the running time
is O(1) if a bound for the value of ∆ is given as a part of the input, and O(n),
otherwise.

2 Preliminaries

In this section, we present the definitions, notation, and results that are the
groundwork of our proposed algorithm. In all results of this paper, we assume
w.l.o.g. that the input graph is connected, since otherwise the algorithm can be
applied separately to each of its connected components.

2.1 Graphs and Local Clustering Coefficient

Let G = (V,E) be a graph where V is the set of vertices and E the set of edges.
We use the convention that n = |V | and m = |E|. For each vertex v ∈ V , let δv
be the degree of v, and ∆G = maxv∈V {δv} the maximum degree of the graph
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G. When the context is clear, we simply use ∆ instead of ∆G. We refer to a
triangle as being a complete graph with three vertices. Given v ∈ V , we let Tv

be the number of triangles that contain v.

Definition 1. (Local Clustering Coefficient) Given a graph G = (V,E), the
local clustering coefficient of a vertex v ∈ V is

l(v) =
2Tv

δv(δv − 1)
.

2.2 Sample Complexity and VC dimension

In sampling algorithms, we typically want to estimate a certain quantity observ-
ing some parameters of quality and confidence. The sample complexity analysis
relates the minimum size of a random sample required to obtain results that
are consistent with the desired parameters. An upper bound to the Vapnik–
Chervonenkis Dimension (VC dimension) of a class of binary functions, a central
concept in sample complexity theory, is especially defined in order to model the
particular problem that we are facing. An upper bound to the VC dimension
is also an upper bound to the sample size that respects the desired quality and
confidence parameters.

Generally speaking, the VC dimension measures the expressiveness of a class
of subsets defined on a set of points [26]. An in-depth exposition of the definitions
and results presented below can be found in the books of Anthony and Bartlett
(2009) [1], Mohri et al. (2012) [22], Shalev-Shwartz and Ben-David (2014) [29],
and Mitzenmacher and Upfal (2017) [21].

Definition 2 (Range space). A range space is a pair R = (U, I), where U is
a domain (finite or infinite) and I is a collection of subsets of U , called ranges.

For a given S ⊆ U , the projection of I on S is the set IS = {S∩I : I ∈ I}. If
|IS | = 2|S| then we say S is shattered by I. The VC dimension of a range space
is the size of the largest subset S that can be shattered by I, i.e.,

Definition 3 (VC dimension). Given a range space R = (U, I), the VC
dimension of R, denoted VCDim(R), is

VCDim(R) = max{d : ∃S ⊆ U such that |S| = d and |IS | = 2d}.

The following combinatorial object, called a relative (p, ε)-approximation, is
useful in the context when one wants to find a sample S ⊆ U that estimates the
size of ranges in I, with respect to an adjustable parameter p, within relative
error ε, for 0 < ε, p < 1. This holds with probability at least 1− δ, for 0 < δ < 1,
where π is a distribution on U and Prπ(I) is the probability of a sample from π
belongs to I.

Definition 4 (relative (p, ε)-approximation, see [26], Def. 5). Given the
parameters 0 < p, ε < 1, a set S is called a (p, ε)-approximation w.r.t. a range
space R = (U, I) and a distribution π on U if for all I ∈ I,
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(i)
∣∣∣Prπ(I) − |S∩I|

|S|

∣∣∣ ≤ εPrπ(I), if Prπ(I) ≥ p,

(ii) |S∩I|
|S| ≤ (1 + ε)p, otherwise.

An upper bound to the VC dimension of a range space allows to build a
sample S that is a (p, ε)-approximation set.

Theorem 1 (see [18], Theorem 5). Given 0 < ε, δ, p < 1, let R = (U, I) be
a range space with VCDim(R) ≤ d, let π be a given distribution on U , and let c′

be an absolute positive constant. A collection of elements S ⊆ U sampled w.r.t.
π with

|S| ≥ c′

ε2p

(
d log

1

p
+ log

1

δ

)
is a relative (p, ε)-approximation with probability at least 1 − δ.

3 Estimation for the Local Clustering Coefficient

We first define the range space associated to the local clustering coefficient of a
graph G and its corresponding VC dimension, and then we describe the proposed
approximation algorithm.

3.1 Range Space and VC dimension Results

Let G = (V,E) be a graph. The range space R = (U, I) associated with G is
defined as follows. The universe U is defined to be the set of edges E. We define a
range τv, for each v ∈ V , as τv = {e ∈ E : both endpoints of e are neighbors of
v in G}, and the range set corresponds to I = {τv : v ∈ V }. For the sake of
simplicity, we often use VCDim(G) (instead of VCDim(R)) to denote the VC
dimension of the range space R associated with G.

Theorem 2 shows an upper bound forVCDim(G).

Theorem 2. VCDim(G) ≤ ⌊lg (∆− 1)⌋ + 1.

Proof. By definition, an edge e ∈ E belongs to a range τv if both endpoints of
e, say, a and b, are neighbors of v. That is, the number of ranges that contain e
corresponds to the common neighbors of a and b. Let N be the set of such com-
mon neighbors. The maximum number of common neighbors a pair of vertices
may have is ∆. Therefore, e is contained in at most ∆−1 ranges. Assuming that
VCDim(R) = d, then from Definition 3, the edge e must appear in 2d−1 ranges.
We have

2d−1 ≤ ∆− 1 =⇒ d− 1 ≤ lg (∆− 1) =⇒ d ≤ ⌊lg(∆− 1)⌋ + 1.

⊓⊔
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One may ask when the bound given in Theorem 2 is tight. We now present
an explicit construction of a family of graphs G = (Gd)d≥3 in order to show that
this bound is tight with relation to ∆. A graph Gd, for d ≥ 3, of this family
is constructed as follows. Initially, we create d disjoint edges e1, . . . , ed. The
endpoints of these edges are called non-indexed vertices. For every non-empty
subset of k edges ei1 , . . . , eik , for 1 ≤ i1 < i2 < . . . < ik ≤ d, we create a vertex
v(i1,i2,...,ik) and connect it to both endpoints of each edge in the subset. These
vertices are called indexed vertices. Figure 1 illustrates G3 and G4.

Fig. 1. The first two graphs of the construction of the family G. In the case of G3 (left),
the edges of S are e1 = {a, b}, e2 = {c, d}, and e3 = {e, f}. In the case of G4 (right),
the edges of S are e1 = {a, b}. e2 = {c, d}, e3 = {e, f}, and e4 = {(g, h}. Non-indexed
vertices are labeled and depicted in black. We depict the indexed vertices in different
colors, depending on the size of its neighborhood in S.

Claim. ∆Gd
= 2d−1 + 1.

Proof. A vertex v in a graph G can be either indexed or non-indexed. We analyze
each case separately.

Let v be a non-indexed vertex that is an endpoint of an edge ej . W.l.o.g.,
we may assume that j = 1. The vertex v is adjacent to every indexed vertex
with indices of the form (1, i1, . . . , ik). The first index is fixed, so there are 2d−1

indices of this form. So v is adjacent to 2d−1 indexed vertices. Also, v is adjacent
to the other endpoint of e1. Therefore, the degree of any non-indexed vertex is
2d−1 + 1.

The degree of an indexed vertex cannot be larger than 2d, since such vertex is
adjacent to, at most, both endpoints of each edge e1, ..., ed. Since 2d−1 + 1 ≥ 2d,
the result follows. ⊓⊔

Theorem 3. For every d ≥ 3, VCDim(Gd) ≥ ⌊lg(∆Gd
− 1)⌋ + 1.
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Proof. Remember, R = (U, I), where U = E and I = {τv : v ∈ V } where
τv = {e ∈ E : the endpoints of e are neighbors of v in G}. First, we present a
sample S ⊆ U , |S| = d, which is shattered, i.e. |IS | = 2d, concluding that the
VC dimension is at least d. After that, we show that d = ⌊log(∆Gd

− 1)⌋ + 1,
which proves the theorem.

Let S = {e1, . . . , ed}. Consider an indexed vertex v′ = v(i1,i2,...,ik). By the
construction of the graph, we have that S ∩ τv′ = {ei1 , . . . , eik}, for all τv′ , i.e.,
there is a one-to-one mapping of each v′ to each S ∩ τv′ . Since there are 2d − 1
indexed vertices v′ (there is an indexed vertex for every subset except for the
empty set), then there are 2d− 1 different intersections. Finally, the intersection
that generates the empty set can be obtained by S ∩ τv′′ , where v′′ is any non-
indexed vertex. In other words,

|{S ∩ τv | τv ∈ I}| = |IS | = 2d,

i.e., VCDim(Gd) ≥ d. Now, using Claim 3.1, we have that

⌊log(∆Gd
− 1)⌋ + 1 = ⌊log(2d−1 + 1 − 1)⌋ + 1 = ⌊d− 1⌋ + 1 = d.

⊓⊔

Combining Theorems 2 and 3, we conclude that the VC dimension of the
range space is tight, as stated by Corollary 1.

Corollary 1. For every d ≥ 3, there is a graph G such that

VCDim(G) = d = ⌊lg (∆− 1)⌋ + 1.

Next we define a more general property that holds for a graph Gd.

Property P We say that a graph G = (V,E) has the Property P if exists
S ⊆ E, |S| ≥ 3, such that:
(i) For each e = {u, v} ∈ S, |e ∩ {S \ {e}}| ≤ 1.

(ii) For each subset S′ ⊆ S, there is at least one vertex vS′ that is adjacent
to both endpoints of each edge of S′.

For every d ≥ 3, Theorem 4 gives conditions based on Property P that a
graph must obey in order to have VC dimension at least d.

Theorem 4. Let G be a graph. If VCdim(G) ≥ 3, then G has Property P.

Proof. We prove the contrapositive of the statement, i.e., we show that if G does
not have Property P, then VCdim(G) < 3. Note that if we assume that G does
not have Property P, then for all S ⊆ E, |S| ≥ 3, we have that either condition
(i) or condition (ii) is false.

If it is the case that (ii) is false, then for all S ⊆ E, |S| ≥ 3, there is a set
S′ ⊆ S such that there is no vS′ ∈ V which is adjacent to both endpoints of
each edge in S′. We have that the number of subsets of S is 2|S|, so G must
have at least 2|S| vertices so that IS = 2|S|. From the definition of shattering, if
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IS < 2|S|, then it is not possible that VCdim(G) ≥ |S|. Since |S| ≥ 3, it cannot
be the case that VCdim(G) ≥ 3.

Now consider the case where (i) is false. In this case, for all S ⊆ E, |S| ≥ 3,
there is an edge e = {u, v} ∈ S where both u and v are endpoints of other
edges in S (i.e., |e ∩ {S \ {e}}| = 2). We name such edge e2 = {b, c}. Suppose
w.l.o.g. that e2 shares its endpoints with the edges e1 = {a, b} and e3 = {c, d}.
Then every triangle containing e1 and e3 necessarily contains e2. Denote by z the
vertex which forms triangles with e1 and e2. Then z also forms a triangle with
e2, since it is adjacent to both b and c, which are the endpoints of e2. Hence, the
subset {e1, e3} cannot be generated from the intersection of I with e1, e2, and
e3. Therefore it cannot be the case that VCdim(G) ≥ 3. ⊓⊔

Although Theorem 2 gives a tight bound for the VC dimension, if we have
more information about the type of graph that we are working, we can prove
better results. In Corollary 2, we show that if G is a graph from the class of
planar graphs, then the VC dimension of G is at most 2. Another very common
class of graphs where we can achieve a constant bound for the VC dimension is
the class of bounded-degree graphs, i.e. graphs where ∆ is bounded by a constant.
For this class, the upper bound comes immediately from Theorem 2.

Note that, even though planar graphs and bounded-degree graphs are both
classes of sparse graphs, such improved bounds for the VC dimension for these
classes do not come directly from the sparsity of these graphs, since we can con-
struct a (somewhat arbitrary) class of sparse graphs G′ where the VC dimension
is as high as the one given by Theorem 2. The idea is that G′ = (G′

d)d≥3, where
each graph G′

d is the union of Gd with a sufficiently large sparse graph. In the
other direction, one should note that dense graphs can have small VC dimension
as well, since complete graphs have VC dimension at most 2. This comes from
the fact that complete graphs do not have the Property P. In fact, for a Kq,
q ≥ 4, the VC dimension is exactly 2, since any set of two edges that have one
endpoint in common can be shattered in this graph.

Corollary 2. If G is a planar graph, then VCDim(G) ≤ 2.

Proof. We prove that the VC dimension of the range space of a planar graph is
at most 2 by demonstrating the contrapositive statement. More precisely, from
Theorem 4, we have that if VCDim(G) ≥ 3, then G has Property P. In this case
we show that G must contain a subdivision of a K3,3, concluding that G cannot
be planar, according to the Theorem of Kuratowski [32].

From Theorem 4, G has a subset of edges {e1, e2, e3} respecting conditions
(i) and (ii) of Property P. Let e1 = {a, b}, e2 = {c, d}, and e3 = {e, f}. Note
that these three edges may have endpoints in common. By condition (i), we
may assume w.l.o.g. that a ̸= c ̸= e. By symmetry, w.l.o.g., there are three
possibilities for the vertices b, d, and f : (1) they are all distinct vertices, (2) we
have d = f , but b ̸= f , and (3) they are the same vertex, i.e. b = d = f . In
Figure 2 we show three graphs, one for each of these three possible configurations
for the arrangement of edges e1, e2, and e3. By condition (ii) there are at least
four vertices, say, u, v, w, and x respecting the following:



Estimating the Clustering Coefficient using Sample Complexity Analysis 9

– u is adjacent to all vertices of {a, b, c, d, e, f};
– v is adjacent to all vertices of {a, b, c, d} and not adjacent to both e and f ;
– w is adjacent to all vertices of {a, b, e, f} and not adjacent to both c and d;
– x is adjacent to all vertices of {c, d, e, f} and not adjacent to both a and b.

Note that, even though every edge depicted in Figure 2 is mandatory in G,
there may be other edges in G that are not shown in the picture.

Since all of {v, c}, {c, x}, and {x, e} are edges in G, then there is a path from
v to e in G. Let E(P ) be the edges of this path. Consider A = {a, b, e} and
B = {u, v, w}, and let X be the set of edges with one endpoint in A and one
endpoint in B. We can obtain a subgraph H of G that contains a subdivision of
a bipartite graph K3,3 with bipartition (A,B) in the following way. The vertex
set of H is A∪B∪{c, x} and the edge set of H is X ∪E(P ). Therefore G cannot
be a planar graph. ⊓⊔

Fig. 2. Three possible arrangements for the edges e1 = {a, b}, e2 = {c, d}, and e3 =
{e, f} from the proof of Corollary 2. The case where b, d, and f are distinct vertices is
depicted above. The case where d = f , but b ̸= f is shown below in the left. Below in
the right, we show the case where b = d = f . In all three cases, these edges are part of
a subgraph H of G that contains a subdivision of a K3,3.
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3.2 Algorithm

The algorithm takes as input a graph G = (V,E), the quality and confidence
parameters 0 < ε, δ < 1, and a parameter 0 < p < 1, all assumed to be constants.
It outputs the estimation l̃(v) for the exact value l(v) of the local clustering
coefficient for each vertex v ∈ V , such that

|l(v) − l̃(v)| ≤ εl(v), with prob. at least 1 − δ whenever l(v) ≥ σv(p),

where σv(p) = pm/
(
δv
2

)
is an adjustable function, depending on p. The idea,

roughly speaking, is that l(v) ≥ σv(p) holds if the neighborhood of v is not too
small.

Next we present Algorithm 1. At the beginning all T̃v are set to zero.

Algorithm 1: localClusteringEstimation(G,ε,δ,p)

input : Graph G = (V,E) with m edges, parameters 0 < ε, δ, p < 1 .
output: Local clustering coefficient estimation l̃(v), ∀v ∈ V s.t. l(v) ≥ σv(p).

1 r ←
⌈

c′

ε2p

(
(⌊lg∆− 1⌋+ 1) log 1

p
+ log 1

δ

)⌉
2 for i← 1 to r do
3 sample an edge e = {a, b} ∈ E uniformly at random
4 forall v ∈ Na do
5 if v ∈ Nb then

6 T̃v ← T̃v + m
r

7 return l̃(v)← 2T̃v
δv(δv−1)

, for each v ∈ V .

Theorem 5. Given a graph G = (V,E), let S ⊂ E be a sample of size

r =

⌈
c′

ε2p

(
(⌊lg∆− 1⌋ + 1) log

1

p
+ log

1

δ

)⌉
,

for given 0 < p, ε, δ < 1. Algorithm 1 returns with probability at least 1 − δ
an approximation l̃(v) to l(v) within ε relative error, for each v ∈ V such that
l(v) ≥ σv(p).

Proof. For each v ∈ V , let 1v(e) be the function that returns 1 if e ∈ τv (and
0 otherwise). Thus, Tv =

∑
e∈E 1v(e). The estimated value T̃v, computed by

Algorithm 1, is incremented by m/r whenever an edge e ∈ S belongs to τv, i.e.,

T̃v =
∑
e∈S

m

r
1v(e).

Note that

T̃v =
∑
e∈S

m

r
1v(e) =

m

r

∑
e∈S

1v(e) = m · |S ∩ τv|
|S|

.
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Thus, assuming that we have a relative (p, ε)-approximation (Definition 4),

|Tv − T̃v|
Tv

=

∣∣∣m · Prπ(τv) −m · |S∩τv|
|S|

∣∣∣
m · Prπ(τv)

=

∣∣∣Prπ(τv) − |S∩τv|
|S|

∣∣∣
Prπ(τv)

≤ ε.

Or, simply put, |Tv − T̃v| ≤ εTv. Therefore,

|l(v) − l̃(v)| =
2|Tv − T̃v|
δv(δv − 1)

≤ 2εTv

δv(δv − 1)
= εl(v).

Combining this with Theorems 1 and 2, and using a sample S with size

r =

⌈
c′

ε2p

(
(⌊lg∆− 1⌋ + 1) log

1

p
+ log

1

δ

)⌉
,

we have that Algorithm 1 provides an ε-error estimation for l(v) with probability
1 − δ for all v ∈ V s.t. Pr(τv) ≥ p. But Pr(τv) ≥ p if and only if l(v) ≥ σv(p)
since

l(v) =
Tv(
δv
2

) =
mPr(τv)(

δv
2

) .

⊓⊔

We remark that T̃v is an unbiased estimator for Tv, since

E[T̃v] = E

[∑
e∈S

m

r
1v(e)

]
=

m

r

∑
e∈S

Pr(e ∈ τv) =
m

r

∑
e∈S

|τv|
m

= Tv.

Theorem 6. Given a graph G = (V,E) and a sample of size

r =

⌈
c′

ε2p

(
(⌊lg∆− 1⌋ + 1) log

1

p
+ log

1

δ

)⌉
,

Algorithm 1 has running time O(∆ lg∆ + m).

Proof. In line 1, the value of ∆ can be computed in time Θ(m). Given an edge
{a, b} we first store the neighbors of b in a directed address table. Then, lines 4,
5, and 6 take time O(∆) by checking, for each v ∈ Na, if v is in the table. Hence,
the total running time of Algorithm 1 is O(r ·∆ + m) = O(∆ lg∆ + m). ⊓⊔

As mentioned before, for specific graph classes, the running time proved in
Theorem 6 can be reduced. We can achieve this either by proving that graphs
in such classes have a smaller VC dimension, or by looking more carefully at the
algorithm analysis for such classes. In Corollaries 3 and 4 we present results for
two such classes.

Corollary 3. If G is a planar graph, then Algorithm 1 has running time O(∆).
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Proof. By Corollary 2, VCDim(G) ≤ 2. So, the sample size in the Algorithm 1
changes from a function of ∆ to a constant. Note that, in particular, since we
do not need to find the value of ∆, line 1 can be computed in time O(1). As
with the proof of Theorem 6, lines 4, 5, and 6 still take time O(∆). Since r is
constant, line 2 takes constant time. So, the total running time of Algorithm 1
is O(r ·∆) = O(∆). ⊓⊔

Another case where we can provide a better running for the algorithm is the
case for bounded-degree graphs, i.e. the case where the maximum degree of any
graph in the class is bounded by a constant.

Corollary 4. Let G be a bounded-degree graph, where d is such bound. Algo-
rithm 1 has running time O(1) or O(n), respectively, depending on whether d is
part of the input or not.

Proof. If d is part of the input, then the number of samples r in line 1 can be
computed in time O(1). Line 2 is executed O(1) times, and the remaining of the
algorithm, in lines 4, 5, and 6, takes O(1) time, since the size of the neighborhood
of every vertex is bounded by a constant.

On the other hand, if d is not part of the input, then ∆ must be computed
for the execution of line 1. In this case we check the degree of every vertex
by traversing its adjacency list. All these adjacency lists have constant size.
Performing this for all vertices takes time O(n). The other steps of the algorithm
take constant time. ⊓⊔

4 Conclusion

We present a sampling algorithm for local clustering problem. In our analysis
we define a range space associated to the input graph, and show how the sample
size of the algorithm relates to the VC dimension of this range space. This kind
of analysis takes into consideration the combinatorial structure of the graph, so
the size of the sample of edges used by the algorithm depends on the maximum
degree of the input graph.

Our algorithm executes in time O(∆ lg∆+m) in the general case and guaran-
tees, for given parameters ε, δ, and p, that the approximation value has relative
error ε with probability at least 1−δ, for every node whose clustering coefficient
is greater than a certain function adjusted by the parameter p. For planar graphs
we show that the sample size can be bounded by a constant, an the running time
in this case is O(∆). In the case of bounded-degree graphs, where there is also
a constant bound on the sample size, the running time drops to O(1) or O(n),
depending on whether the bound on the degree is part of the input or not.
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