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Abstract

Aaronson et al. (2016) introduced the quantum complexity class naCQP (non-
adaptive Collapse-free Quantum Polynomial time), also known as PDQP
(Product Dynamical Quantum Polynomial time), aiming to define a class
larger than BQP (Bounded-error Quantum Polynomial time), but not large
enough to include NP-complete problems. Aaronson et al. showed that SZK
(Statistical Zero Knowledge) is contained in naCQP and that there is an or-
acle A for which NPA ̸⊆ naCQPA. We prove that: there is an oracle A for
which PA = BQPA = SZKA = naCQPA ̸= (UP∩ coUP)A = EXPA, where UP
(Unambiguous Polynomial time) is an important subclass of NP; relative to
an oracle A chosen uniformly at random, it holds (UP∩ coUP)A ̸⊆ naCQPA

with probability 1. Our results are a strengthening of the results by Bennett
et al. (1997), Fortnow and Rogers (1999), Tamon and Yamakami (2001), and
Aaronson et al. (2016).

Keywords: Computational Complexity, Oracle Separation, Unambiguous
Polynomial-time, Collapse-free Quantum Computing.

1. Introduction

Aaronson et al. [1] introduced the complexity classes CQP (Collapse-free
Quantum Polynomial time) and naCQP (non-adaptive Collapse-free Quantum
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Polynomial time). The former is the class of the problems that can be solved
by a polynomial-time quantum algorithm allowing measurements not to cause
the collapse of the states. The latter is the class CQP with the restriction
that the quantum operations do not depend on the results of non-collapsing
measurements. We refer the reader to Section 2 for technical details in the
definition of naCQP. Note that the aim of defining such complexity classes
in this line of research is not to propose alternative models of physically
realizable computation, but to investigate classes of problems that seem to
be larger than BQP, but not large enough to include NP-complete prob-
lems. The class naCQP is also called as PDQP (Product Dynamical Quantum
Polynomial time) in the preprint version [2] and in three subsequent articles
[3, 4, 5]. The class naCQP, or PDQP, is a subclass of the class DQP (Dynam-
ical Quantum Polynomial-Time) introduced by Aaronson [6]. The class DQP
was defined assuming a hidden variable theory, and that is possible to access
in real time the evolution of the hidden variables. The complexity relation
between DQP and CQP is unknown.

Aaronson et al. [1] showed that naCQP includes not only BQP, but also
SZK, which is the class of the problems that admit zero-knowledge interactive
proof systems, such as the Graph Isomorphism Problem. Assuming deran-
domisation hypotheses, we would have P = BPP and NP = MA = AM [7],
which would imply SZK ⊆ NP∩ coNP. Moreover, Aaronson et al. showed
that there is an oracle A for which NPA ̸⊆ naCQPA, which indicates that
naCQP, although a superclass of BQP and SZK, seems not to be large enough
to contain NP-complete problems. Remark that, since there is an oracle A for
which BQPA ̸⊆ NPA (in fact, BQPA ̸⊆ PHA [8]), we also have naCQPA ̸⊆ NPA

for this oracle A.
The class UP (Unambiguous Polynomial-Time), a subclass of NP, is the

class of problems Π for which there is a non-deterministic Turing machine
M such that: if x is a positive instance of Π, then there is a single accepting
computation path of M on x; if x is a negative instance of Π, then all com-
putations of M on x end in rejection. Fortnow and Rogers [9] showed that
PA = BQPA ̸= UPA ∩ coUPA for the same oracle A. The relation between
UP∩ coUP and other complexity classes has also been explored. For in-
stance, Menda and Watrous [10] showed that there is an oracle A for which
UPA ∩ coUPA ̸⊆ QSZKA, which implies UPA ∩ coUPA ̸⊆ SZKA. Beigel et
al. [11] also showed that there is an oracle A for which PA = ⊕PA and
RPA = EXPA (recall that PA ̸= EXPA for all oracle A). As noted by Tamon
and Yamakami [12], since UPA ⊆ ⊕PA and RPA ⊆ BQPA, we have PA = UPA
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and BQPA = EXPA. Curiously, Tamon and Yamakami [12] also claimed that
there is an oracle A for which PA = BQPA and UPA = EXPA, presenting a
proof sketch for this. We prove the following strengthening of their claim.

Theorem 1. There is an oracle A for which PA = naCQPA and (UP∩ coUP)A =
EXPA.

Tamon and Yamakami’s sketch of proof is not easy to follow and contains
some technical details that we are not sure that are correct, so we present
the full proof of our more general result, roughly inspired by their ideas.

Figure 1 illustrates the known relationship between the main complexity
classes relevant to this paper, highlighting the result stated in Theorem 1.
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Figure 1: Relationship between complexity classes in this paper. The black arrows indicate
inclusion between the classes. The striked-out arrows indicate that there is an oracle for
which the class is not included in the other, being the blue ones results from the literature,
and the red thicker one representing the result of Theorem 1 and (for a random oracle)
Theorem 2.

A random oracle is an oracle chosen uniformly at random. Bennett et
al. [13] showed that, relative to a random oracle A, we have NPA ̸⊆ BQPA

with probability 1. In fact, the authors further show that (NP∩ coNP)A ̸⊆
BQPA with probability 1. We also show the following.

Theorem 2. Relative to a random oracle A, we have (UP∩ coUP)A ̸⊆ naCQPA

with probability 1.

The proof for Theorem 2 follows the structure of the proof by Bennett
et al. for BQP, but using properties for naCQP that we have also used in
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the proof of Theorem 1. Some of these properties are stated in Theorem 3
below, which is a strengthening of the well-known BBBV Theorem for BQP
by Bennett et al. [13].

Theorem 3. Let MA be an naCQP algorithm with an oracle A and let p(n)
be the running time of MA. Let x be a n-bit string given as input to M . For
every ε > 0 there is a set of strings S with |S| ≤ 200(p(n))4/ε2 such that, for
any oracle A′, if A′ differs from A only on a single string y and y /∈ S, then∣∣∣Pr[MA′

accepts x
]
− Pr

[
MA accepts x

]∣∣∣ ≤ ε .

This paper is organised as follows. In the remaining of this section, we
discuss further motivation concerning our results. In Section 2, we present
the technical definition of naCQP. In Section 3, we present the proof of
Theorem 3, needed for the proofs of Theorems 1 and 2 presented in Section 4.

Further motivation

According to Aaronson [14], most of the techniques that existed in the
1960s and 1970s for demonstrating relationships between complexity classes,
such as C ⊆ D or C ̸⊂ D, were so general that, when proved, they also
proved CA ⊆ DA or CA ̸⊂ DA for all possible oracles A. An example is the
demonstration of PA ̸= EXPA for every oracle A. However, there is an oracle
A for which PA = NPA and another oracle B for which PB ̸= NPB [15]. This
means that a proof for P ̸= NP (or P = NP) must use more sophisticated
techniques that do not relativise.

Oracle separations between NP and any class of efficient computation in
some model (such as P, BPP, and BQP) are an evidence for the hardness
of deciding solvability of NP-complete problems in that model [13]. In par-
ticular, oracle separations between NP and naCQP, which we address, raise
the hardness of deciding whether quantum computers are able to solve NP-
complete problems to another level. Having oracle separations between NP
and a non-collapse quantum computing class such as naCQP suggests that
state collapsing may not be the only limitation of quantum computers for
solving NP-complete problems.

We now discuss how our oracle separations results help to better under-
stand the related classes. Concerning our Theorem 1, remark that:

• there is an oracle A for which PA = BQPA = SZKA = naCQPA ̸=
UPA ∩ coUPA = EXPA.
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• our result is a strengthening of the result by Aaronson et al., concern-
ing naCQP and NP, and also of the result by Fortnow and Rogers,
concerning P, BQP, and UP∩ coUP;

• concerning SZK and UP∩ coUP, our result implies not only that there
is an oracle A for which UPA ∩ coUPA ̸⊆ SZKA, something which is
already implied by Menda and Watrous, but also that UPA ∩ coUPA ̸⊆
PA = SZKA.

Concerning Theorem 2, remark that:

• our result is a strengthening of the result by Bennett et al. concerning
UP∩ coUP and BQP;

• our result is also a strengthening of the result by Aaronson et al. that
there is an oracle A for which NPA ̸⊆ naCQPA.

Concerning Theorem 3, the original theorem for BQP (BBBV Theorem)
is an important tool used by Bennet et al. [13], Fortnow et al. [9] and Tamon
and Yamakami [12] to show the oracular separations between BQP and NP
and between BQP and UP. All these results can be extended to naCQP.

Finally, we would like to emphasise the importance of the results obtained
in this work. Concerning naCQP, we studied the limits of quantum computing
along the lines of the papers by [13] and [1]. When it is shown that BQP does
not contain NP relative to an oracle, it is suggested that quantum computers
are not capable of solving NP-complete problems. We showed that even if
a quantum computer could make measurements without collapse and even
with a subclass of NP, the limitations of the quantum model remain valid.

2. Definition of naCQP and technical assumptions

Consider a quantum circuit C with n qubits, constructed depending on
an n-bit input string x, defined by the following sequence of operators C =
(U1,M1, U2,M2, . . . , UR,MR), where each Ut is a unitary operator of n qubits,
and each Mt is a quantum measurement, in the computational basis, of mt

qubits, being 0 ≤ mt ≤ n. The initial state of the circuit is |ψ0⟩ = |0⟩⊗n, and
after the t-th measurement the state is |ψt⟩ = Mt Ut |ψt−1⟩, so that the states
at the different stages of the circuit are given by the sequence of random
variables {|ψt⟩}Rt=0, subject to a probability distribution that depends on
the circuit C. Consider a procedure that takes as input the circuit C and
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samples the sequence {|ψt⟩}Rt=1 from this probability distribution. Then, the
procedure measures, on the computational basis, the states |ψt⟩ for each t
independently. The R results of these measurements are returned, named
v1, . . . , vR. Assuming that this procedure is done in only one step, we call
this procedure the oracle Q. Note that if non-collapsing measurements were
allowed, the result of Q would be equivalent to the case wherein, for each t,
the mt qubits measured in Mt collapse, being the remaining n − mt qubits
measured without collapsing. Recall that it is possible that the measurements
M1,M2, . . . ,MR are of less than n (even possibly zero) qubits (if mt = 0,
then the measurement Mt is full non-collapsing). Observe that Q samples
all states {|ψt⟩} at once, yielding a non-adaptive model of non-collapsing
measurements.

We define naCQP (non-adaptive Collapse-free Quantum Polynomial) as
the class of promise problems that can be solved by an naCQP algorithm,
i.e. a polynomial-time Turing machine with error probability less than or
equal to 1/3 that, receiving an n-bit input string x, writes the description of
the quantum circuit C and makes a single query to the oracle Q as defined
above. An naCQTime(T (n)) algorithm is defined similarly to an naCQP al-
gorithm, but being O(T (n)) the running time of the Turing machine, and
being naCQTime(T (n)) the corresponding complexity class.

Clearly, BQP ⊆ naCQP, since we can provide the oracle with a polynomial
quantum circuit and use only the measurement result at the end of the circuit.
On the other hand, as pointed by Aaronson et al.[1] “the oracle Q gives
us information about the intermediate stages of the quantum computation
without collapsing the state; this is what gives naCQP additional power over
BQP”, even making quantum computers in this model capable of solving
SZK-complete problems (recall that it is not known if SZK ⊆ BQP).

In order to simplify our proofs, we show an equivalent circuit for naCQP
using a procedure in which the measurements are delayed. This procedure is
also described by Aaronson et al. [1, Appendix C]. As explained before, given
a circuit C, the states at the different stages of the circuit are given by the se-
quence {|ψt⟩}Rt=0. Then, the oracle Q returns measurements of the sequence
{|ψt⟩}Rt=1 named v1, . . . , vR. Note that v1, . . . , vR is a sequence of random
variables governed by a Markov distribution. That is, for all 1 ≤ t ≤ R,
we have that vt is independent of v0, · · · , vt−2 conditioned on a particular
value of vt−1. More precisely, in our case, the variable vt depends on the
qubits of |ψt−1⟩ that have been measured by M1, . . . ,Mt−1 and thus have
collapsed. Now, suppose that the oracle Q does not sample all the states
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Figure 2: (a) The original naCQP circuit used by Q for sampling all |ψ1⟩ , . . . , |ψt⟩. (b)
The circuit constructed by Q for sampling only |ψt⟩ with the measurements being delayed.

{|ψt⟩} at once, but, instead, the following procedure is performed. The or-
acle Q samples each |ψt⟩ one at a time. At each sampling, the oracle builds
an equivalent circuit in which all measurements M1, . . . ,Mt−1 are delayed,
according to the well-known Principle of Deferred Measurement (PDM)[16],
and an equivalent measurement M′

t takes place immediately before the state
|ψt⟩. However, since the construction of this equivalent circuit is conditioned
on the value of vt−1 in the previous sampling, M′

t depends not only on the de-
ferred measurements M1, . . . ,Mt−1, but also on the former collapsed qubits,
with which the current sampling must be consistent. Hence, M′

t is designed
so that the measurements that would have taken place up to time t− 1 now
collapse to the same values as they did in the last sampling. Throughout
this text, therefore, we assume without loss of generality that each state is
sampled using the procedure above, with all the collapsing measurements
delayed, conditioned on the value of the previous sampling. Also, for a fixed
t, we use |ϕt⟩ to denote the state immediately before the single measurement
M′

t performed by Q to obtain |ψt⟩, and |ϕ0⟩ , . . . , |ϕt−1⟩ are used to denote
the previous states, with no measurements performed. Moreover, although
applying PDM modifies gates U1, . . . , Ut, by abuse we maintain the names
U1, . . . , Ut, assuming that the gates have been modified so that the measure-
ments are deferred (see Figure 2).

Being A a language, an naCQP algorithm with oracle2 A is an naCQP
algorithm that, receiving an input x of length n, can query a function f :

2Please do not mistake this oracle A for the also called oracle Q in the definition of an
naCQP algorithm. Although using the term oracle in both situations may be confusing,
we still do so to follow what is standard in the literature.
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{0, 1}n → {0, 1} such that f(x) = 1 if and only if x ∈ A. That is, for
the construction of the unitary operators U1, · · · , UR, we are given access to
the n-qubit unitary transformation defined as Uf : |x, b⟩ 7→ |x, b⊕ f(x)⟩, for
x ∈ {0, 1}n and b ∈ {0, 1}, where the operation ⊕ indicates addition modulo
2, or, equivalently,

Uf |x⟩ = (−1)f(x) |x⟩ , for x ∈ {0, 1}n.

Throughout this text, we assume without loss of generality that in an naCQP
algorithm with an oracle query to f , each of the unitary transformations
U1, . . . , UR is either a copy of Uf , or an n-qubit circuit constructed using
only gates from a fixed finite universal gate set.

Let MA be an naCQP algorithm with oracle A, obeying our assumption
on the transformations U1, . . . , UR and Uf as above. Being y a fixed binary
string, let qy(|ϕt⟩) be the modulus squared of the amplitude of |y⟩ in |ϕt⟩ if
Ut is a copy of Uf , and 0 otherwise. Note that, since |ϕt⟩ can be viewed as a
superposition of all the configurations of the algorithm at time t, we have that
qy(|ϕt⟩) is the sum of modulus squared of amplitudes in |ϕt⟩ corresponding
only to the configurations at time t which are querying the oracle A on string
y.

3. Proof of Theorem 3

Before we present the proof of Theorem 3, we first need a few technical
lemmas.

Lemma 4 (adapted from Bennett et al., 1997 [13]). Let MA be an naCQP
algorithm with an oracle A as in Section 2. For some fixed t, let T be the
number of copies of Uf amongst gates U1, . . . , Ut, and, for ε > 0, let F ⊆
[1, t]× Σ∗

1. for each (i, y) ∈ F , Ui is a copy of Uf ;

2.
∑

(i,y)∈F qy(|ϕi⟩) ≤ ε2/2T (recall the definition of |ϕi⟩ in Section 2).

Now suppose that the answer to each query (i, y) ∈ F is modified to some
arbitrary fixed bit ai,y, being these answers not necessarily consistent with an
oracle. Let |ϕ′

i⟩ be defined as |ϕi⟩, but with respect to oracle A modified as
above. Then, ∥|ϕt⟩ − |ϕ′

t⟩∥ ≤ ε.
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The proof of Lemma 4 follows by inspection on the same proof showed by
Bennett et al. for BQP, but adapting the arguments for naCQP (reproduced
in Appendix A for the sake of completeness). Recall that we have assumed
that no collapsing measurements have occurred before time t (according to
the definition of |ϕi⟩ in Section 2), which means that, until that point, our
naCQP algorithm is behaving like a BQP algorithm, similarly as Aaronson et
al. [1] also pointed out in their paper. Furthermore, the reader may notice
that the authors originally stated

∑
(i,y)∈F qy(|ϕi⟩) ≤ ε2/T , but we remark

that the same proof also shows that
∑

(i,y)∈F qy(|ϕi⟩) ≤ ε2/2T .

Lemma 5 (Aaronson et al., 2016 [1]). Let R ≥ 1, and let v = (v0, · · · , vR)
and w = (w0, · · · , wR) two random variables governed by two Markov distri-
butions. Then, the total variation distance between these random variables is
dTV (v, w) ≤ 2

∑R
i=1 dTV ((vi−1, vi), (wi−1, wi)).

Aaronson et al. [1] showed, in Theorem 6.1 in their paper, an Ω(2n/4) lower
bound for a non-structured search with an naCQP algorithm, analogous to
the well-known Ω(2n/2) lower bound for a non-structured search with a BQP
algorithm [13]. The main argument in their proof can be summarised in what
is stated below in Lemma 6.

Lemma 6. Let MA be an naCQP algorithm with an oracle A as in Section 2.
Being A′ an oracle which answers arbitrarily to any query, let v and w be
the results of the non-collapsing measurements for MA and MA′

respectively.
Let di = dTV ((vi−1, vi), (wi−1, wi)), then di ≤ 5∥|ϕi−1⟩ − |ϕ′

i−1⟩∥.

Now we present Theorem 7, from which follows Corollary 8 and The-
orem 3.

Theorem 7. Let MA be an naCQP algorithm with an oracle A as in Sec-
tion 2. Let T be the number of copies of Uf amongst gates U1, . . . , UR, and,
for ε > 0, let F ⊆ [1, R]× Σ∗ be a set of time-string pairs such that:

1. for each each (i, y) ∈ F , Ui is a copy of Uf ;

2.
∑

(i,y)∈F qy(|ϕi⟩) ≤ ε2/2T .

Now suppose that the answer to each query (i, y) ∈ F is modified to some
arbitrary fixed ai,y, being these answers not necessarily consistent with an
oracle. Let |ϕ′

i⟩ be defined as |ϕi⟩, but with respect to oracle A modified
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as above. Then, being v = (v1, . . . , vR) and w = (w1, . . . , wR) the random
variables returned by the sampling of {|ψt⟩} and {|ψ′

t⟩}, respectively, the total
variation distance between v and w is dTV (v, w) ≤ 2

∑R
i=1 5ε ≤ 10Rε.

Proof. First, let us fix some i. Since we can delay all collapsing measurements
to occur immediately before the sampling of vi and wi, we have, by Lemma 6,
di = dTV ((vi−1, vi), (wi−1, wi)) ≤ 5∥|ϕi−1⟩− |ϕ′

i−1⟩∥. Also, by Lemma 4, since∑
(i,y)∈F qy(|ϕi⟩) ≤ ε2/2T , we have ∥ |ϕi−1⟩ − |ϕ′

i−1⟩ ∥≤ ε. Therefore, by
Lemma 5,

dTV (v, w) ≤ 2
R∑
i=1

dTV ((vi−1, vi), (wi−1, wi)) ≤ 2
R∑
i=1

5ε = 10Rε .

Corollary 8. Let MA be an naCQP algorithm with an oracle A as in Sec-
tion 2. Let T be the number of copies of Uf amongst gates U1, . . . , UR. For
every ε > 0, there is a set of strings S with |S| ≤ 200T 2R2/ε2 such that, for
any oracle A′, if A′ differs from A only on a single string y and y /∈ S, then,
being v = (v1, . . . , vR) and w = (w1, . . . , wR) the random variables returned
by MA and MA′

, we have dTV (v, w) ≤ ε.

Proof. First, we follow the proof by Bennett et al. [13] for the analogous result
concerning BQP. Since each |ϕi⟩ has unit length,

∑R
i=1

∑
y qy(|ϕi⟩) ≤ T . Let

S be the set of strings y such that
∑R

i=1 qy(|ϕi⟩) ≥ ε2

2T
. Since for any y in

S we have |S|∑R
i=1 qy(|ϕi⟩) ≤ T , we can conclude that |S| ≤ 2T 2

ε2
. If y ̸∈ S

then
R∑
i=1

qy(|ϕi⟩) <
ε2

2T
. (1)

Now, from (1), we apply Theorem 7, obtaining that for all y ̸∈ S,
dTV (v, w) ≤ 10Rε. Considering ε = ε′

10R
, we have

|S| ≤ 2T 2

(ε′/10R)2
=

200T 2R2

ε′2
.

Hence, for all y /∈ S, we have dTV (v, w) ≤ ε′ as desired.

Proof of Theorem 3. Follows directly from Corollary 8.
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4. Oracle separations for naCQP

Proof of Theorem 1. We prove that there is an oracle A for which PA =
naCQPA and UPA ∩ coUPA = EXPA. Let M ? be a naCQP algorithm which
can query an oracle such that given the input (0j, x), j ≤ |x|: runs in linear
time on j + |x| for any oracle; makes a query of size smaller than |x|; has
error probability smaller than 2−j−|x|. Let {M ?

k}k∈N be an enumeration of
such algorithms.

Claim 1.1. Let {MA
k }k∈N be the enumeration of the naCQPA algorithms as

defined and restricted above. Then, naCQPA can be given as the set of the
languages decided by an algorithm in the set {MA

k }k∈N.
Proof of the claim. The proof uses a padding argument. Let W ? be an
naCQP algorithm that queries an oracle and runs in time at most |x|c for
some c ∈ N. Then, M ?

k is the naCQP algorithm that queries an oracle and
that, on input (0|x|, x0|x|

c−|x|), emulates W ?(x). Assuming that M ?
k rejects

if the input does not fit in this format, we have clearly that M ?
k , on input

(0j, y), runs in linear time on the length of its input (i.e. j + |y|) and makes
oracle queries only of length smaller than |y|. Also, we assume w.l.o.g. that
if x ∈ L, then Pr[Mk(0

|x|, x0|x|
c−|x|) = 1] ≥ 1 − 2−|x|−|x|c , and if x /∈ L, then

Pr[Mk(0
|x|, x0|x|

c−|x) = 1] ≤ 2−|x|−|x|c . ♢

For the oracle A we want to construct, let LA be a EXPA-complete lan-
guage and let EA be a deterministic Turing machine which queries A that
decides LA in exponential time. We can also assume w.l.o.g that EA runs
in time 2|x| given input (0j≤|x|, x). Let ⟨·, ·, ·, ·, ·⟩ be a function from Σ5 to
Σ such that |⟨a, b, c, d, e⟩| > max{|a|, |b|, |c|, |d|, |e|} for all a, b, c, d, e ∈ Σ.
Given k > 0 and s ∈ {0, 1}∗, we denote snk as the (k+1)-th string in {0, 1}n.
If k = 0 we have sn0 = 0n. We construct A such that for any sufficiently large
n and all strings x of size n and all k with 0 ≤ k < n,

(a) Pr[MA
k (0

j≤n, x) = 1] ≥ 1− 2−2n ⇒ ⟨00, s⌈log(n)⌉k , x, 1n
2
, 1n

2⟩ ∈ A;

(b) Pr[MA
k (0

j≤n, x) = 0] ≥ 1− 2−2n ⇒ ⟨00, s⌈log(n)⌉k , x, 1n
2
, 1n

2⟩ ̸∈ A;

(c) x ∈ LA ⇒ |{y ∈ Σn2
: ⟨01, 1⌈log(n)⌉, x, y, 1n2⟩ ∈ A}| = 1 and |{z ∈

Σn2
: ⟨10, 1⌈log(n)⌉, x, 1n2

, z⟩ ∈ A}| = 0;

(d) x ̸∈ LA ⇒ |{y ∈ Σn2
: ⟨01, 1⌈log(n)⌉, x, y, 1n2⟩ ∈ A}| = 0 and |{z ∈

Σn2
: ⟨10, 1⌈log(n)⌉, x, 1n2

, z⟩ ∈ A}| = 1.
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Claim 1.2. If conditions (a) and (b) are satisfied, then PA = naCQPA.

Proof of the claim. A deterministic polynomial-time Turing machine can de-
cide the same language as MA

k by simply querying the oracle A about the

string ⟨00, s⌈log(n)⌉k , x, 1n
2
, 1n

2⟩. ♢

Claim 1.3. If conditions (c) and (d) are satisfied, then UPA ∩ coUPA =
EXPA.

Proof of the claim. A non-deterministic polynomial-time Turing machine can
decide LA by guessing an unambiguous y ∈ Σn2

and querying the oracle about
⟨01, 1⌈log(n)⌉, x, y, 1n2⟩, this machine can also decide coLA by guessing an un-
ambiguous z ∈ Σn2

and querying the oracle about ⟨10, 1⌈log(n)⌉, x, 1n2
, z⟩. ♢

We say that:

• w is a 00-string, if w has the form ⟨00, s⌈log(n)⌉k , x, 1n
2
, 1n

2⟩ with 0 ≤ k <
n;

• w is a 01-string, if w has the form ⟨01, 1⌈log(n)⌉, x, y, 1n2⟩ with |y| = n2;

• w is a 10-string, if w has the form ⟨10, 1⌈log(n)⌉, x, 1n2
, z⟩ with |z| = n2.

We construct A in stages, for each string x following the lexicographic
order. At each stage, the oracle is described as a partial function σA.
The initial stage is defined as σA(λ) = 0 for the empty string λ. For
each stage x, we consider all possible strings w from w = ⟨00, 0, x, 0, 0⟩ to
w = ⟨10, 1⌈log(n)⌉, x, 1n2

, 1n
2⟩.

Let p(w) be a qubit as recursively defined below. Note that we want p(w)
to represent the oracle’s answer, that is, if the answer is 0 (1), than p(w)
collapses to |0⟩ (|1⟩) with high probability, i.e. ≥ 1− 2−2n.

Step 1. For each string w that is not 00-string, 01-string, or 10-string: p(w) =
|0⟩.

Step 2. We assign for every 01-string w and 10-string w a variable vw that
indicates whether w belongs to the oracleA, and do p(w) = |vw⟩. The
variable vw will be valued later. In the case wherein w ∈ dom(σA),
we will have p(w) = |σA(w)⟩.

12



Step 3. If w is a 00-string, we define p(w) as the quantum state correspond-
ing to the output, just before the final measurement, ofMA

k (0
j≤n, x).

Note that, since the size of each query is smaller than |x|, and there-
fore smaller than

√
|w|, the answers to these queries can be assumed

to be defined by recursion. Then, we add w to A if and only if the
majority output of p(w) is 1.

To complete the construction of oracle A at stage x, we now need to
value vw when w is a 01-string or a 10-string. We denote a string r of length
2 · 2n2

containing in its first half the indexing of all strings y ∈ Σn2
, and in

its second half the indexing of all strings z ∈ Σn2
. That is, each bit of the

first half of r corresponds to a 01-string of the form ⟨01, 1⌈log(n)⌉, x, y, 1n2⟩
and each bit of the second half of r corresponds to a 10-string of the form
⟨10, 1⌈log(n)⌉, x, 1n2

, z⟩. We define Cx(r) to be the output of the emulation
of EA(0j≤n, x) with the condition that whenever E makes a query w, we
compute p(w) and use its majority output.

Claim 1.4. For each x, there is a string r given by r = di = 0i102
n2+1−i−1

(0 ≤ i < 2n
2+1) that can be in one of two cases:

1. Cx(di) = 1, if i < 2n
2
;

2. Cx(di) = 0, if i ≥ 2n
2
.

We interpret this string r such as follows. We assign vw = 1 to the string w
indexed by the (i + 1)-th bit of r, and vw = 0 to all w indexed by the other
bits of r.

Proof of the claim. Due to the recursion used to obtain p(w) for the 00-
strings, the number of levels needed to compute Cx(r) is at most ⌊log n⌋ −
1. Therefore, the total number of queries that Cx(r) makes is at most∏⌊logn⌋

i=0 (2n)1/2
i
. Note that

∏⌊logn⌋
i=0 (2n)1/2

i
< 22n−1. Therefore, for a suf-

ficiently large n, the probability that Cx(r) obtains the correct answer is
greater than (1 − 2−2n)2

2n−1
>

√
1/e > 2/3, assuming that the probability

that p(w) returns a wrong result is less than 2−2n.
We need, finally, to consider that a subcomputation p(w) may return

a wrong result with probability greater than 2−2n. For such cases we can
consider that the subcomputation p(w) returns |1⟩ or |0⟩ in an arbitrary
way. According to Theorem 3 we have a polynomially small set S of oracle
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answers that can change with probability greater than ε the output of a
quantum algorithm naCQP. We conclude, then, that there is always a way
to set the values of vw for these “bad” w so that neither of the following cases
occur:

1. i < 2n
2
and Cx(di) = 0;

2. i ≥ 2n
2
and Cx(di) = 1. ♢

Step 3 corresponding to the construction of the 00-strings, together with
Claim 1.4 corresponding to the construction of the 01-strings and 10-strings,
fulfil Conditions (a), (b), (c) and (d), thus concluding the proof.

Proof of Theorem 2. The statement of the original version of Lemma 4
for BQP by Bennett et al. [13] coincides with the one that we have presented
for naCQP, since in our statement we are considering a time t before which no
collapsing measurements have occurred, meaning that, up to that point, our
naCQP algorithm is behaving like a BQP algorithm. Bennett et al. [13] used
the original version of Lemma 4 for BQP to prove that, relative to a random
oracle A, we have (UP∩ coUP)A ̸⊆ BQPA with probability 1 (actually they
prove this for NP∩ coNP, but the same proof works for UP∩ coUP). We
adapt the proof of Bennett et al. by using Theorem 7 instead of Lemma 4
for BQP, and show that (UP∩ coUP)A ̸⊆ naCQPA with probability 1.

First, remark that an oracle A can be conveniently thought of as a length-
preserving function f on Σ∗, which can be accomplished by interpreting
the oracle answer on the pair (x, i) as i-th bit of f(x). We can also define
a permutation oracle as a length-preserving function that for each n ≥ 0
gives a permutation on Σn. Thus, for any such oracle A, let LA = {y :
first bit of A−1(y) is 1}, which is clearly in (UP∩ coUP)A — the certificate
for y, regardless whether y ∈ LA or y /∈ LA, is the only x such that A(x) = y,
since A is a permutation oracle.

Let M ? be an naCQTime(n) algorithm which can query an oracle and
runs in time at most T (n). Let T (n) = o(2n/5). By sampling uniformly at
random a permutation oracle A, we have with probability 1 thatMA gives the
wrong answer on input 1n, for some large enough picked n, implying thatMA

does not accept LA, which suffices to show that (UP∩ coUP)A ̸⊆ naCQPA.
This probability 1, taken over the choice of a random permutation oracle
(i.e. thought as a length-preserving function, the oracle acts as a permutation
on Σ∗), remains the same when taken over the choice of a random oracle.
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In what follows, we argue that MA gives the wrong answer on input 1n, but
adapting the technical details in the context of naCQP.

We can sample random permutations on {0, 1}n as follows. Let x0, x1,
. . ., xT (n)+1 be strings chosen uniformly at random in {0, 1}n. Let π0 be a
permutation uniformly sampled amongst permutations π satisfying π(x0) =
1n. Now, being τ the transposition (xi−1, xi), define πi = πi−1 ·τ , i.e. πi(xi) =
πi−1(xi−1) and πi(xi−1) = πi−1(xi). Clearly each πi is a random permutation
on {0, 1}n. Let {Ai} be a sequence of permutation oracles such that Ai(x) =
πi(x) if x ∈ {0, 1}n, and Ai(x) = Aj(x) if x ̸∈ {0, 1}n, for every j (recall
that Σ may have other symbols than 0 and 1, so all we need is to define the
answers of all oracles Ai to be consistent whenever x is not a binary string).

Claim 2.1. The probability of the string 1n belongs to exactly one of the two
languages LAT (n)

and LAT (n)−1
is 1/2 (hence it is also 1/2 the probability that

1n belongs to none of the languages or to both).

Proof of the claim. Both A−1
T (n)(1

n) = xT (n) and A
−1
T (n)−1(1

n) = xT (n)−1 have
been sampled uniformly at random, so the probability that exactly one of
them has the first bit equal to 1 is 1/2. ♢

For naCQTime(T (n)), let {|ψt⟩} and {|ψ′
t⟩} be the states sampled by

MAT (n) and MAT (n)−1 , respectively, on input 1n, being v = (v1, . . . , vR) and
w = (w1, . . . , wR) the corresponding random variables, as in Theorem 7.

Claim 2.2. dV T (v, w) ≤ 1/50

Proof of the claim. Consider that the naCQTime(T (n)) algorithmM ? queries
a different oracle At for each t = 1, . . . , R, being {|ψt⟩} the corresponding
states and q = (q1, . . . , qR) the corresponding random variables. Consider the
set of time-string pairs S = {(i, xj) : j ≥ i, 0 ≤ i ≤ T (n)}. By construction,
the oracle queries described above and those of MA

T (n) and MA
T (n)+1 differ

only on the set S. Since each xj, for j ≥ i, may be thought of having been
randomly chosen during step j, after the superposition of oracle queries to be
performed has already been written on the oracle tape, the expected query
magnitude of any pair in S is at most 1/2n. Hence, being α the sum of the
query magnitudes after step T (n) ≥ 4 for the elements of S,

E[α] ≤ |S|
2n

=

(
T (n)+1

2

)
2n

≤ (T (n))2

2n
.
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Let ε be a random variable such that α = ε2

200R2T (n)
. Then by Theorem 7,

and making a variable substitution of ε = ε′

10R
, we have dV T (q, v) ≤ ε

and dV T (q, w) ≤ ε. We showed above that E[ε2/200R2T (n)] = E[α] ≤
(T (n))2/2n. But E

[
ε/R

√
200T (n)

]2
≤ E [ε2/200R2T (n)]. Therefore,

E[ε] =
√
200R2T (n)E

[
ε√

200R2T (n)

]

≤
√

200R2T (n)E

[
ε2

200R2T (n)

]
≤

√
200R2T (n)

(T (n))2

2n
.

As T (n) ≤ 2n/5

200
and R ≤ 2n/5

200
, we have

E[ε] ≤
√

200R2T (n)
(T (n))2

2n
≤

√
200

2005
<

1

100
.

Therefore dV T (q, v) ≤ E[ε] < 1/100 and dV T (q, w) ≤ E[ε] < 1/100. It
follows that dV T (v, w) < 1/50. ♢

By Markov’s bound, if dV T (v, w) ≤ 1/50, then Pr[dV T (v, w) ≤ 2/25] ≥
3/4, i.e. with probability at least 3/4 we have dV T (v, w) ≤ 2/25 < 1/3,
meaning that both MAT (n) and MAT (n)−1 either accept or reject 1n.

As stated in Claim 2.1, the probability that the string 1n belongs to ex-
actly one of the languages LAT (n)

and LAT (n)−1
is 1/2. Hence, with probability

at least 3/4− 1/2 = 1/4, either MAT (n) or MAT (n)−1 gives the wrong answer
on input 1n. Since AT (n) and AT (n)−1 are chosen from the same distribution,
MAT (n) is the machine to give the wrong answer with probability at least
1/8. This leads to the conclusion that M decides LA with probability 0 for
a uniformly random permutation oracle A.
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Appendix A. Proof of Lemma 4

Lemma 4 (adapted from Bennett et al., 1997 [13]). Let MA be an naCQP
algorithm with an oracle A as in Section 2. For some fixed t, let T be the
number of copies of Uf amongst gates U1, . . . , Ut, and, for ε > 0, let F ⊆
[1, t]× Σ∗

1. for each (i, y) ∈ F , Ui is a copy of Uf ;

2.
∑

(i,y)∈F qy(|ϕi⟩) ≤ ε2/2T (recall the definition of |ϕi⟩ in Section 2).

Now suppose that the answer to each query (i, y) ∈ F is modified to some
arbitrary fixed bit ai,y, being these answers not necessarily consistent with an
oracle. Let |ϕ′

i⟩ be defined as |ϕi⟩, but with respect to oracle A modified as
above. Then, ∥|ϕt⟩ − |ϕ′

t⟩∥ ≤ ε.

Proof. Let |ϕi⟩ be the quantum state of MA at time i given the input x and
let U1, . . . , Ut be the quantum gates of MA. Let Ai be an oracle such that
if (i, y) ∈ F then Ai(y) = ai,y and if (i, y) ̸∈ F then Ai(y) = A(y). Let U ′

i

be the gate of MAi , we define |Ei⟩ as the error in the i-th step caused by
exchanging the oracle A for the oracle Ai, thus,

|Ei⟩ = U ′
i+1 |ϕi⟩ − Ui+1 |ϕi⟩ (A.1)

or
Ui+1 |ϕi⟩ = U ′

i+1 |ϕi⟩ − |Ei⟩ . (A.2)
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Considering that |ϕt⟩ = Ut |ϕt−1⟩, we have, using (A.2),

|ϕt⟩ = U ′
t |ϕt−1⟩ − |Et−1⟩

= U ′
t(Ut−1 |ϕt−2⟩)− |Et−1⟩

= U ′
t(U

′
t−1 |ϕt−2⟩ − |Et−2⟩)− |Et−1⟩

= U ′
tU

′
t−1 |ϕt−2⟩ − U ′

t |Et−2⟩ − |Et−1⟩
= U ′

tU
′
t−1 · · ·U ′

1 |ϕ0⟩ − (U ′
tU

′
t−1 · · ·U ′

1 |E0⟩+ · · ·+ U ′
t |Et−2⟩+ |Et−1⟩)

= |ϕ′
t⟩ − (U ′

tU
′
t−1 · · ·U ′

1 |E0⟩+ · · ·+ U ′
t |Et−2⟩+ |Et−1⟩) ;

then

∥|ϕt⟩ − |ϕ′
t⟩∥ = ∥U ′

tU
′
t−1 · · ·U ′

1 |E0⟩+ · · ·+ U ′
t |Et−2⟩+ |Et−1⟩∥

≤ ∥U ′
tU

′
t−1 · · ·U ′

1 |E0⟩∥+ · · ·+ ∥U ′
t |Et−2⟩∥+ ∥|Et−1⟩∥ .

As all operators U ′
i are unitary, ∥U ′

t−1 · · ·U ′
i |Ei⟩∥ = ∥|Ei⟩∥, we have

∥|ϕt⟩ − |ϕt
′⟩ ∥ ≤

t−1∑
i=0

∥|Ei⟩∥ . (A.3)

From (A.1), using the triangle inequality we have:

∥|Ei⟩∥2 ≤ ∥U ′
i |ϕi⟩∥2 + ∥Ui |ϕi⟩∥2

≤ ∥|ϕi⟩∥2 + ∥|ϕi⟩∥2 = 2∥|ϕi⟩∥2 ;
(A.4)

Since ∥|Ei⟩∥2 is the result of the error caused by changing the result of
the query (i, y) ∈ F , we can rewrite (A.4) as:

∥|Ei⟩∥2 ≤ 2qy(ϕi) . (A.5)

So, by Condition 2 in the statement, we have

t−1∑
i=0

∥|Ei⟩∥2 ≤ 2
∑

(i,y)∈F

qy(|ϕi⟩) ≤
ϵ2

T
. (A.6)

Using (A.3) and (A.6) we get

∥|ϕt⟩ − |ϕt
′⟩ ∥2 ≤

∥∥∥∥∥
t−1∑
i=0

∥|Ei⟩∥
∥∥∥∥∥
2

≤ T
∑

(i,y)∈F

∥|Ei⟩∥2 = T
ϵ2

T
= ϵ2 .

Therefore, ∥|ϕt⟩ − |ϕ′
t⟩∥ ≤ ϵ.
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