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ABSTRACT

In this work we investigate the problem of estimating the percolation centrality of all vertices in
a weighted graph. The percolation centrality measure quantifies the importance of a vertex in a
graph that is going through a contagious process. The fastest exact algorithm for the computation
of this measure in a graph G with n vertices and m edges runs in (n3). Let DiamV (G) be the
maximum number of vertices in a shortest path in G. In this paper we present an expected
(m log n logDiamV (G)) time approximation algorithm for the estimation of the percolation
centrality for all vertices of G. We show in our experimental analysis that in the case of real-
world complex networks, the output produced by our algorithm returns approximations that are
even closer to the exact values than its guarantee in terms of theoretical worst case analysis.

1. Introduction
The importance of a vertex in a graph can be quantified using centrality measures. In this paper we deal with

the percolation centrality, a measure relevant in applications where graphs are used to model a contagious process in
a network (e.g. disease transmission or misinformation spreading). Centrality measures can be defined in terms of
local properties, such as the vertex degree, or global properties, such as the betweenness centrality or the percolation
centrality. The betweenness centrality of a vertex v, roughly speaking, is the fraction of shortest paths containing v as
an intermediate vertex. The percolation centrality generalizes the betweenness centrality by allowing weights on the
shortest paths, and the weight of a shortest path depends on the disparity between the degree of contamination of the
two end vertices of such path.

The study of the percolation phenomenon in a physical system was introduced by Broadbent and Hammersley
(1957) [8] in the context of the passage of a fluid in a medium. In graphs, percolation centrality was proposed by
Piraveenan et al. (2013) [17], where the medium are the vertices of a graphG and each vertex v inG has a percolation
state (reflecting the degree of contamination of v). The percolation centrality of v is a function that depends on the
topological connectivity and the states of the vertices of G. The best-known algorithms that exactly compute the
betweenness centrality for all vertices of a graph depends on computing all its shortest paths [19] and, consequently,
the same applies in the computation of percolation centrality. The fastest algorithm for this task for weighted graphs,
proposed by Williams (2014) [24], runs in 

(

n3∕2c
√

log n
)

time, for some constant c. Currently it is a central open
problem in graph theory whether this problem can be solved in (n3−c), for any c > 0, and the hypothesis that there is
no such algorithm is used in hardness arguments in some works [1, 2]. In the particular case of sparse graphs, which are
common in many applications, the complexity of the exact computation for the betweenness centrality can be improved
to (n2). However, the same is not known to be the true for percolation centrality and no subcubic algorithm is known
even in such restricted scenario.

The main contributions of our work are approximations algorithms to estimate the percolation centrality of all
vertices of a graph. The present paper is an extended version of a conference paper where we describe an approximation
algorithm for the problem using sample complexity theory. In the conference version we designed a fixed-size sample
algorithm for this task, while in the current paper we show how the algorithm can be modified so we have a progressive
sampling approach. Sections 2.3, 3.2 and 4.1 describe the results and techniques that we use in this extension. We also
provide experimental evaluation, in Section 5, for the progressive sampling algorithm. In both works, we follow the
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steps of Riondato, Kornaropoulos and Upfal [19, 20], which designed an approximation algorithm for the betweenness
centrality problem under the light of sample complexity theory. Amain themewe deal with is the fact that for large scale
graphs, even algorithms with time complexity that scales in quadratic time are inefficient in practice and high-quality
approximations obtained with high confidence are usually sufficient in real-world applications. In [20], the authors
observe that keeping track of the exact centrality values, which may change continuously, provides little information
gain. So, the idea is to sample a subset of all shortest paths in the graph so that, for any fixed constants 0 < �, � < 1,
they obtain values within � from the exact value with probability 1 − �.

In this paper we combine techniques presented in Lima et al. (2020) [9] on Pseudo-dimension theory applied
to percolation centrality, and in the work of Riondato and Upfal on Rademacher Averages applied to betweenness
centrality. We show that this combination can be further developed for giving an approximation algorithm for the
percolation centrality based on a progressive sampling strategy. The idea is that the algorithm iteratively increases
the size of a sample of shortest paths used for the estimation of the percolation centrality until the desired accuracy
is achieved. The stop condition depends on the Rademacher Averages of the current sample of shortest paths. One
of the consequences of the approach based on Rademacher Averages is that such technique is sensitive to the input
distribution, so it can provide tighter bounds for certain inputs. Additionally, even if no assumption is made on the
input distribution, we show that with the use of Vapnik–Chervonenkis (VC) theory on the sample analysis we can
obtain a sample size that is tighter than the one given by standard Hoeffding and union-bound techniques, and never
worse than the sample size given by the fixed-size sample algorithm (in the conference version of this paper we used
only fixed-size samples).

We have in mind both a theoretical and a practical perspective. More precisely, we show that the estimation of the
percolation centrality can be computed in (m log n logDiamV (G)) expected time, where DiamV (G) is the maximum
number of vertices in a shortest path of G. Note that since many real-world graphs are sparse and have logarithmic
diameter, the time complexity of the algorithm for such graphs is (n log n log log n). In the practical front, in Section
5, we give the relation between the quality and confidence constants and the sample size required for meeting the
approximation guarantee and, in fact, our experimental evaluation shows that our algorithms produce results that are
orders of magnitude better than the guarantees given by the referred theoretical analysis.

2. Preliminaries
In this section, we present the definitions, notation and results that are the groundwork of our proposed algorithms.

In all results of this paper, we assume w.l.o.g. that the input graph is connected, since the algorithms can be applied
separately to each of its connected components.

2.1. Graphs and Percolation Centrality
Given a directed weighted graph G = (V ,E), the percolation states 0 ≤ xv ≤ 1 for each v ∈ V and (u,w) ∈ V 2,

let Suw be the set of all shortest paths from u to w, and �uw = |Suw|. For a given path puw ∈ Suw, let Int(puw) be the
set of internal vertices of puw, that is, Int(puw) = {v ∈ V ∶ v ∈ puw and u ≠ v ≠ w}. We denote �uw(v) as the number
of shortest paths from u tow that v ∈ V is internal to. Let Pu(w) = {s ∈ V ∶ (s,w) ∈ Epuw} be the set of (immediate)
predecessors of w in puw ∈ Suw, where Epuw is the set of edges of puw. We define DiamV (G) as the vertex-diameter
of G, i.e. the maximum number of vertices in a shortest path in G. We say a vertex v is fully percolated if xv = 1,
non-percolated if xv = 0 and partially percolated if 0 < x < 1. We say that a path from u to w is percolated if
xu − xw > 0. The percolation centrality is defined below.

Definition 1 (Percolation Centrality). Let R(x) = max{x, 0}. Given a graph G = (V ,E) and percolation states
xv,∀v ∈ V , the percolation centrality of a vertex v ∈ V is defined as

p(v) = 1
n(n − 1)

∑

(u,w)∈V 2

u≠v≠w

�uw(v)
�uw

R(xu − xw)
∑

(f,d)∈V 2

f≠v≠d

R(xf − xd)
.

The definition originally presented by Piraveenan et al. [17] does not have the normalization factor 1
n(n−1) , intro-

duced in this paper with the purpose of defining a proper probability distribution in Section 3. This normalization
preserves the original relation among the vertices centralities.
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2.2. Sample Complexity and Pseudo-dimension
In sampling algorithms, typically the estimation of a certain quantity observing parameters of quality and confi-

dence is desired. The sample complexity analysis relates the minimum size of a random sample required to estimate
results that are consistent with such desired parameters (e.g. in our case a minimum number of shortest paths that must
be sampled). An upper bound to the Vapnik–Chervonenkis Dimension (VC-dimension) of a class of binary functions,
a central concept in sample complexity theory, is especially defined in order to model the particular problem that one
is dealing. There is, an upper bound to the VC-dimension of the sampling problem at hand is also an upper bound to
the sample size which respects the desired quality and confidence parameters. Generally speaking, the VC-dimension
measures the expressiveness of a class of subsets defined on a set of points [19].

For the problem presented in this work, however, the class of functions that we need to deal are not binary. Hence,
we use the Pseudo-dimension, which is a generalization of the VC-dimension for real-valued functions. An in-depth
exposition of the definitions and results presented below can be found in the books of Anthony and Bartlett (2009) [4],
Mohri et al. (2012) [15], Shalev-Shwartz and Ben-David (2014) [23] and Mitzenmacher and Upfal (2017) [14].

Definition 2 (Range Space). A range space is a pair  = (U,), where U is a domain (finite or infinite) and  is a
collection of subsets of U , called ranges.

For a given S ⊆ U , the projection of  on S is the set S = {S ∩ I ∶ I ∈ }. If |S | = 2|S| then we say S is
shattered by . The VC-dimension of a range space is the size of the largest subset S that can be shattered by , as
presented by the following definition.

Definition 3 (VC-dimension). The VC-dimension of a range space = (U,), denoted by VCDim(), is VCDim() =
max{k ∶ ∃S ⊆ U such that |S| = k and |S | = 2k}.

Let  be a family of functions from some domain U to the range [0, 1]. ConsiderD = U × [0, 1]. For each f ∈  ,
there is a subset Rf ⊆ D defined as Rf = {(x, t) ∶ x ∈ U and t ≤ f (x)}.

Definition 4 (Pseudo-dimension (see [4], Section 11.2)). Let = (U, ) and′ = (D,+) be range spaces, where
+ = {Rf ∶ f ∈ }. The Pseudo-dimension of , denoted by PD(), corresponds to the VC-dimension of ′, i.e.
PD() = VCDim(′).

The following combinatorial object, called �-sample, is useful when one wants to intersect ranges of a sufficient
size with respect to the right relative frequency of each range in  within the sample S.

Definition 5 (�-sample). Given 0 < � < 1, a set S ⊆ U is called �-sample w.r.t. a range space  = (U,) and a
probability distribution � on U if ∀I ∈ , |

|

|

Pr�(I) −
|S∩I|
|S|

|

|

|

≤ �.

A more general definition of �-sample (called �-representative) is given below for a given a domain U , a set of
values of interest , and a family of functions  from U to ℝ∗ such that there is one fℎ ∈  for each ℎ ∈ . Let S
be a collection of r elements sampled independently from U with respect to a probability distribution �.

Definition 6. For each fℎ ∈  , such that ℎ ∈ , we define the expectation of fℎ and its empirical average as LU
and LS , respectively, i.e. LU (fℎ) = Eu∼�[fℎ(u)] and LS (fℎ) =

1
r
∑

s∈S fℎ(s).

Definition 7. Given 0 < �, � < 1, a set S ⊆ is called �-representative w.r.t. some domain U , a set , a family of
functions  and a probability distribution � if ∀fℎ ∈  , |LS (fℎ) − LU (fℎ)| ≤ �.

As observed by [23], by the linearity of expectation we have that the expected value of the empirical averageLS (fℎ)
corresponds to LU (fℎ). Hence, |LS (fℎ) − LU (fℎ)| = |LS (fℎ) − Efℎ∈ [LS (fℎ)]|, and by the law of large numbers,
LS (fℎ) almost surely converges to its true expectation as r goes to infinity, since LS (fℎ) is the empirical average
of r random variables sampled independently and identically w.r.t. �. For any sample size, though, no information
about the value |LS (fℎ) − LU (fℎ)| is available by the application of the referred law. Thus, we use results from the
VC-dimension and Pseudo-dimension theory, which provide bounds on the size of the sample that guarantees that the
maximum deviation of |LS (fℎ) − LU (fℎ)| is within � with probability at least 1 − �, for given 0 < �, � < 1.

Theorem 1 states that having an upper bound to the Pseudo-dimension of a range space allows to build an �-sample.
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Theorem 1 (see [10], Theorem 2.12). Let ′ = (D,+) be a range space (D = U × [0, 1]) with VCDim(′) ≤ d
and a probability distribution � on U . Given 0 < �, � < 1, let S ⊆ D be a collection of elements sampled w.r.t. �, with
|S| = c

�2

(

d + ln 1
�

)

, where c is a universal positive constant. Then S is an �-sample with probability at least 1 − �.

Löffler and Phillips [13] observe empirically that the constant c is approximately 1
2 . Lemmas 1 and 2, stated and

proved by [20], present constraints on the sets that can be shattered by a range set +.

Lemma 1 (see [20], Section 3.3). Let B ⊆ D be a set that is shattered by +. Then, B can contain at most one
(d, y) ∈ D for each d ∈ U and for some y ∈ [0, 1].

Lemma 2 (see [20], Section 3.3). Let B ⊆ D be a set that is shattered by +. Then, B does not contain any element
in the form (d, 0) ∈ D, for each d ∈ U .

2.3. Progressive Sampling and Rademacher Complexity
In some problems, finding a bound for the sample size that is tight may be a complicated task. An alternative

to this issue relies on the use of progressive sampling, in which the process starts with a small sample size which
progressively increases until the accuracy can be improved [18]. The use of an appropriate scheduling for the sample
increase combined with an efficient-to-evaluate stopping condition (i.e. knowing when the sample is large enough)
leads to a greater improvement in time for the estimation of the value of interest [20]. A key idea is that the stopping
condition takes into consideration the input distribution, which can be extracted by the use of Rademacher Complexity
(see [14], chapter 14). The main results from this theory that is in the core of statistical learning theory and that we
apply in our algorithms are presented below.

Consider a sample S and the computation of the maximum deviation of LS (fℎ) from the true expectation of fℎ,
for all fℎ ∈  , that is, supfℎ∈ |LS (fℎ) − LU (fℎ)|. The empirical Rademacher average of  is defined as follows.

Definition 8. Consider a sample S = {z1,… , zr} and a distribution of r independent Rademacher random variables
� = (�1,… , �r), i.e. Pr(�i = 1) = Pr(�i = −1) = 1∕2 for 1 ≤ i ≤ r. The empirical Rademacher average of a family
of functions  w.r.t. to S is defined as

R̃r( , S) = E�

[

sup
fℎ∈

1
r

r
∑

i=1
�ifℎ(zi)

]

.

At the heart of our algorithm, the stopping condition for the progressive sampling depends on the Rademacher Com-
plexity of the sample. For the connection of the empirical Rademacher average with the value of supfℎ∈ |LS (fℎ) −
LU (fℎ)|, we use the bound of [20], which extended the bound of [16] to the supremum of its absolute value to functions
with codomain in [0, 1] and uniform probability distribution on the input.

Theorem 2. (see [20], Theorem 3.3) With probability at least 1 − �,

sup
fℎ∈

|

|

LS (fℎ) − LU (fℎ)|| ≤ 2R̃r( , S) +
ln 3

� +
√

(ln 3
� + 4rR̃r( , S)) ln

3
�

r
+

√

3
�
2r
.

The exact computation of R̃r( , S) depends on an extreme value, i.e. the supremum of deviations for all functions
in  , which can be expensive and not straight-forward to compute over a large (or infinite) set of functions [14]. For
this reason, we use the bound given by Theorem 3, which is a variant of the Massart’s Lemma (see Theorem 14.22,
[14]) that is convex, continuous in ℝ+ and can be efficiently minimized by standard convex optimization methods.

Consider the vector vfℎ = (fℎ(z1),… , fℎ(zr)) for a given sample of r elements, denoted by S = {z1,… , zr}, and
let S = {vfℎ ∶ fℎ ∈ }.

Theorem 3. (see [20], Theorem 3.4) Let w ∶ ℝ+ → ℝ+ be the function

w(s) = 1
s
ln

∑

vfℎ∈S

exp

(

s2‖vfℎ‖
2
2

2r2

)

.

Then R̃r( , S) ≤ mins∈ℝ+ w(s).
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3. Pseudo-dimension and percolated shortest paths
In this section we model the percolation centrality estimation problem in terms of a range set of the percolated

shortest paths. In the conference version [9], our algorithm uses a sample of fixed size and a range set where the points
of the domain are shortest paths. So, as one of the contributions of the current paper with respect to the conference
version, in Section 3.2 we present a range space where the domain corresponds to the pairs of vertices of G. This
modification is necessary in the progressive sampling algorithm.

3.1. Range Space defined for the Fixed-Size Sample Algorithm
For a given graph G = (V ,E) and the percolation states xv for each v ∈ V , let  = V , with n = |V |, and let

U = SG, where SG =
⋃

(u,w)∈V 2∶u≠w
Suw. For each v ∈ V , there is a set �v = {p ∈ U ∶ v ∈ Int(p)}. For a pair

(u,w) ∈ V 2 and a path puw ∈ SG, let fv ∶ U → [0, 1] be the function fv(puw) =
R(xu−xw)

∑

(f,d)∈V 2∶f≠v≠d
R(xf−xd )

1�v (puw), where

1�v (puw) is the indicator function that returns 1 if v ∈ Int(puw) (and hence, puw is in the interval �v of vertex v) and
0 otherwise. The function fv gives the proportion of the percolation between u and w to the total percolation in the
graph if v ∈ Int(puw). We define  = {fv ∶ v ∈ V }.

Let D = U × [0, 1]. For each fv ∈  , there is a range Rv = Rfv = {(puw, t) ∶ puw ∈ U and t ≤ fv(puw)}. Note
that each range Rv contains the pairs (puw, t), where 0 < t ≤ 1 such that v ∈ Int(puw) and t ≤

R(xu−xw)
∑

(f,d)∈V 2∶f≠v≠d
R(xf−xd )

.

We define + = {Rv ∶ fv ∈ }.
Each puw ∈ U is sampled according to the function �(puw) = 1

n(n−1)
1
�uw

. In order to see that this is a valid
probability distribution, note that

∑

puw∈U
�(puw) =

∑

puw∈U

1
n(n − 1)

1
�uw

=
∑

u∈V

∑

w∈V
w≠u

∑

p∈Suw

1
n(n − 1)

1
�uw

=
∑

u∈V

∑

w∈V
w≠u

1
n(n − 1)

�uw
�uw

= 1
n(n − 1)

∑

u∈V

∑

w∈V
w≠u

1 = 1
n(n − 1)

∑

u∈V
(n − 1) = 1.

We state in the next theorem that E[fv(puw)] = p(v) for all v ∈ V .

Theorem 4. For fv ∈  and for all puw ∈ U , such that each puw is sampled according to the probability function
�(puw), E[fv(puw)] = p(v).

PROOF. For a given graph G = (V ,E) and for all v ∈ V , we have from Definition 6

LU (fv) = Epuw∼�[fv(puw)] =
∑

puw∈U
�(puw)fv(puw)

=
∑

puw∈U

1
n(n − 1)

1
�uw

R(xu − xw)
∑

(f,d)∈V 2

f≠v≠d

R(xf − xd)
1�v (puw)

= 1
n(n − 1)

∑

u∈V
u≠v

∑

w∈V
w≠v≠u

∑

p∈Suw

1
�uw

R(xu − xw)
∑

(f,d)∈V 2

f≠v≠d

R(xf − xd)
1�v (p)

= 1
n(n − 1)

∑

u∈V
u≠v

∑

w∈V
w≠v≠u

�uw(v)
�uw

R(xu − xw)
∑

(f,d)∈V 2

f≠v≠d

R(xf − xd)

= 1
n(n − 1)

∑

(u,w)∈V 2

u≠v≠w

�uw(v)
�uw

R(xu − xw)
∑

(f,d)∈V 2

f≠v≠d

R(xf − xd)
= p(v).
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Let S = {(puiwi , 1 ≤ i ≤ r)} be a collection of r shortest paths sampled independently from U . Next, we define
p̃(v), the estimation to be computed, as the empirical average from Definition 6:

p̃(v) = LS (fv) =
1
r

∑

puiwi∈S
fv(puiwi ) =

1
r

∑

puiwi∈S

R(xui − xwi )
∑

(f,d)∈V 2

f≠v≠d

R(xf − xd)
1�v (puiwi ).

3.2. Range Space defined for the Progressive Sampling Algorithm
In this section we describe a modification in the range space so that we can use the bound of [20] in our progressive

sampling algorithm, since an uniform probability distribution in the points of the domain is required in this case.
For a given graph G = (V ,E) and the percolation states xv for each v ∈ V , let U ′ = V × V . Let fv ∶ U ′ → [0, 1]

be the function
fv(u,w) =

R(xu − xw)
∑

(f,d)∈V ×V ∶u≠wR(xf − xd)
�u,w(v)
�u,w

.

We define  ′ = {fv ∶ v ∈ V }. There is one rangeRv = {((u,w), t) ∶ (u,w) ∈ U ′ and t ≤ fv(u,w)} for each fv ∈  ′.
We define  ′+ = {Rv ∶ fv ∈  ′}. Each (u,w) ∈ U ′ is sampled with probability �(u,w) = 1

n(n−1) , which is a valid
probability distribution.

For a collection S′ = {(ui, wi), 1 ≤ i ≤ r)} of r pairs of vertices sampled independently and identically from U ′,
the estimation p̃(v) to be computed is the empirical average of fv, according to Definition 6:

p̃(v) = LS′ (fv) =
1
r

∑

(ui,wi)∈S′
fv(ui, wi) =

1
r

∑

(ui,wi)∈S′

R(xui − xwi )
∑

(f,d)∈V ×V
f≠v≠d

R(xf − xd)
�uw(v)
�uw

.

4. Estimation for the Percolation Centrality
We present the approximation algorithms for the estimation of the percolation centrality of all vertices of a graph.

We give the outline of the algorithm that runs in a fixed-size sample, which we compare with the progressive sampling
approach, and that is described in more detail in the conference version of this paper [9]. We chose to present only
the idea of the conference version algorithm because the progressive sampling algorithm presented in this paper ends
up superseding the previous version. In Section 4.1, we describe the necessary modifications in the fixed-size sample
algorithm of the conference version so we obtain a progressive sampling approach.

We first define the problem in terms of range spaces and then we present the algorithms which take as input
a directed weighted graph G = (V ,E) with n vertices and m edges, the percolation states xv for each v ∈ V , a
sample schedule (|Si|)i≥1 (in the case of the progressive sampling approach) and the quality and confidence parameters
0 < �, � < 1, assumed to be constants (they do not depend on the size of G).

Theorems 1 and 5 state an upper bound for the VC-Dimension of the range space = (U, ) defined in Section 3,
respectively, in order to bound the fixed sample size that guarantees |p̃(v) − p(v)| ≤ � for each v ∈ V with probability
at least 1 − �.

Theorem 5. Let  = (U, ) and ′ = (D,+) be the corresponding range spaces for the domain and range sets
defined in Section 3, and let DiamV (G) be the vertex-diameter ofG. We have PD() = VCDim(′) ≤ ⌊lgDiamV (G)−
2⌋ + 1.

Proof. Let VCDim(′) = k, where k ∈ ℕ. Then, there is S ⊆ D such that |S| = k and S is shattered by +. From
Lemmas 1 and 2, we know that for each puw ∈ U , there is at most one pair (puw, t) in S for some t ∈ [0, 1] and there
is no pair in the form (puw, 0). By the definition of shattering, each (puw, t) ∈ S must appear in 2k−1 different ranges
in +. On the other hand, each pair (puw, t) is in at most |puw| − 2 ranges in +, since (puw, t) ∉ Rv either when
t > fv(puw) or v ∉ Int(puw). Considering that |puw| − 2 ≤ DiamV (G) − 2, we have

2k−1 ≤ |puw| − 2 ≤ DiamV (G) − 2
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k − 1 ≤ lgDiamV (G) − 2.

Since k must be integer, k ≤ ⌊lgDiamV (G) − 2⌋ + 1 ≤ lgDiamV (G) − 2 + 1. Finally, PD( ) = VCDim(+) = k ≤
⌊lgDiamV (G) − 2⌋ + 1. □

By Theorem 4 and Definition 3,LU (fv) = p(v) andLS (fv) = p̃(v), respectively, for each v ∈ V and fv ∈  . Thus,
|LS (fv) − LU (fv)| = |p̃(v) − p(v)|, and by Theorems 1 and 5, a sample of size ⌈ c

�2
(

⌊lgDiamV (G) − 2⌋ + 1 + ln �
)

⌉

suffices to our algorithm, for given 0 < �, � < 1.
If we had used a Hoeffding bound, we would have Pr(|p̃(v) − p(v)| ≥ �) ≤ 2 exp(−2r�2) for a sample of size r

and for each v ∈ V . Applying the union bound for all v ∈ V , the value of r must be 2 exp(−2r2�2)n ≥ �, which
leads to r ≤ 1

2�2 (ln 2 + ln n + ln(1∕�)). Even though DiamV (G) might be as large as n, we note that the bound given
in Theorem 5 is tighter since it depends on the combinatorial structure of G, which gives a sample size tailored for it.
For instance, if DiamV (G) = ln n (which is common in many real-world graphs, in particular power-law graphs), we
have that VCDim() ≤ ⌊lg(ln n) − 2⌋ + 1. In particular, the problem of computing the diameter of G is not known to
be easier than the problem of computing all of its shortest paths [3], however, a bound on DiamV (G) is enough and it
can be efficiently computed [20].

The main idea of the fixed-size sample algorithm presented in the conference version [9] is shown below.

step 1. Sample a pair of vertices (u,w) ∈ V × V uniformly and independently at random;

step 2. Compute the set Suw of shortest paths from u to w;

step 3. Sample a shortest path puw ∈ Suw independently with probability 1∕�uw. In this step, start a backward travers-
ing fromw as follows. Do t ← w, and while t ≠ u, sample a predecessor z of twith probability �uz∕�ut; increase
the estimation for the percolation centrality p̃(z) by 1

r
R(xu−xw)

∑

(f,d)∈V ×V ∶f≠v≠d R(xd−xf )
, and do t ← z;

step 4. Repeat the steps above k times, where k = c
�2

(

⌊lgDiamV (G) − 2⌋ + 1 + ln 1
�

)

;

step 5. Return the set {p̃(v) = p̃(v), v ∈ V and p̃(v) > 0}.

4.1. Description of the Progressive Sampling Algorithm
When comparing the fixed-size sample algorithm of [9] with a progressive sampling approach, we can build an

algorithm using the range space defined by  = (U, ) in Section 3 and the bound in Theorem 3.2 of [6] as the
stopping condition for sampling. However, the corresponding initial size to the sample schedule obtained by this
bound is greater than the value given by Theorems 1 and 5 for a fixed-size sample approach, so we use the range space
defined by′ = (U ′, ′) in Section 3.2, which has an uniform probability distribution on the domainU ′. We note that
if there is only one shortest path between any pair of vertices, then we can guarantee PD(′) ≤ ⌊lgDiamV (G)−2⌋+1;
otherwise, the Pseudo-dimension of ′ is the same as the one obtained by Hoeffding and union bounds (as proven in
Lemma 4.5 of [20]). Despite this issue, we show in the experimental evaluation that in practice, this range space can
lead to improvements on the running time of an approximation algorithm that uses a progressive sampling schedule.

The schedule is defined as follows: letS1 be the initial sample size and �1 = �∕2. At this point, the only information
available about the empirical Rademacher average of S1 is that R̃r( ′, S1) ≥ 0. Plugging this with the r.h.s. of the
bound in Theorem 11, which has to be at most �, we have

2 ln(6∕�)
|S1|

+

√

ln(6∕�)
2|S1|

≤ � ⇒
4 ln2(6∕�)
|S1|

2
−
4 ln(6∕�)�

|S1|
+ �2 ≤

ln(6∕�)
2|S1|

⇒ |S1| ≥
(1 + 8� +

√

1 + 16�) ln(6∕�)
4�2

. (1)

There is no fixed strategy for scheduling. Provost et al. (1999) [18] conjecture that a geometric sampling schedule
is optimal (although we do not need such assumption), i.e. the one that Si = giS1, for each i ≥ 1 and for constant
g > 1. In our algorithm we follow this results, as previously indicated in [20].

Given 0 < �, � < 1, let (|Si|)i≥1 be a geometric sampling schedule with starting sample size defined in (1). We
present the outline of the progressive sampling algorithm for estimating the percolation centrality with probability
1 − �. Consider the table p̃ with the centrality estimation.

The following steps are repeated for each i ≥ 1. For the sake of clarity, S0 = ∅.
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step 1. Create a sample of k = |Si|−|Si−1| elements of V ×V chosen uniformly and independently (with replacement)
at random;

step 2. For each pair of vertices (u,w) ∈ {Si − Si−1}, compute the set Suw of shortest paths from u to w. Let z be an
internal vertex of some shortest path between u andw. Increase the value p̃(z) by R(xu−xw)

∑

(f,d)∈V ×V ∶f≠v≠d R(xd−xf )
�uw(z)
�uw

;

step 3. Compute the bound to R̃r( ′, Si) by minimizing the function defined in Theorem 3. If it satisfies the stopping
condition defined in Theorem 2, then return the set {p̃(v) = p̃(v)∕|Si|, v ∈ V and p̃(v) > 0}. Otherwise, increase
the size of Si until it has size |Si+1|, increase i and return to step 1.

Step 1 is trivial. Step 2 requires the computation and update of internal vertices to some shortest path from u to w
and the computation of minus_s[v] =

∑

(f,d)∈V 2∶f≠v≠d
R(xf − xd) for each v ∈ V . The former task can be computed

in time (m + n log n) following the steps of [20]: we run a modified Dijkstra’s Algorithm in G = (V ,E), for each
sampled pair of vertices (u,w). The modification, discussed in Lemma 3 of Brandes (2001) [7], works as follows. Let
z be an internal vertex of some shortest path from u to w. The modified Dijkstra stores the distance d(u, z) from u to
z in a shortest path from u to w. After Suw is computed, the set of internal vertices in some path p ∈ Suw is sorted
in inverse order of d(u, z). The value �uw(z) corresponds to �uz�zw, where �uz is returned by the modified Dijkstra
algorithm, and �zw =

∑

y∶z∈Pu(y), where Pu(y) is the set of immediate predecessors of y in a shortest path from u to y.
In the calculation of minus_s[v] =

∑

(f,d)∈V 2∶f≠v≠d
R(xf − xd) for each v ∈ V , which are necessary to compute

p̃(v), we perform a linear time dynamic programming strategy presented in Algorithm 1. The proof of correctness of
this algorithm is stated in Theorem 6.

On Step 3, let Si = {(u1, w1,… , uj , wj)} be the sample of size j obtained after the execution of the i-th iteration
of the progressive sampling algorithm and let vv be the vector vv =

(

fv(u1, w1),… , fv(uj , wj)
)

, for all v ∈ V . The l1
and l2 norms of each vv are stored on the hash tables 1 and 2, respectively. The set  , represented as a hash table,
keeps the values of 2 with no repetition to the computation of !s in line 21, which is the bound for the empirical
Rademacher average of Si obtained by the function defined in Theorem 3. For each internal vertex v to be updated,
Algorithm 3 checks if the value associated to 2[v] in  is greater than zero. If yes, the value in [2[v]] is increased
by one; otherwise, a new key with 2[v] is created in  . The value of p̃(v) corresponds to 1[v]∕|Si|.

We prove the correctness and running time of Algorithm 2 in Theorems 7 and 8, respectively.

Theorem 6. For an arrayA of size n, sorted in non-decreasing order, Algorithm 1 returns for sum and minus_sum[k],

respectively, the values
n
∑

i=1

n
∑

j=1
R(A[j] − A[i]) and

n
∑

i=1
i≠k

n
∑

j=1
j≠k

R(A[j] − A[i]), for each k ∈ {1,… , n}.

Proof. By the definition of sum, we have that

sum =
n
∑

i=1

n
∑

j=1
R(A[i] − A[j]) =

n
∑

i=1

n
∑

j=1
R(A[j] − A[i]) =

n
∑

i=1

n
∑

j=1
max{A[j] − A[i], 0}.

Since A is sorted, then max{A[j] −A[i], 0} = 0 if j < i. Hence, if we consider only the j ≥ i, this value becomes
sum =

∑n
i=1

∑n
j=i(A[j] − A[i]).

A similar step can be applied to the values of the array minus_sum, and then for all indices k ∈ {1, ..., n},

minus_sum[k] =
n
∑

i=1
i≠k

n
∑

j=1
j≠k

max{A[j] − A[i], 0} =
n
∑

i=1
i≠k

n
∑

j=i
j≠k

(A[j] − A[i]).

The recurrences below follow directly from lines 5 and 6, where sumk denotes the value of sum at the beginning
of the k-th iteration of the algorithm.

svp[k] =

{

0, if k = 1
svp[k − 1] + A[k − 1], otherwise.
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sumk =

{

0, if k = 1
sumk−1 + (k − 1)A[k] − svp[k], otherwise.

The solutions to the above recurrences are, respectively,

svp[k] =
k−1
∑

i=1
A[i] and sumk =

k
∑

i=1
((i − 1)A[i] − svp[i]) .

The value sum is then correctly computed in lines 4–6, since

sum =
n
∑

i=1

n
∑

j=i
(A[j] − A[i]) =

n
∑

i=1

n
∑

j=i
A[j] −

n
∑

i=1

n
∑

j=i
A[i] =

n
∑

i=1

n
∑

j=i
A[j] −

n
∑

i=1
(n − i + 1)A[i]

=
n
∑

j=1

j
∑

i=1
A[j] −

n
∑

i=1
(n − i + 1)A[i] =

n
∑

j=1
jA[j] −

n
∑

i=1
(n − i + 1)A[i] =

n
∑

i=1
iA[i] −

n
∑

i=1
(n − i + 1)A[i]

=
n
∑

i=1
(i − 1)A[i] −

n
∑

i=1
(n − i)A[i] =

n
∑

i=1
(i − 1)A[i] −

n
∑

i=1

i−1
∑

j=1
A[j]

=
n
∑

i=1

(

(i − 1)A[i] −
i−1
∑

j=1
A[j]

)

=
n
∑

i=1
((i − 1)A[i] − svp[i]) .

Finally, minus_sum is also correctly computed in lines 8 and 9, since

minus_sum[k] =
n
∑

i=1
i≠k

n
∑

j=i
j≠k

(A[j] − A[i]) =
n
∑

i=1

n
∑

j=i
(A[j] − A[i]) −

(k−1
∑

j=1
(A[k] − A[j]) +

n
∑

j=k+1
(A[j] − A[k])

)

= sum −

(k−1
∑

j=1
A[k] −

n
∑

j=k+1
A[k] −

k−1
∑

j=1
A[j] +

n
∑

j=k+1
A[j]

)

= sum −

(

(k − 1)A[k] − (n − (k + 1) + 1)A[k] −
k−1
∑

j=1
A[j] +

n
∑

j=k+1
A[j]

)

= sum −

(

(2k − n − 1)A[k] +
n
∑

j=1
A[j] −

k−1
∑

j=1
A[j] − A[k] −

k−1
∑

j=1
A[j]

)

= sum −

(

(2k − n − 2)A[k] +
n
∑

j=1
A[j] − 2

k−1
∑

j=1
A[j]

)

= sum − (2k − n − 2)A[k] − svp[n + 1] + 2svp[k].

□

Theorem 7. Algorithm 2 returns with probability at least 1 − � an approximation p̃(v) to p(v), for each v ∈ V , such
that p̃(v) is within � error.

Proof. Let l be the number of iterations of the loop in lines 7–24 of Algorithm 2. Consider the sample Sl =
{(u1, w1),… , (ur, wr)} of size r obtained after the last iteration of such loop where the stopping condition is satis-
fied, where each (uj , wj) is a pair in V × V , for 1 ≤ j ≤ r. Let �i be the value obtained in line 23 on the i-th iteration,
where 1 ≤ i ≤ l, and let !s be the optimum value of the function defined in Theorem 3, which is an upper bound to
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Algorithm 1: GETPERCOLATIONDIFFERENCES(A, n)
Data: Array A, sorted in non-decreasing order, and n = |A|.

Result: The value sum =
n
∑

i=1

n
∑

j=1
R(A[j] − A[i]) and the array

{minus_sum[k] =
n
∑

i=1
i≠k

n
∑

j=1
j≠k

R(A[j] − A[i]),∀k ∈ {1, ..., n}}, such that R(z) = max{z, 0}.

1 sum ← 0
2 minus_sum[i] ← 0,∀i ∈ {1,… , n}
3 svp ← (0, 0,… , 0)
4 for i ← 2 to n do
5 svp[i] ← svp[i − 1] + A[i − 1]
6 sum ← sum + (i − 1)A[i] − svp[i]
7 svp[n + 1] ← svp[n] + A[n]
8 for i ← 1 to n do
9 minus_sum[i] ← sum − A[i](2i − n − 2) − svp[n + 1] + 2svp[i]

10 return sum, minus_sum

Algorithm 2: PERCOLATIONCENTRALITYAPPROXIMATION(G,x,�,�)
Data: Graph G = (V ,E) with n = |V |, percolation states x, accuracy parameter 0 < � < 1, confidence

parameter 0 < � < 1, sample scheduling (Si)i≥1.
Result: Approximation p̃(v) for the percolation centrality of all vertices v ∈ V .

1  ,1,2 ← hash tables
2 1[v] ← 0,2[v] ← 0,minus_s[v] ← 0, ∀v ∈ V
3 sort x /* after sorted, x = (x1, x2,… , xn) */
4 minus_s← GETPERCOLATIONDIFFERENCES(x, n)
5 |S0| ← 0
6 i ← 0
7 do
8 i ← i + 1
9 for l ← 1 to |Si| − |Si+1| do

10 sample u ∈ V with probability 1∕n
11 sample w ∈ V with probability 1∕(n − 1)
12 Suw ← ALLSHORTESTPATHS(u,w)
13 if Suw ≠ ∅ then
14 for z ∈ Pu(w) do
15 �zw ← 1
16 for each z internal to some shortest path from u to w in inverse order of d(u,w) do
17 �uw(z) ← �uz�zw
18 UPDATESETV

(

 , z,1,2,
R(xu−xw)
minus_s[z]

�uw(z)
�uw

)

19 for y ∈ Pu(z) do
20 �yw ← �yz + �zw
21 !s ← mins∈ℝ+

1
s ln

∑

q∈ exp s2q
2|Si|2

22 �i ← �∕2i

23 � ← 2!s +
ln(3∕�i)+

√

(ln(3∕�i)+4|Si|!s) ln(3∕�i)
|Si|

+
√

ln(3∕�i)
2|Si|

24 while � > �
25 p̃[v] ← 1[v]∕|Si|,∀v ∈ V
26 return p̃[v],∀v ∈ V
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Algorithm 3: UPDATESETV( ,z,1,2,rz)
Data: Table  , vertex z, table 1, table 2, real value rz.

1 v← 2[z]
2 v′ ← v + r2z
3 if v′ ∉  then
4 [v′] ← 1
5 else
6 [v′] ← [v′] + 1
7 if v > 0 and [v] ≥ 1 then
8 [v] ← [v] − 1
9 if v > 0 and [v] = 0 then

10 remove [v]
11 1[z] ← 1[z] + rz
12 2[z] ← 2[z] + r2z

the empirical Rademacher average of the sample Sl and which is computed by a linear-time procedure of [11]. Then

�l = 2!s +
ln(3∕�l)+

√

(ln(3∕�l)+4|Sl|!s) ln(3∕�l)
|Sl|

+
√

ln(3∕�l)
2|Sl|

is the value such that �l ≤ � for the input graph G = (V ,E)

and for fixed constants 0 < �, � < 1.
Let Ei be the event where supv∈V |p̃(v) − p(v)| > �i in iteration i. We need the event Ei occurring with probability

at most � for some iteration i. That is, we need

Pr(∃i ≥ 1 s.t. Ei occurs) ≤
∞
∑

i=1
Pr(Ei) ≤ �

where the inequality comes from union bound. Setting Pr(Ei) = �∕2i, we have

∞
∑

i=1
Pr(Ei) = �

∞
∑

i=1

1
2i

= �.

For each iteration i in 7–24, the pair (uj , wj) is sampled with probability 1
n(n−1) in lines 10 and 11, for 1 ≤ j ≤ r,

and the set Sujwj is computed by Dijkstra algorithm (line 12).

The value of
R(xuj−xwj )

minus_s[z]

�ujwj (z)

�ujwj
, for each internal vertex z of a shortest path p ∈ Sujwj found on the backtracking

procedure (lines 16–20) is added to 1[z] by Algorithm 3 in line 18. The correctness of the procedure in lines 19–20
can be checked in Lemma 3 of [7].

The value of minus_s[z] is correctly computed in line 4 as shown in Theorem 6. Then, at the end of Algorithm 2,

p̃(z) = 1
r

∑

puw∈Sl

R(xu − xw)
∑

(f,d)∈V ×V
f≠z≠d

R(xf − xd)
�uw(z)
�uw

which corresponds to p̃(z) = 1
r

∑

puw∈Sl
fz(puw).

Since �l ≤ �, LSl (fv) = p̃(v) and LU ′ (fv) = p(v) (Theorem 4) for all v ∈ V and fv ∈  , then Pr(|p̃(v) − p(v)| ≤
�) ≥ 1 − � (Theorem 2). □

Theorem 8. Given aweighted graphG = (V ,E)with n = |V | andm = |E| and a sample of size r = c
�2 (⌊lgDiamV (G)−

2⌋ + 1) − ln �), Algorithm 2 has expected running time (m log2 n).
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Proof. We sample the vertices u and w in lines 10 and 11, respectively, in linear time.
Sorting the percolation states array x (line 3) can be done in(n log n) time and the execution of Algorithm 1 on the

sorted array x (line 4) has running time(n). Before the loop in lines 16–20 start, the vertices inG are sorted according
to d(u,w) in reverse order, which takes (n log n). The complexity analysis of the procedure in 16–20 proceeds as
follows. Once |Pu(z)| ≤ dG(z), where dG(z) denotes the degree of z in G and Pu(z) is the set of predecessors of z in
the shortest paths from u to w, and since this loop is executed at most n times if all the vertices of G are internal to
some shortest path between u and w, the total running time of these steps corresponds to

∑

v∈V dG(v) = 2m = (m).
The execution of Algorithm 3 in line 18 has (1) expected running time, since the sets  , 1 and 2 are stored

as hash tables and operations of insertion, deletion and search on these structures take (1) time in average. Line 21
is executed by an algorithm that is linear in the size of the sample [11]. The loop in lines 7–24 runs at most r times,
since |p̃(v) − p(v)| ≤ � for all v ∈ V with probability 1 − � when the sample has size r (Theorem 1). The Dijkstra
algorithm which is executed in line 12 has running time (m log n), so the total expected running time of Algorithm 2
is (n log n + rmax(m,m log n)) = (n log n + r(m log n)) = (r(m log n)) = (m log2 n). □

Corollary 1. Given an unweighted graph G = (V ,E) with n = |V | and m = |E| and a sample of size r =
c
�2 (⌊lgDiamV (G) − 2⌋ + 1) − ln �), Algorithm 2 has expected running time ((m + n) log n).

Proof. The proof is analogous to the one of Theorem 8, with the difference that the shortest paths between a sampled
pair (u,w) ∈ V × V will be computed by the breadth-first search (BFS) algorithm, which has running time (m + n).
□

We observe that, even though it is an open problem whether there is a(n3−c) algorithm for computing all shortest
paths in weighted graphs, in the unweighted case there is a (n2.38) (non-combinatorial) algorithm for this problem
[22]. However, even if this algorithm could be adapted to compute betweenness/percolation centrality (what is not
clear), our algorithm obtained in Corollary 1 is still faster.

5. Experimental Evaluation
We perform our experimental evaluation on publicly available real-world graph datasets from Stanford Large Net-

work Dataset Collection [12] and Network Repository [21], described in Table 1. These graphs spam from social,
peer-to-peer and citations networks. We compare the running time and the accuracy of our progressive sampling al-
gorithm with the fixed-size sample approach. Regarding to the exact algorithm, we compare our results with the best
know algorithm for computing the same measure in the exact case, since our approach is the first estimation algorithm
for percolation centrality, as far as we know. A main advantage of our algorithms is that both of them output estima-
tions with a very small error. In fact, for all networks used in our experiments, the average estimation error are kept
below the quality parameter by orders of magnitude.

Graph Type |V| |E| Approximated
DiamV (G)

Exact Algorithm
Running Time (in secs.)

p2p-Gnutella04 Directed 10876 39994 39 257.8975
Cit-HepPh Directed 34546 421578 42 4455.429

p2p-Gnutella31 Directed 62586 147892 42 9692.5041
socfb-Berkeley13 Undirected 22900 852419 33 15271.9312

Table 1
Dataset details for the real-world graphs

Our implementation uses Python 3.7 language, theNetworkX library for graphmanipulation, and theNLOpt library
for the computation of the minimization function in Theorem 3. The NetworkX library provides an exact algorithm
for the percolation centrality which we use to compare with our approximation algorithms. The experiments were
performed on a 2.6 MHz Intel Xeon E5-2650v2 octa core with 48GB of RAM and Ubuntu 14.04 64-bit operating
system.

In all experiments in graphs of Table 1, we set the percolation state xv, for each v ∈ V , as a random number
between 0 and 1 and the weights of each edge e ∈ E as an integer random number between 1 and 100. We set the
parameters � = 0.1 and c = 0.5 (as suggested by [13]). These parameters remain fixed. We set the accuracy parameter
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as � = {0.1, 0.08, 0.06, 0.04, 0.02} and the constant for the geometric sampling schedule g = {1.2, 1.5, 2.0}. We
perform five experiments in the combination of parameters � and g. We report the results of the running time and the
size of the sample attained by the progressive sampling schedule in Tables 2, 3, 4 and 5, where each table is associated
to one of the real-world graphs described in Table 1.

� Schedule
constant

Sample Size
(Initial Sample
Final Sample)

� − � Final �

Progressive
Sampling
Running

Time (in secs.)

Fixed Sample
Running Time

(in secs.)

Fixed
Sample

Size

0.1

1.2 350 -0.00001166 0.098426091 11.76664

10.62395 416

420 0.001573909

1.5 350 -0.000012202 0.0858796514 13.38731524 0.0141203486

2 350 -0.00000943 0.0722524692 17.53773699 0.027747531

0.08

1.2 504 -0.000009637 0.078772866 15.04645

16.61353 649

605 0.001227134

1.5 504 -0.00000974 0.068962175 21.94075756 0.011037825

2 504 -0.000009834 0.058254291 25.039581008 0.021745709

0.06

1.2 819 -0.000009936 0.059110204 27.16701

29.54515 1154

983 0.000889796

1.5 819 -0.000009997 0.051950778 31.639121229 0.008049222

2 819 -0.000010057 0.044087666 43.988501628 0.015912334

0.04

1.2 1664 -0.000010195 0.039432553 53.29527

65.21671 2595

1997 0.000567447

1.5 1664 -0.000010281 0.034817851 61.234282496 0.00518215

2 1664 -0.00001037 0.029709455 82.764113328 0.010290545

0.02

1.2 5909 -0.000010685 0.019735529 176.70750

257.03656 10379

7091 0.000264471

1.5 5909 -0.000010748 0.017525662 219.015378863 0.002474338

2 5909 -0.000010807 0.015053813 300.5319011817 0.004946187

Table 2
p2p-Gnutella04 Graph

The highlighted entries in the tables are the cases where the progressive sampling schedule achieved smaller sam-
ples in comparison with the fixed-size sample approach. In all graphs and all values of �, the improvement on the
sample size where obtained by the smallest geometric schedule constant, i.e. g = 1.2. For � = 0.02 and � = 0.04,
the progressive sampling algorithm also acquired smaller samples for g = 1.5, except for the socfb-Berkeley13, which
is the most dense graph among the dataset. The main reason that the fixed-size sample algorithm outperforms the
progressive sampling one when g = 2.0 is that much more pairs of vertices are sampled than necessary, leading to a
value of � that is much smaller than the desired �.

In both approaches, the error of the estimation is within � for all vertices of every graph even though this guarantee
could possibly fail with probability � = 0.1. However, in addition to the better confidence results than the theoretical
guarantee, the most surprising fact is that for all graphs used in the experiments the maximum error among the error
for the estimation of each vertex is around 10−10 and the average error among all vertices is around 10−11, even when
we set the quality guarantee to � = 0.1. We observe that the differences between the error obtained in the progressive
sampling approach and the fixed-size sample approach are within 10−14. These results are shown in Figures 1 and 2.
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� Schedule
constant

Sample Size
(Initial Sample
Final Sample)

� − � Final �

Progressive
Sampling
Running

Time (in secs.)

Fixed Sample
Running Time

(in secs.)

Fixed
Sample

Size

0.1

1.2 350 -0.000011661 0.098426093 77.43216

80.69897 416

420 0.001573908

1.5 350 -0.000012194 0.0858766471 91.91335524 0.014123353

2 350 -0.000009476 0.072252502 125.93146699 0.027747498

0.08

1.2 504 -0.000009677 0.078772906 111.36629

129.91781 649

605 0.001227094

1.5 504 -0.000009769 0.068962197 159.96246756 0.011037804

2 504 -0.000009847 0.058254314 188.536881008 0.021745687

0.06

1.2 819 -0.000009956 0.059110223 183.27423

222.75616 1154

983 0.000889777

1.5 819 -0.000010018 0.0519508002 245.290331229 0.0080492

2 819 -0.000010088 0.044087705 302.891131628 0.015912295

0.04

1.2 1664 -0.000010235 0.039432599 360.51697

493.08546 2595

1997 0.000567401

1.5 1664 -0.000010337 0.034817915 486.701752496 0.005182085

2 1664 -0.000010431 0.029709528 616.525723328 0.010290473

0.02

1.2 5909 -0.000010808 0.019735656 1327.98216

2029.62927 10379

7091 0.000264345

1.5 5909 -0.000010883 0.017525804 1734.406818863 0.002474196

2 5909 -0.000010954 0.015053971 2192.2715411817 0.004946029

Table 3
Cit-HepPh graph
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Figure 1: Percolation centrality absolute maximum error estimation for g = 1.2.

AM de Lima et al.: Preprint submitted to Elsevier Page 14 of 18



Percolation Centrality via Rademacher Complexity

� Schedule
constant

Sample Size
(Initial Sample
Final Sample)

� - � Final �

Progressive
Sampling
Running

Time (in secs.)

Fixed Sample
Running Time

(in secs.)

Fixed
Sample

Size

0.1

1.2 350 -0.000011326 0.098425800 35.22300

40.36586 416

420 0.001574200

1.5 350 -0.000012007 0.085879468 44.06515524 0.014120532

2 350 -0.000012293 0.072252366 55.88123699 0.027747634

0.08

1.2 504 -0.000009545 0.078772784 54.85581

55.63046 649

605 0.001227216

1.5 504 -0.000009653 0.068962101 63.78716756 0.011037899

2 504 -0.000009766 0.058254225 86.098951008 0.021745775

0.06

1.2 819 -0.000009873 0.059110143 2.28515

101.97880 1154

983 0.000889857

1.5 819 -0.000009939 0.051950735 100.225651229 0.008049265

2 819 -0.000010012 0.044087614 141.782381628 0.015912386

0.04

1.2 1664 -0.000010155 0.039432526 182.54564

225.51281 2595

1997 0.000567474

1.5 1664 -0.000010273 0.034817854 209.054932496 0.005182146

2 1664 -0.000010379 0.029709490 288.220103328 0.010290510

0.02

1.2 5909 -0.000010795 0.019735643 614.76785

903.45608 10379

7091 0.000264357

1.5 5909 -0.000010875 0.017525799 772.128818863 0.002474201

2 5909 -0.000010956 0.015053977 1037.3544511817 0.004946023

Table 4
p2p-Gnutella31 Graph
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Figure 2: Percolation centrality average error estimation for g = 1.2
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� Schedule
constant

Sample Size
(Initial Sample
Final Sample)

� − � Final �

Progressive
Sampling
Running

Time (in secs.)

Fixed Sample
Running Time

(in secs.)

Fixed
Sample

Size

0.1

1.2 350 -0.000012282 0.098423630 790.94315

695.12026 366

420 0.001576370

1.5 350 -0.000009636 0.085877056 979.45032524 0.014122944

2 350 -0.000009850 0.072252865 1315.06880699 0.027747135

0.08

1.2 504 -0.000010015 0.078773241 1150.53222

1064.03995 571

605 0.001226759

1.5 504 -0.000010129 0.068962575 1429.07482756 0.011037425

2 504 -0.000010262 0.058254753 1854.158281008 0.021745247

0.06

1.2 819 -0.000010430 0.059110701 1832.42449

1876.60577 1015

983 0.000889299

1.5 819 -0.000010541 0.051951331 2279.526191229 0.008048669

2 819 -0.000010637 0.044088247 3063.317441628 0.015911753

0.04

1.2 1664 -0.000010767 0.039433126 3668.25732

4222.63659 2283

1997 0.000566874

1.5 1664 -0.000010851 0.034818420 4573.801602496 0.005181580

2 1664 -0.000010931 0.029710017 6170.420003328 0.010289983

0.02

1.2 5909 -0.000011230 0.019736074 13529.57006

16781.54561 9129

7091 0.000263926

1.5 5909 -0.000011290 0.017526204 16329.166318863 0.002473796

2 5909 -0.000011347 0.015054351 21674.7798711817 0.004945649

Table 5
socfb-Berkeley13 Graph

5.1. Scalability
We run experiments using synthetic graphs in order to validate the scalability of our algorithm, since for this task we

need a battery of similar graphs of increasing size. We use power-law graphs generated by the Barabási-Albert model
[5] for such experiments. We use a sequence of synthetic graphs increasing in size and compared the execution time
of our progressive sampling algorithm with the exact algorithm provided by NetworkX library and with the fixed-size
sample algorithm.

We also use the NetworkX library for generating random power-law graphs by the Barabási-Albert model with
each vertex creating two edges, obtaining undirected unweighted power-law graphs with average degree of 2. We set
the percolation states of each vertex as a random number between 0 and 1.

In the experiments we use graphs with the number of vertices n in {2000, 4000, 8000, 16000, 32000, 64000}. The
values of � and g are fixed at 0.03 and 1.2, respectively. The results are shown in Figure 3.

6. Conclusion
We presented a sampling-based algorithm to accurately estimate the percolation centrality of all vertices of a

weighted graph with high probability. The proposed algorithm has expected running time (m log2 n), and the es-
timation is within � of the exact value with probability 1 − �, for fixed constants 0 < �, � < 1. The running time
of the algorithm is reduced to ((m + n) log n) if the input graph is unweighted. Since many large scale graphs, in
practical applications, are sparse and have small vertex-diameter (typically of size log n), our algorithm provides a fast
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Figure 3: Scalability experiments, with � = 0.03 and g = 1.2.

approximation for such graphs (more precisely running in (n log n log log n) time).
Our results indicate that the proposed approach is practical in real-world graphs, as validated by our experimen-

tal evaluation. The returned estimation errors are many orders of magnitude smaller than the theoretical worst case
guarantee for graphs of a variety of sizes. As expected, the fixed-size sample and the progressive sampling algorithms
are much faster than the exact algorithm. The progressive sampling approach is around 14 times faster for the largest
real-world graph and 42 times faster for the largest synthetic graph. Furthermore, the progressive sampling algorithm
returned good quality estimations using a smaller sample set in comparison to the one obtained by the fixed-size sample
algorithm, leading to improvements on the running time.
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