
Slicing Triangle Meshes: An Asymptotically Optimal Algorithm

Rodrigo M. M. H. Gregori∗, Neri Volpato†, Rodrigo Minetto∗ and Murilo V. G. da Silva∗
∗Departamento Acadêmico de Informática
†Departamento Acadêmico de Mecânica

Federal University of Technology – Paraná (UTFPR)
Curitiba, Brazil

Email: rodrigo.gregori@gmail.com, {nvolpato, rminetto, murilo}@utfpr.edu.br

Abstract—Additive Manufacturing, popularly known as “3D
printing”, is a manufacturing process based on overlapping
of flat layers in order to build a physical object. The data
for building this object comes from a 3D model, usually
represented by a triangle mesh. One of the first stages in this
process is to slice the triangle mesh, resulting in 2.5-D contours,
representing each one of the layers of the object. There are
many strategies for slicing meshes, however most of the current
literature is concerned with ad hoc issues such as the quality
of the model, specific improvements in the slicing process and
memory usage, whereas none of them addresses the problem
from an algorithmic complexity perspective. While current
algorithms for slicing run on O(n2 + k2) or O(n2 + n lognk)
for n triangles and k planes, the algorithm proposed in this
paper runs on O(nk), where k is the average number of slices
cutting each triangle, what is asymptotically the best that can
be achieved under certain common assumptions.

Keywords-process planning, triangle meshes; slicing, interval
tree, stabbing problem

I. INTRODUCTION

Triangular meshes are widely used to represent geometric
models in many applications, such as Geological Modeling,
Computer Aided Design (CAD), Computer Graphics, and
Addictive Manufacturing.

Additive Manufacturing (AM) is a technique consisting
of building an object by laying down successive flat layers
of material. This technique gained a great deal of popularity
recently and it is usually known as 3D printing. The data
for building this object come from a three-dimensional
geometric model, obtained via a CAD system or from
computerized tomography and magnetic resonance.

Before the physical prototyping process, the geometric
model undergoes a Process Planning, a procedure that vary
according to the complexity of the model or the prototyper
technology. Those stages include: correctly positioning the
object in space, in order to achieve better quality or faster
building; slicing the geometric model (the problem that we
address in the paper), calculating supports for building the
models among other engineering issues.

The model is usually tessellated into a triangle mesh, and
the de facto industry format for storing it is the STL (from
StereoLithography) model. This format is very popular due

to its simplicity [1], however, since a mesh vertex can be
shared by many triangles this might lead to redundancy.

The mesh must be sliced in order to obtain the contour
information, and each slice is “printed” by the prototyper
and the overlapping of all slices composes the final object.
In order to improve the quality of the printed model and
spend less time in the process, modern slicing procedures
make use slices of variable thickness, this approach is also
known as adaptive slicing. An extensive review on adaptive
slicing can be found in [2].

The slicing problem has been addressed in the rapid proto-
typing research community, but most of the current literature
is concerned with ad hoc (but still relevant) engineering is-
sues such as the quality of the model, specific improvements
in the slicing process and memory usage, whereas none
of them addresses the problem from an algorithmic time
complexity point of view, even though the slicing process
can consume up to 60% of the entire process planning
time [3]. We propose an algorithm for the adaptive slicing
problem which performs optimally, unless the number of
slices k is o(log n), for n triangles, which is only the case
for uninteresting cases of small models made up of only few
layers.

Figure 1. Selected steps in the Additive Manufacturing Process Planning:
From left to right, a CAD model, a tessellated (STL format) model,
slicing the mesh and contour generation for reconstructing a layer of the
manufactured object.

II. TRIANGLE MESH SLICING

We give in this section a brief overview of the strategies
for the problem of triangle mesh slicing. Interestingly, even
the trivial solution, i.e., looping through all the triangles in
the mesh against all cutting planes and checking whether



there is a plane/triangle intersection, appeared in the litera-
ture [4]. There has been also some variations on this naive
approach via parallelism [3] and optimization of memory
usage [5], [6].

A more sophisticated approach appears in [7], where
the algorithm takes a “snapshot” for each z-coordinate
of a given cutting plane and check for edges (instead
of triangles) to be “sliced”. In a different approach, in
[8] the strategy is to group together triangles according
to their minimum and maximum z coordinates so that
for a given plane, a search for intersecting triangles can
be faster. The approach in [9] only deals with slices of
fixed width, which is an algorithmically simpler problem
than the one we are dealing in this paper (i.e., the
“adaptive” version of the problem). The idea in their work
is to loop through every triangle, and given its min/max z
coordinate, simply directly calculate every intersecting plane
achieving optimality for this simpler version of the problem.

From a broader perspective, we can approach the problem
that we are dealing in two different manners:
(1) For every cutting plane, make a query in the set of all

triangles and retrieve intersecting triangles. This is the
approach used in all previous works1 [3]–[8]. In this
scenario, for each query, an optimal algorithm ideally
would retrieve only the triangles sliced by the current
plane. None of the mentioned algorithms achieves such
optimality.

(2) For every triangle, query the set of all planes and
retrieve intersecting planes. Our algorithm follows this
second approach making use of an interval tree data
structure [10] for storing line segments that represent
triangles. The algorithm performs an in-order traversal
in this tree2, taking advantage of a property of the
triangle mesh (the object is closed 2-manifold) to pro-
gressively retrieve only planes that intersect the current
triangle (i.e., it is optimal).

After all the intersections are obtained, the next step is the
contour assembly, i.e., given a plane, the algorithm should
gather all segments from the intersection of this plane with
the triangles in the mesh and assemble the polygon that make
up the contour of the corresponding slice. A “head-to-tail”
sorting is commonly used [4], [11] for this purpose. We use
a hash table in order to solve the problem in linear time.

A. Trivial slicing

The simplest algorithm to tackle the stated problem,
outlined in Figure 2, is to test every mesh triangle against
all the cutting planes. In order to recover the contour of
the slices, the triangle–plane intersection segments of every

1Except in [9], however, as mentioned before, their work does not deal
with adaptive slicing.

2Alternatively we could also sort the triangles in lexicographical order
in an array and then probe it linearly.

1: TRIVIAL-SLICING (T [1 . . . n], P [1 . . . k])
2: S[1 . . . k]← ∅; . Shape slices.
3: for p← 1 to k do
4: for t← 1 to n do
5: if (T [t] ∩ P [p]) 6= ∅ then
6: S[p]← S[p] ∪ INTERSECTION (P [p], T [t]);
7: BUILD-SLICES (S[1 . . . k]);

Figure 2. The trivial slicing algorithm

slice stored in line 6 of the algorithm can be sorted from
head-to-tail (line 7) in O((kn log n)) time, where k is the
number of slices and n be the average number of triangles
per slice. For n triangles, the total time complexity of this
approach is O(k(n + n log n)).

B. Sweep Plane Slicing

The sweep plane slicing strategy, proposed by McMains
and Séquin in [7], consists of a “virtual” plane sweeping
through the triangle mesh in a bottom-up fashion. A status
data structure keeps a circular linked list with pointers to
the edges that are being intercepted by the sweeping plane
at a given moment. Each time the plane reaches a vertex or
a z-coordinate of a slice, an event is triggered. The event is
either a snapshot of the edges being cut at that moment or
the rearrangement of the status data structure, in the case of
the sweep plane reaching a vertex.

The idea is not complex, but the steps in the vertex
processing are quite involved. Whenever a vertex is reached,
it is necessary to figure out which edges are intercepted by
the sweeping plane after the vertex has been overtaken. This
procedure has a worst case complexity ofO(n2) for complex
models, but in average the complexity is O(n log n).

The algorithm is implemented using a new data structure
for storing topological data. The triangle boundaries are
represented by a structure called edge uses. Building up this
structure is achieved in O(n log n) complexity via hashing.

C. Triangle Grouping

A different approach, aiming to minimize failed triangle
queries, group together triangles at similar z-coordinates [8].
The slicing engine is based on a “facet processor”, respon-
sible for grouping triangles according to their minimum and
maximum z coordinates (zmin and zmax).

In this algorithm, the triangles are sorted by zmin coordi-
nates in O(n log n) time and then grouped so that triangles
with the same zmin value are clustered together. Each group
can be divided into sub-groups, organized by zmax values.
Triangles sharing zmax values are stored in the same sub-
group. The implementation details are not shared, but each
group could be implemented with a binary search tree so
that this construction can be done in O(n log n).

The algorithm processes the triangles using a “key charac-
teristic identifier” in order to calculate slice thickness of the



Table I
IN THIS TABLE n AND k ARE THE NUMBER OF TRIANGLES AND THE NUMBER PLANES RESPECTIVELY, n IS THE AVERAGE NUMBER OF TRIANGLES

INTERSECTING ONE PLANE AND k ARE THE AVERAGE NUMBER OF PLANES INTERSECTING ONE TRIANGLE.

Algorithm Memory Construction Worst case slicing Contour assembly Worst case total (assuming k = Ω(logn))
Trivial O(n) O(nk) O(n logn) O(nk + n lognk)

Triangle Grouping O(n logn) O(n2 + n lognk) O(n) O(n2 + n lognk)
Sweep Plane O(n logn) O(k2 + n2) O(n) O(n2 + k2)

Incremental Slicing (our method) O(n logn) O(nk) O(n) O(nk)

1: INCREMENTAL-SLICING (T [1 . . . n], P [1 . . . k])
2: S[1 . . . k]← ∅; . Shape slices.
3: next← 1;
4: for t← 1 to n do
5: p← next;
6: flag← true;
7: while (P [p] ∩ T [t]) 6= ∅ do
8: S[p]← S[p] ∪ INTERSECTION (P [p], T [t]);
9: if (P [p] ∩ T [t + 1]) 6= ∅ and flag then

10: next← p;
11: flag← false;
12: p← p + 1;
13: if flag then
14: next← p;
15: BUILD-SLICES (S[1 . . . k]);

Figure 3. Incremental slicing algorithm

slices, a problem that we are not dealing, since we assume
that the z-coordinate of each slice is already calculated.

The slices can be obtained the same way as in the trivial
algorithm with time complexity of O(kn log n). The whole
adaptive slicing process is at best O(n2), even though, later,
the authors take advantage of their data structure and the
contour assembly can be done in approximately linear time.

D. Algorithm Complexity Summary

Table I summarizes the algorithm complexity of the
reviewed algorithms and our method (described in next
section) under the reasonable assumption of k = Ω(log n).

III. INCREMENTAL SLICING: AN ASYMPTOTICALLY
OPTIMAL ALGORITHM

The idea behind our algorithm is to represent each triangle
ti in the mesh by an interval li = [zimin, z

i
max], where zimin

and zimax are the lowest and highest z-coordinates of ti in
the mesh. So the set of n triangles in the mesh can be seen
as a set of n intervals (See Figure 4).

We store the intervals in an interval tree [10] and the set
of k planes from bottom to up in an array P of z-coordinates
of these planes. We note that one way of checking for plane-
triangle intersection is to model the problem as a stabbing
problem [12], [13], i.e., given a value z, and a set S =
{l1, ..., ln} of intervals, retrieve each interval in S containing

z. Using an interval tree, this query can be done in O(log n+
n), where n is the number of intervals containing z3. In
this setting, if one aims for optimality, we note that a query
returning n triangle can at best be done is O(n). This bound
is only achieved under certain assumptions that do not hold
in our problem in [14].

However, we achieve optimality turning the problem
around, more precisely, querying for planes intersecting a
given interval (i.e., a triangle). Looking the problem from
this perspective, we achieve optimality if for every interval
li, we manage to retrieve all planes intersecting li in time
O(ki), where ki it the number of planes intersecting li,
i.e., for n intervals, optimality means O(nk), where k is
the average number of planes intersecting each triangle. We
achieve this in the following way: We traverse the interval
tree in-order (this can be seen as probing the intervals
lexicographically by zimin and zimax) and make sure that
every time that we reach an interval li in the traversal,
we already have an index to the first plane in the array
P intersecting li. So we only need to search P linearly
from this index checking for intersection and retrieving the
desired ki planes. A crucial point is that while retrieving
the ki planes, we look ahead for the next interval li+i

and check which of these k planes is the first to intersect
li+1. We note that for a general set of intervals there is
no guarantee that li+1 intersects one of the ki planes, but
since these intervals come from triangles in a 2-manifold
mesh (otherwise “printing” the mesh is not well defined),
we have this guarantee.

We describe this algorithm in Figure 3 assuming for
clarity that the input is a sorted set T of n triangles
(instead of explicitly traversing the tree) and an array P of k
planes. Also for clarity, instead of performing a linear time
preprocessing step, we assume that that the first triangle and
the first plane (i.e., T [1] and P [1]) intersects and we also do
not check the array bound violation in step 9 when t = n.
The main idea behind the algorithm is that for each triangle
T [t], in step 5 variable p holds the index for the first plane
intersecting T [t]. The loop at step 7 probes P retrieving
every plane intersecting T [t] and at the same time a look
ahead in step 10 saves the first plane intersecting T [t + 1].

Finally, for each plane we build the polygon (or polygons)

3Note that the time complexity depends also on the size of the output.
This model, known as output sensitive complexity model, is commonly
used in such problems [14].



Figure 4. A triangle mesh and highlighted triangle which is represented by an interval. In the right we give an example of 13 intervals sorted in
lexicographic order and highlight the interval [6, 10]. This interval is cut by planes at z-coordinates 7 and 9, indicated in the bottom of the figure.

that make the corresponding slice. Instead of sorting the line
segments from head to tail we can make use of hashing to
assemble the polygon in linear time.

IV. CONCLUSION

We have proposed an optimal algorithm for the adaptive
slicing problem modelling the slicing problem as a se-
quence of stabbing queries on intervals in the particular case
where there is always intersection between two consecutive
intervals (a property of 2-manifold triangle meshes). We
compared asymptotically our algorithm against three other
methods described in the literature. As future work, we plan
to compare the execution time of these algorithms in a real
additive manufacturing process.

REFERENCES

[1] J. Hiller and H. Lipson, “STL 2.0: A Proposal for a Universal
Multi-Material Additive Manufacturing File Format,” in Solid
Freeform Fabrication Symposium, no. 1, 2009, pp. 266–278.

[2] P. M. Pandey, N. V. Reddy, and S. G. Dhande, “Slicing proce-
dures in layered manufacturing: a review,” Rapid Prototyping
Journal, vol. 9, no. 5, pp. 274–288, 2003.

[3] C. Kirschman and C. Jara-Almonte, “A parallel slicing al-
gorithm for solid freeform fabrication processes,” in Solid
Freeform Fabrication Symposium, 1992, pp. 26–33.

[4] K. Chalasani and B. Grogan, “An algorithm to slice 3D
shapes for reconstruction in prototyping systems,” in ASME
Computers in Engineering Conference, 1991, pp. 209–216.

[5] S. Choi and K. Kwok, “A tolerant slicing algorithm for
layered manufacturing,” Rapid Prototyping Journal, vol. 8,
no. 3, pp. 161–179, 2002.

[6] M. Vatani, A. Rahimi, and F. Brazandeh, “An enhanced
slicing algorithm using nearest distance analysis for layer
manufacturing,” Proceeding of World Academy of Science,
Engineering and Technology, no. 25, pp. 721–726, 2009.

[7] S. McMains and C. Séquin, “A coherent sweep plane slicer
for layered manufacturing,” in Proceedings of the fifth ACM
symposium on Solid modeling and applications - SMA ’99.
New York, New York, USA: ACM Press, 1999, pp. 285–295.

[8] K. Tata, G. Fadel, A. Bagchi, and N. Aziz, “Efficient slic-
ing for layered manufacturing,” Rapid Prototyping Journal,
vol. 4, no. 4, pp. 151–167, 1998.

[9] X. Huang, Y. Yao, and Q. Hu, “Research on the Rapid Slicing
Algorithm for NC Milling Based on STL Model,” in Asia
Simulation Conference (AsiaSim), 2012, pp. 263–271.

[10] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Over-
mars, Computational Geometry: Algorithms and Applications,
3rd ed. Santa Clara, CA, USA: Springer-Verlag TELOS,
2008.

[11] S. Choi and F. Kwok, “A Memory Efficient Slicing Algorithm
for Large STL Files,” in Proceedings of Solid Freeform
Fabrication Symposium, 1999, pp. 155–162.

[12] H. Edelsbrunner, Dynamic Data Structures for orthogonal
intersection queries. [Mit Fig.], ser. Forschungsberichte: In-
stitut für Informationsverarbeitung. Inst. f. Informationsver-
arbeitung, TU Graz, 1980.

[13] X. C. P. A. R. Center and E. McCreight, Efficient algorithms
for enumerating intersecting intervals and rectangles. Xerox,
Palo Alto Research Center, 1980.

[14] J. M. Schmidt, “Interval stabbing problems in small integer
ranges,” Algorithms and Computation, no. Grk 1408, pp. 1–
10, 2009.


