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Abstract

In this paper we study the approximability of the minimum vertex cover problem in power law graphs.
In particular, we investigate the behavior of a standard 2-approximation algorithm together with a
simple pre-processing step when the input is a random sample from a generalized random graph
model with power law degree distribution. More precisely, if the probability of a vertex of degree
i to be present in the graph is ci−β , where β > 2 and c is a normalizing constant, the expected
approximation ratio is 1 + ζ(β)−1Liβ(e−ρ(β)), where ζ(β) is the Riemann Zeta function of β, Li(β) is

the polylogarithmic special function of β and ρ(β) =
Liβ−2( 1

e )

ζ(β−1) .

Keywords: Chung-Lu random graph model, Britton random graph model, generalized random
graph model, approximation algorithms, vertex cover problem, power-law graphs

1. Introduction

The empirical study of large real world networks in the late 1990’s and early 2000’s [1, 2, 3, 4,
5, 6, 7, 8, 9] showed that the vertex degree distribution of a variety of technological, biological and
social networks can be approximated by a power law, i.e., the number of nodes of a given degree
i is proportional to i−β , where β > 0. There is some evidence that some optimization problems
might be easier in networks with such degree distribution [9, 10, 11, 12, 13] than in general networks.
More recently, some analytical results investigating optimization problems on model of power law
graphs appeared in [13, 14, 15, 16, 17]. The problem that we deal in this paper fits in this context.
We investigate the approximability of the minimum vertex cover problem in the generalized random
graph model with power law degree distribution.

Random graphs with arbitrary degree distributions have been studied before [18, 19, 20, 21, 22],
but in the last 15 years models for random graphs with a power law degree distribution, refered here
as power law graphs, have received a special interest [23, 24, 25, 26, 27, 28] due to the availability of
empirical data. These models can be roughly divided into three groups: generalized random graph
model, configuration model and preferential attachment model.

The generalized random graph model, proposed by Britton et al [27] in 2006, is a generalization
of the Erdös-Rényi model [29, 30] where edges are added independently, but moderated by vertex
weights that are used to generate arbitrary distribution of vertex degrees, including the power law
distribution (note also that the case where every vertex have the same weight, this model is equivalent
to the Gn,p model). The well known Chung-Lu model [31] also fits in this category. The results in
this paper are proved in the generalized random graph model, in particular due to the advantage of
edge probabilities being independent. The configuration model uses a different approach where edge
connections are probabilistic, but the list of vertex degrees (and therefore then number of edges) is
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fixed. This scheme originated in the late 1970’s [18, 19], but currently the most well know such model
in the specific context of power law graphs is the ACL(α, β) model, proposed by Aiello et al [23]. A
third well know approach is the preferential attachment model. The idea is to describe the growth of a
graph driven by a random process in which new vertices connect to the current graph with probability
proportional to the degree of the vertices already in place. This model was first described by Barabasi
and Albert [2] and then more formally by Bollobás et al [24]. In [32], Hofstad gives a detailed and
formal treatment of these three general categories for random power law graphs.

A vertex cover in a graph G = (V,E) is a set of vertices S ⊆ V such that every edge e ∈ E has
at least one endpoint in S. Finding a minimum vertex cover is a well known NP-hard problem [33].
The problem is also conjectured not to admit approximation algorithms with constant factor smaller
than 2, unless P = NP [34]. Recently, Gast and Hauptmann [14] used ACL(α, β) model to show that
there is an approximation algorithm with expected factor of approximation strictly smaller than 2 for
random power law graphs (see Figure 1a for a plot of such approximation ratio for different values
of β). In this paper we show a similar result, but in the generalized random graph model proposed
by Britton et al. Furthermore, we also show that the same results hold for the Chung-Lu random
graph model. We obtained a better expected approximation factor using a simpler algorithm, even
though its worth mentioning that these approximation factors cannot be directly compared, since the
underlying random graph models are not the same.

Consider the following algorithm for vertex cover on an input graph G: Step 1: Insert in the vertex
cover C every vertex that is adjacent to a vertex of degree 1; Step 2: Remove from G every vertex that
is either of degree 1 or adjacent to a vertex of degree 1; Step 3: Run any 2-approximation algorithm
(e.g., [35], chapter 35) on the remaining graph and let C ′ be the output of this algorithm; Step 4:
Output C ∪C ′ as a cover for G. We show that the expected approximation ratio of this algorithm is
1 + ζ(β)−1Liβ(e−ρ(β)), where β > 2 is a parameter related to the exponent of the power law, ζ is the

Riemann Zeta function, Li is the polylogarithmic special function and ρ(β) =
Liβ−2( 1

e )

ζ(β−1) . This bound

can be better understood in Figure 1b, where we plot this function for 2 < β ≤ 4, as well as the
expected approximation ratio of the algorithm of Gast and Hauptman for the sake of comparison.

(a) Expected approximation ratio of the algo-
rithm of Gast and Hauptman [14] for power law
graphs in the ACL (α, β) model. The plotted

curve is the approximation ratio of 2−
ζ(β)−1− 1

2β

2βζ(β−1)ζ(β)

for values of β from 2 to 4.

(b) The blue solid line refers to the expected ap-
proximation ratio of the algorithm of Gast and
Hauptmann [14] and the red dashed line refers to
the expected approximation ratio of algorithm de-
scribed in the current paper for values of β from
2 to 4.

Figure 1: Expected approximation ratio of algorithms for power law graphs.
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2. Generalized random graph model

In this section we describe generalized random graphs (GRG), introduced by Britton [27]. For a
detailed introduction on this model and a few asymptotic equivalent variants we refer to [32].

In this model we start with a vertex set V = {1, 2, ..., |V |} and each vertex i ∈ V is associated
to a weight wi. Let w be a vector with entries w1, ..., w|V |. In the edge set E, every edge ij is
created independently with probability Pr(ij ∈ E) =

wiwj
`n+wiwj

, where `n =
∑
k∈V wk. Naturally, the

degree distribution of the random graph depends on the vector w. In order to create a power law
random graph with a given exponent β > 2 we build w using principles similar to Aiello et al [23]:

Let α = ln( |V |ζ(β) ), where ζ(β) =
∑∞
j=1

1
jβ

is the Riemann Zeta function. Let ∆ = beαc. For each

j = 1, ...,∆, let

yj =

{
b e

α

jβ
c if n > 1

beαc otherwise

Now construct w so that yj of its entries are equal to j, for j = 1, ...,∆. In this way there are yj
vertices with weight j (note that, similarly, in the ACL model there are yj vertices of a given fixed
degree j). From the definition of α, observe that |V | = eαζ(β). As discussed in [23], we can ignore
rounding and deal with eα

iβ
and e

α
β as real numbers. Furthermore, note that in the ACL(α, β) model

in the definition of yi some extra care has to be taken, since the sum vertex degrees has to be even.
In our model, no such restriction is necessary since yi refers to the vector of weights. Throughout the
paper a graph G = (V,E) is a random sample in the GRG model.

Lemma 2.1. Let i, j ∈ {1, . . . , e
α
β }. Then eαζ(β − 1) + ij ≈ eαζ(β − 1)

Proof. We show that

lim
α→∞

eαζ(β − 1) + ij

eαζ(β − 1)
= 1

The limit above is the same as

lim
α→∞

1 +
ij

eαζ(β − 1)
= 1 ∴ lim

α→∞

ij

eαζ(β − 1)
= 0

∴ lim
α→∞

ij

eα
= 0

But

lim
α→∞

ij

eα
≤ lim
α→∞

e
α
β e

α
β

eα
= lim
α→∞

eα( 2
β−1)

Since β > 2, the limit goes to zero.

From the definition of Pr(ij ∈ E) and Lemma 2.1, we have

Pr(ij) =
ij

eαζ(β − 1) + ij
≈ ij

eαζ(β − 1)
(1)

We note that in the Chung-Lu [31] random graph model, the probability of an edge ij is defined
to be Pr(ij ∈ E) =

wiwj
`n

(instead of
wiwj
`n+ij , as we have in our definition). Equation 1 shows that

wiwj
`n
≈ wiwj

`n+ij and therefore all results in this paper also hold in the Chung-Lu model for the input
distribution that we are working here. Conversely, since the edge probability in Chung-Lu model is
defined in way that the expected degree of a vertex i is wi, we also have this property in our model.
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Definition 2.2 (Set of vertices with same weight). Let Wk the set set of vertices with weight
k, i.e., Wk = {l ∈ V |wl = k}. Let pij be the probability of a random vertex of Wi be adjacent to a
random vertex of Wj.

Since vertices with a given weight are interchangeable we have

pij ≈
ij

eαζ(β − 1)

In the literature pij usually refers to the probability of an edge connecting vertex i and vertex j.
The notation here is different since in the entire paper it is much clear to argue conditioned on the
vertex weight instead of the vertex index.

We close this section giving some further graph theoretical notation and definitions.

Definition 2.3 (Graphs theoretical definitions). The degree of v ∈ V is denoted by d(v). We
denote Vk the set of vertices of degree k. The maximum degree of G is denoted by ∆, i.e., the largest
k such that |Vk| 6= ∅. Let V − = V \ (V0 ∪ V1). For S ⊆ V , denote G[S] the graph induced by S and
denote N(S) the set o vertices containing at least one neighbor in S.

3. Technical Lemmas

In this section our aim is to estimate the size of N(V1), which is the result of Lemma 3.13. We need
such estimate since the first step of the approximation algorithm consists of including every vertex of
N(V1) in the solution. The vertices that potentially belong to N(V1) are those in V − = V \ (V0 ∪V1).
We estimate the probability of a vertex to belong to V0 and V1 in Lemmas 3.5 and 3.6 respectively.
Instead of directly calculating the probability of a vertex of V − being in N(V1), we found it easier to
estimate the probability of the complementary event in Lemma 3.12.

Lemma 3.1. Let qik = 1− pik. Then,

∆∏
k=1

q
|Wk|
ik ≈ 1

ei

Proof.

∆∏
k=1

q
|Wk|
ik =

∆∏
k=1

(
1− ik

eαζ(β − 1)

) eα

kβ

=

∆∏
k=1

(
1− (ik)/(ζ(β − 1))

eα

)eα·1/kβ

≈
∆∏
k=1

(
1

e
ik

ζ(β−1)

) 1

kβ

=

∆∏
k=1

(
1

e
i

ζ(β−1)

) 1

kβ−1

=

(
1

e
i

ζ(β−1)

)∑∆
k=1

1

kβ−1

≈
(

1

e
i

ζ(β−1)

)ζ(β−1)

=
1

ei
.
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Lemma 3.2. Let v ∈ V . Then

Pr(v ∈Wi) =
eα

iβ

eαζ(b)
=

1

iβζ(b)
.

Proof. Directly from the definition of |Wi| and |V |.

Lemma 3.3. Let v ∈Wi. Then

Pr(v ∈ V0|v ∈Wi) ≈
1

ei
.

Proof. Let v ∈Wi and let X be the random variable for d(v). Let Xj be the random variable counting

the number of neighbors of v in Wj . By linearity of expectation, X =
∑∆
j=1Xj . Hence,

Pr(v ∈ V0|v ∈Wi) = Pr(X = 0)

= Pr(X1 +X2 + . . .+X∆ = 0)

= Pr(X1 = 0 and X2 = 0 and . . . and X∆ = 0).

Since all Xj ’s are mutually independent,

Pr(v ∈ V0|v ∈Wi) =

∆∏
j=1

Pr(Xj = 0).

Now we calculate Pr(Xj = 0). Note that Xj is a binomial random variable with parameters n =
|Wj | = eα

jβ
and p = pij = ij

eαζ(β−1) . Therefore

Pr(Xj = 0) =

(
n

0

)
p0
ij(1− pij)n = q

|Wj |
ij

where qij = 1− pij . Hence

Pr(v ∈ V0|v ∈Wi) =

∆∏
j=1

q
|Wj |
ij ≈ 1

ei
,

where in the last approximation we use Lemma 3.1.

Lemma 3.4. Let v ∈Wi. Then

Pr(v ∈ V1|v ∈Wi) ≈
i

ei
.

Proof. Let v ∈Wi and let X be the random variable for d(v). Let Xj be the random variable counting

the number of neighbors of v in Wj . Therefore X =
∑∆
j=1Xj . Hence,

Pr(v ∈ V1|v ∈Wi) = Pr(X = 1)

= Pr(X1 +X2 + . . .+X∆ = 1)

= Pr(X1 = 1 and Xj = 0,∀j 6= 1)

+ Pr(X2 = 1 and Xj = 0,∀j 6= 2)

+

...

+ Pr(X∆ = 1 and Xj = 0,∀j 6= ∆).
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Since all variables Xj ’s are mutually independent, we have

Pr(v ∈ V1|v ∈Wi) = Pr(X1 = 1)
∏
j 6=1

Pr(Xj = 0)

+ Pr(X2 = 1)
∏
j 6=2

Pr(Xj = 0)

+

...

+ Pr(X∆ = 1)
∏
j 6=∆

Pr(Xj = 0).

Now we calculate Pr(Xj = 0) and Pr(Xj = 1). Note that Xj is a binomial random variable with
parameters n = |Wj | = eα

jβ
and p = pij = ij

eαζ(β−1) . Therefore

Pr(Xj = 0) =

(
n

0

)
p0
ij(1− pij)n = q

|Wj |
ij

Pr(Xj = 1) =

(
n

1

)
p1
ij(1− pij)n−1 = |Wj |pijq

|Wj |−1
ij = |Wj |

pij
qij
q
|Wj |
ij ,

where qij = 1− pij . Therefore,

Pr(v ∈ V1|v ∈Wi) = |W1|
pi1
qi1

q
|W1|
i1 · q|W2|

i2 · q|W3|
i3 · . . . · q|W∆|

i∆

+ q
|W1|
i1 · |W2|

pi2
qi2

q
|W2|
i2 · q|W3|

i3 · . . . · q|W∆|
i∆

+ q
|W1|
i1 · q|W2|

i2 · |W3|
pi3
qi3

q
|W3|
i3 · . . . · q|W∆|

i∆

...

+ q
|W1|
i1 · q|W2|

i2 · q|W3|
i3 · . . . · |W∆|

pi∆
qi∆

q
|W∆|
i∆

=

∆∏
k=1

(
q
|Wk|
ik

) ∆∑
j=1

|Wj |
pij
qij

 .

Now we bound the product and the sum separately. Let us first look at the sum:

∆∑
j=1

|Wj |
pij
qij

=

∆∑
j=1

eα

jβ

ij
eαζ(β−1)

1− ij
eαζ(β−1)

= eα
∆∑
j=1

1

jβ
ij

eαζ(β − 1)− ij

≈ eα
∆∑
j=1

1

jβ
ij

eαζ(β − 1)

=
i

ζ(β − 1)

∆∑
j=1

1

jβ−1

≈ i

ζ(β − 1)
ζ(β − 1)

= i,
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where the first approximation is analogous to Lemma 2.1 (we omit the proof which is almost identical
to the proof of Lemma 2.1). Now, using Lemma 3.1, we deal with the product

∆∏
k=1

q
|Wk|
ik ≈ 1

ei
.

Therefore,

Pr(v ∈ V1|v ∈Wi) =

∆∏
k=1

(
q
|Wk|
ik

) ∆∑
j=1

|Wj |
pij
qij

 ≈ i

ei
.

In the next Lemma we need the special function polylogarithm, defined as Lis(z) =
∞∑
k=1

zk

ks

Lemma 3.5. Let v ∈ V . Then

Pr(v ∈ V0) ≈ Liβ(1/e)

ζ(β)

Proof.

Pr(v ∈ V0) =

∆∑
i=1

Pr(v ∈ V0|v ∈Wi)Pr(v ∈Wi)

≈
∆∑
i=1

1

ei
1

iβζ(β)

=
1

ζ(β)

∆∑
i=1

1

eiiβ

=
Liβ(1/e)

ζ(β)
,

where in the last approximation we use Lemmas 3.3 and 3.2.

The proof of Lemma 3.6 below is omitted since is similar the proof of Lemma 3.5. The key step is
to use Lemma 3.4 instead of Lemma 3.3.

Lemma 3.6. Let v ∈ V . Then

Pr(v ∈ V1) ≈ Liβ−1(1/e)

ζ(β)

In the following Lemmas we need to take in consideration the weights of the vertices in V − and
V1, so we partition these sets according to Definition 3.7.

Definition 3.7. Let

W−i = {v ∈ V |v ∈Wi and v ∈ V −}

W
(1)
i = {v ∈ V |v ∈Wi and v ∈ V1}

Lemma 3.8. Let v ∈Wi. Then

Pr(v ∈W−i |v ∈Wi) ≈ 1− (i+ 1)

ei
.
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Proof. Let v ∈Wi and let X be the random variable for d(v). Let Xj be the random variable counting

the number of neighbors of v in Wj . Therefore X =
∑∆
j=1Xj . Hence

Pr(v ∈ V −) = Pr(X ≥ 2)

= 1− Pr(X = 0 or X = 1)

= 1− (Pr(X = 0) + Pr(X = 1)− Pr(X = 0 and X = 1))

Note that Pr(X = 0 and X = 1) = 0, since X cannot assume both values at the same time. Therefore,

Pr(v ∈ V −) = 1− Pr(X = 0)− Pr(X = 1)

= 1− Pr(v ∈ V0|v ∈Wi)− Pr(v ∈ V1|v ∈Wi)

≈ 1− 1

ei
− i

ei
,

where the approximation is obtained from Lemmas 3.3 and 3.4.

Lemma 3.9.

Pr(|W (1)
i | = k) ≈

(
|Wi|
k

)(
i

ei

)k (
1− i

ei

)|Wi|−k

Proof. Directly from the fact that |W (1)
i | is a binomial random variable with parameters n = |Wi| and

p = Pr(v ∈W (1)
i |v ∈Wi) ≈ i

ei , where the approximation is obtained from Lemma 3.4.

In the next Lemma, denote the event “v ∈W−i does not have a neighbor in W
(1)
j ” by v 9W

(1)
j .

Lemma 3.10.

Pr(v 9W
(1)
j ) /

(
1

e

) i

ejjβ−2ζ(β−1)

.

Proof. Using the Law of Total Probability and Lemma 3.9,

Pr(v 9W
(1)
j ) =

∆∑
k=1

Pr(v 9W
(1)
j

∣∣∣|W (1)
j | = k) · Pr(|W (1)

j | = k)

≈
∆∑
k=1

(1− pij)k ·
(
|Wj |
k

)(
j

ej

)k (
1− j

ej

)|Wj |−k

=

∆∑
k=1

(
|Wj |
k

)(
(1− pij)

j

ej

)k (
1− j

ej

)|Wj |−k

︸ ︷︷ ︸
(F)

.

If ∆ ≤ |Wj |, then
∑∆
k=1(F) ≤

∑|Wj |
k=1 (F). Otherwise (i.e., ∆ > |Wj |), the every term

(|Wj |
k

)
is equal

to 0 when k > |Wj | and hence,
∑∆
k=1(F) =

∑|Wj |
k=1 (F). Therefore,

Pr(v 9W
(1)
j ) /

|Wj |∑
k=1

(
|Wj |
k

)(
(1− pij)

j

ej

)k (
1− j

ej

)|Wj |−k

.
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Using the Binomial Theorem,

Pr(v 9W
(1)
j ) /

(
(1− pij)

j

ej
+ 1− j

ej

)|Wj |

=

(
1− pij

j

ej

)|Wj |

=

(
1− ij

eαζ(β − 1)

j

ej

) eα

jβ

=

1−
ij2

ejζ(β−1)

eα

eα· 1

jβ

≈

(
1

e
ij2

ejζ(β−1)

) 1

jβ

=

(
1

e

) i

ejjβ−2ζ(β−1)

Lemma 3.11. Pr(v does not have a neighbor in V1) /
(

1
ei

)ρ(β)
, where ρ(β) =

Liβ−2( 1
e )

ζ(β−1) .

Proof. Let εj be the event “v ∈W−i does not have a neighbor in W
(1)
j ”. Therefore

Pr(v does not have a neighbor in V1) = Pr(ε1 ∩ ε2 ∩ . . . ∩ ε∆)

=

∆∏
j=1

Pr(εj)

/
∆∏
j=1

(
1

e

) i

ejjβ−2ζ(β−1)

,

where the second step is a consequence of the independence of the events εj and the upper bound is
consequence of Lemma 3.10. Therefore,

Pr(v does not have a neighbor in V1) /
∆∏
j=1

(
1

e

) i

ejjβ−2ζ(β−1)

=

(
1

e

)∑∆
j=1

i

ejjβ−2ζ(β−1)

=

(
1

e

) i
ζ(β−1)

∑∆
j=1

1

ejjβ−2

=

(
1

e

) i
ζ(β−1)

Liβ−2( 1
e )

In the next Lemma, denote the event “v ∈ V − does not have a neighbor in V1” by v 9 V1.
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Lemma 3.12.

Pr(v 9 V1) /
Liβ(e−ρ(β))

ζ(β)
,

where ρ(β) =
Liβ−2( 1

e )

ζ(β−1) .

Proof. Using the Law of Total Probability,

Pr(v 9 V1) =

∆∑
i=1

Pr(v 9 V1 and v ∈W−i )

=

∆∑
i=1

Pr(v 9 V1|v ∈W−i )Pr(v ∈W−i )

=

∆∑
i=1

Pr(v 9 V1|v ∈W−i )Pr(v ∈W−i |v ∈Wi)Pr(v ∈Wi).

Using Lemmas 3.11, 3.8 and 3.2, we have

Pr(v 9 V1) =

∆∑
i=1

(
1

ei

)ρ(β)

(1− 1/ei − i/ei)
(

1

iβζ(β)

)

/
1

ζ(β)

∆∑
i=1

1

eiρ(β)iβ

=
Liβ(e−ρ(β))

ζ(β)
.

In the next Theorem we estimate the size of the set of vertices adjacent to vertices of degree 1.

Theorem 3.13.

E[|N(V1)|] ' |V |
(

1− Liβ(1/e)

ζ(β)
− Liβ−1(1/e)

ζ(β)

)(
1− Liβ(e−ρ(β))

ζ(β)

)
Proof. We denote the event “v ∈ V has a neighbor in V1” by v → V1. Let Xv be the indicator random
variable where Xv = 1 when v → V1 and v ∈ V − (otherwise Xv = 0). Therefore, by Lemmas 3.12,
3.5 and 3.6,

E[Xv] = Pr(Xv = 1)

= Pr(v → V1 ∩ v ∈ V −)

= Pr(v → V1|v ∈ V −) · Pr(v ∈ V −)

= Pr(v → V1|v ∈ V −) · Pr(v ∈ V \ {V0 ∪ V1})

'

(
1− Liβ(e−ρ(β))

ζ(β)

)(
1− Liβ(1/e)

ζ(β)
− Liβ−1(1/e)

ζ(β)

)
.

Let X be a random variable such that X =
∑
v∈V Xv (i.e., X = |N(V1)|). Therefore, by the linearity

10



of expectation and using the value of E[Xv],

E[|N(V1)|] =
∑
v∈V

E[Xv]

'
∑
v∈V

(
1− Liβ(e−ρ(β))

ζ(β)

)(
1− Liβ(1/e)

ζ(β)
− Liβ−1(1/e)

ζ(β)

)

= |V |
(

1− Liβ(e−ρ(β))

ζ(β)

)(
1− Liβ(1/e)

ζ(β)
− Liβ−1(1/e)

ζ(β)

)

4. Approximation Algorithm

The first step of the algorithm consists of including every vertex of N(V1) in the solution. In
Lemma 4.1 we show that the optimal solution can be split into two parts and the optimal solution in
one of these parts is N(V1). The optimal solution of the other part is bounded in Lemma 4.3.

For any S ⊆ V , let OPT(S) be the cardinality of a minimum vertex cover in G[S]. Let V ∗ =
V1 ∪N(V1). In Lemma 4.1, we give an auxiliary result that holds for any graph G = (V,E) (i.e., no
probabilistic argument is used in the proof). In this particular Lemma, quantities such as OPT(S)
and |N(V1)| are not treated as expected values of random variables. In the rest of the paper these
quantities are treated again as expected values of random variables.

Lemma 4.1. The following three conditions hold:

(i) G contains a minimum vertex cover C such that N(V1) ⊆ C and no vertex of V1 is in C;

(ii) OPT(V ∗) = |N(V1)|;

(iii) OPT(V ) = OPT(V ∗) + OPT(V \ V ∗).

Proof. Let uv ∈ E such that u ∈ V1. Note that any minimum vertex cover C of G contains exactly
one vertex of {u, v} (otherwise C is not a cover or C is not minimum). Note that if u ∈ C, then
(C \ {u})∪ {v} is also a minimum vertex cover. Therefore, using this same exchange argument, there
is a minimum vertex cover containing every vertex of N(V1). Hence (i) holds. Applying (i) to the
graph induced by V ∗, N(V1) is a minimum vertex cover of G[V ∗], and hence (ii) holds. Now let
C = C ′ ∪N(V1) be a minimum vertex cover respecting condition (i). There is no vertex cover C ′′ in
G[V \ V ∗] such that |C ′′| < |C ′|, otherwise C ′′ ∪ N(V1) contradicts the minimality of C. Therefore
OPT(V \ V ∗) = |C ′|. Combining this with (ii), condition (iii) holds.

Lemma 4.2.
OPT(V ∗)

OPT(V )
≥
(

1− Li(e−ρ(β))

ζ(β)

)
.

Proof. By Lemma 4.1 (i), OPT(V ) ≤ |V −|. Combining this with Lemmas 3.5 and 3.6 we have

OPT(V ) ≤ |V −| = |V |
(

1− Liβ(1/e)
ζ(β) − Liβ−1(1/e)

ζ(β)

)
. By Lemma 4.1 (ii) and Theorem 3.13,

OPT(V ∗) = |N(V1)| ≥ |V |
(

1− Liβ(1/e)

ζ(β)
− Liβ−1(1/e)

ζ(β)

)(
1− Liβ(e−ρ(β))

ζ(β)

)
.

Combining these bounds we have

OPT(V ∗)

OPT(V )
≥
(

1− Liβ(e−ρ(β))

ζ(β)

)
.
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Corollary 4.3.
OPT(V \ V ∗)

OPT(V )
≤ Liβ(e−ρ(β))

ζ(β)
.

Proof. By Lemma 4.1 (iii), OPT(V \V ∗)+OPT(V ∗)
OPT(V ) = 1. By Lemma 4.2, the corollary holds.

Algorithm 4.4.

1. Let C be a cover obtained by a 2-approximation algorithm in G[V \ V ∗].
2. Output C ∪N(V1).

Theorem 4.5. The expected approximation factor of Algorithm 4.4 is
(

1 + Li(e−ρ(β))
ζ(β)

)
when applied

to a random power law graph.

Proof. The size of a solution obtained by Algorithm 4.4 is |C∪N(V1)|. Since C and N(V1) are disjoint,
|C ∪ N(V1)| = |C| + |N(V1)|. By Lemma 4.1 (ii), |N(V1)| = OPT(V ∗). Since C is obtained by a
2-approximation algorithm in V \ V ∗, |C| ≤ 2OPT(V \ V ∗). Therefore

|C ∪N(V1)| ≤ OPT(V ∗) + 2OPT(V \ V ∗) = OPT(V ) + OPT(V \ V ∗),

where the last step is obtained by Lemma 4.1 (iii). By Corollary 4.3,

|C ∪N(V1)| = OPT(V ) + OPT(V \ V ∗)

≤ OPT(V ) +
Liβ(e−ρ(β))

ζ(β)
OPT(V )

=

(
1 +

Liβ(e−ρ(β))

ζ(β)

)
OPT(V ).

5. Conclusion

In this paper we study the approximability of the minimum vertex cover problem in power law
graphs. We use the the generalized random graph [27] model (as well the Chung-Lu model) to analyze
the expected approximation ratio of the algorithm. We observe that this graph model is potentially
easier to handle than the model used in [14] mainly due to the fact that edges are added independently
in the random process.

A question that might arise is how much the approximation factor can be improved by repeating
the first step of the algorithm recursively for the residual graph until no more vertices of degree one
are left. Even though this idea seems natural, the analysis appears to be more complicated, since the
recursive steps give rises to probabilities that are not independent. Also, one might hope to prove a
concentration inequality for the probability that the algorithm returns a good solution.

As a future work we are also interested in investigating the approximability of other optimization
problems on power law graphs.
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