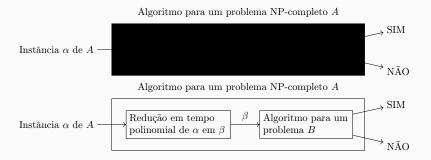
Henrique Hepp hhepp@inf.ufpr.br 25 de abril de 2022

Redução de Problemas NP-completo



- Se o algoritmo para A acima funciona, então o problema para B é NP-difícil.
- Precisamos mostrar:
 - 1. α é uma instância verdadeira de A se, e somente se, a instância β é verdadeira para B;
 - 2. a redução tem que ser polinomial.

Redução de Problemas NP-completo

Dado um problema NP-completo A, como mostrar que um problema B é NP-completo?

- 1. Mostre que o problema $B \in NP$.
 - Solução pode ser verificada em tempo polinomial.
- 2. Mostre que o problema B é NP-difícil.
 - Mostre a redução de A para B.
 - 2.1 Descreva o algoritmo que converte em tempo polinomial uma instância arbitraria α de A para uma instância β de B.
 - 2.2 Mostre que α é uma instância verdadeira de A se, e somente se, a instância β é verdadeira para B.

Redução de Problemas NP-completo

- Mostre que α é uma instância verdadeira de A se, e somente se, a instância β é verdadeira para B.
 - se a reposta for SIM para B, então também é SIM para A;
 - se a reposta for NÃO para B, então também é NÃO para A.
- De maneira equivalente:
 - se a reposta for SIM para B, então também é SIM para A;
 - se a reposta for SIM para A, então também é SIM para B.

Satisfatibilidade de fórmulas booleanas (SAT)

 $L_{SAT}=\{ \Box \phi \subseteq \Sigma^* | \phi \text{ é uma fórmula booleana satisfazível escrita como uma conjunção de cláusulas, onde uma cláusula é uma disjunção de literais.}$

- Dadas as variáveis booleanas x₁, x₂, x₃, x₄ a seguinte fórmula é satisfazível?
 - $\Phi = (\overline{x_1} \vee x_2 \vee \overline{x_3} \vee x_4) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_3}) \wedge (\overline{x_1} \vee x_3 \vee \overline{x_4}) \wedge (x_3 \vee x_4).$
- A fórmula é satisfazível, certificado: $x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1$.

Conjunto independente

Um conjunto independente de um grafo G é um conjunto S de vértices de G tal que não existem dois vértices adjacentes contidos em S.

Problema de decisão para um conjunto independente

 $L_{CI} = \{ (G, k) \in \Sigma^* | G \text{ \'e um grafo que cont\'em um conjunto independente de tamanho pelo menos } k \}.$

Teorema

O problema de decisão para um conjunto independente é NP-completo.

Lema 1

O problema de decisão para um conjunto independente pertence a NP.

Lema 2

O problema de decisão para um conjunto independente é NP-difícil.

Lema 1

O problema de decisão para um conjunto independente pertence a NP.

- O certificado é o conjunto dos vértices independentes.
- Verifique se existe um vértice vizinho ao outro nesse conjunto.
- Pode ser feito em $O(n^2)$, sendo n o número de vértices.

Lema 2

O problema de decisão para um conjunto independente é NP-difícil.

1. Redução que recebe instância φ do problema SAT e retorna instância (G_{φ},k) do problema do conjunto independente.

$$\phi \; \Rightarrow \; \left[egin{array}{c} {\sf Redução} \end{array}
ight] \; \Rightarrow \; (G_\phi,k)$$

2. (G_{Φ}, k) é uma instância verdadeira se, e somente se, Φ é satisfazível.

- Seja $\phi = C_1 \wedge ... \wedge C_m$ uma instância do problema SAT com n variáveis x_i , i = 1, ..., n.
- Para cada j = 1, ..., m, denotamos por $A(C_j)$ o conjunto dos literais que aparecem na cláusula C_j .

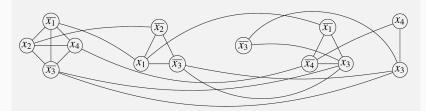
Redução (ϕ)

- 1. Crie um conjunto de vértices V de tamanho $\sum_{i=1}^{m} |A(C_i)|$.
- 2. Particione o conjunto V em subconjuntos V_1, \ldots, V_m , tal que cada subconjunto V_j tem tamanho $|A(C_j)|$ e rotule cada vértice v_j com um elemento diferente do conjunto $A(C_i)$.
- 3. Para cada conjunto de vértices V_j , adicione todas as arestas possíveis entre pares de vértices de V_i .
- 4. Adicione arestas ligando vértices rotulados com literais complementares.
- 5. Retorne (G_{Φ}, m)

Exemplo:

$$\phi_1 = (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_3}) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (x_3 \lor x_4)$$

Neste caso, a saída da redução é $(G_{\phi_1}, 5)$, sendo que G_{ϕ_1} é o grafo da figura abaixo.



- (G_Φ, k) é uma instância verdadeira se, e somente se, φ é satisfazível.
 - Caso 1: se (G_{φ}, m) é uma instância verdadeira, então φ é satisfazível.
 - Caso 2: se φ é satisfazível, então (G_{φ},m) é uma instância verdadeira.

(G_{φ}, k) é uma instância verdadeira se, e somente se, φ é satisfazível

- Caso 1: se (G_φ, m) é uma instância verdadeira, então φ é satisfazível.
 - Seja S o conjunto independente de tamanho máximo de G_{Φ} .
 - Se (G_{\oplus}, m) é uma instância verdadeira então |S| = m.
 - S é um conjunto $\{v_1, \ldots, v_m\}$, com um vértice de cada clique diferente
 - Uma valoração que satisfaz ϕ é obtida dos rótulos de $\{v_1, \dots, v_m\}$.

(G_{φ}, k) é uma instância verdadeira se, e somente se, φ é satisfazível

- Caso 2: se φ é satisfazível, então (G_φ, m) é uma instância verdadeira.
 - Se φ é satisfazível, existe pelo menos um literal satisfeito em cada cláusula de φ .
 - Seja S' o conjunto dos vértices correspondentes a esses literais.
 - O conjunto S' é independente, pois contém um vértice por clique e não pode haver nenhum par de vértices correspondentes a x_i e x̄_i.
 - O conjunto S' tem tamanho m (pois existem m cláusulas).