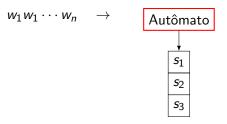
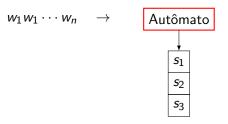
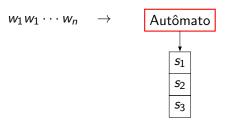
# Introdução à Teoria da Computação Autômatos com Pilha - Parte 1

#### Professor Murilo V. G. da Silva

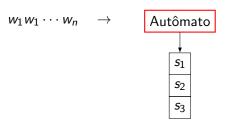

Departamento de Informática Universidade Federal do Paraná


2025/2

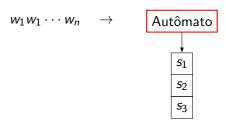



#### $\epsilon$ -AFNs

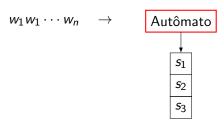
$$w_1w_1\cdots w_n$$
  $\rightarrow$  Autômato



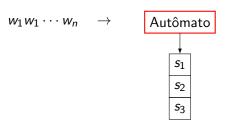




ullet  $\epsilon$ -AFN a cada passo:

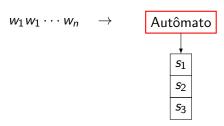



- ullet  $\epsilon$ -AFN a cada passo:
  - 1. Consome um símbolo;

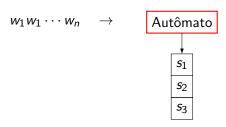



- $\bullet$   $\epsilon$ -AFN a cada passo:
  - 1. Consome um símbolo; (ou faz transição  $\epsilon$ )

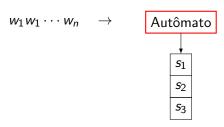



- $\bullet$   $\epsilon$ -AFN a cada passo:
  - 1. Consome um símbolo; (ou faz transição  $\epsilon$ )
  - 2. Muda de estado.

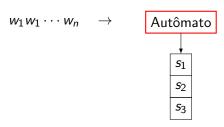



- $\epsilon$ -AFN a cada passo:
  - 1. Consome um símbolo; (ou faz transição  $\epsilon$ )
  - 2. Muda de estado.
- APs a cada passo:




- $\epsilon$ -AFN a cada passo:
  - 1. Consome um símbolo; (ou faz transição  $\epsilon$ )
  - 2. Muda de estado.
- APs a cada passo:
  - 1. Consome um símbolo;




- $\epsilon$ -AFN a cada passo:
  - 1. Consome um símbolo; (ou faz transição  $\epsilon$ )
  - 2. Muda de estado.
- APs a cada passo:
  - 1. Consome um símbolo; (ou faz transição  $\epsilon$ )



- $\epsilon$ -AFN a cada passo:
  - 1. Consome um símbolo; (ou faz transição  $\epsilon$ )
  - 2. Muda de estado.
- APs a cada passo:
  - 1. Consome um símbolo; (ou faz transição  $\epsilon$ )
  - 2. Desempilha o símbolo do topo da pilha;



- $\epsilon$ -AFN a cada passo:
  - 1. Consome um símbolo; (ou faz transição  $\epsilon$ )
  - 2. Muda de estado.
- APs a cada passo:
  - 1. Consome um símbolo; (ou faz transição  $\epsilon$ )
  - 2. Desempilha o símbolo do topo da pilha;
  - 3. Muda de estado;



- ε-AFN a cada passo:
  - 1. Consome um símbolo; (ou faz transição  $\epsilon$ )
  - 2. Muda de estado.
- APs a cada passo:
  - 1. Consome um símbolo; (ou faz transição  $\epsilon$ )
  - 2. Desempilha o símbolo do topo da pilha;
  - 3. Muda de estado;
  - 4. Empilha símbolos na pilha.



Def: Autômato com Pilha (AP)

#### Def: Autômato com Pilha (AP)

Um AP P é uma 7-tupla  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  tal que:

#### Def: Autômato com Pilha (AP)

Um AP P é uma 7-tupla  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  tal que:

 $Q, \Sigma, q_0, F$ : Igual  $\epsilon$ -NFAs;

#### Def: Autômato com Pilha (AP)

Um AP P é uma 7-tupla  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  tal que:

 $Q, \Sigma, q_0, F$ : Igual  $\epsilon$ -NFAs;

√ é o alfabeto da pilha;

#### Def: Autômato com Pilha (AP)

Um AP P é uma 7-tupla  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  tal que:

 $Q, \Sigma, q_0, F$ : Igual  $\epsilon$ -NFAs;

 $\Gamma$  é o alfabeto da pilha; (tipicamente  $\Sigma \subset \Gamma$ )

#### Def: Autômato com Pilha (AP)

Um AP P é uma 7-tupla  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  tal que:

 $Q, \Sigma, q_0, F$ : Igual  $\epsilon$ -NFAs;

 $\Gamma$  é o alfabeto da pilha; (tipicamente  $\Sigma \subset \Gamma$ )

 $Z_0 \in \Gamma$  é o "símbolo inicial da pilha";

#### Def: Autômato com Pilha (AP)

Um AP P é uma 7-tupla  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  tal que:

 $Q, \Sigma, q_0, F$ : Igual  $\epsilon$ -NFAs;

 $\Gamma$  é o alfabeto da pilha; (tipicamente  $\Sigma \subset \Gamma$ )

 $Z_0 \in \Gamma$  é o "símbolo inicial da pilha"; (respeitando  $Z_0 \notin \Sigma$ )

#### Def: Autômato com Pilha (AP)

Um AP P é uma 7-tupla  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  tal que:

Q,  $\Sigma$ ,  $q_0$ , F: Igual  $\epsilon$ -NFAs;

 $\Gamma$  é o alfabeto da pilha; (tipicamente  $\Sigma \subset \Gamma$ )

 $Z_0 \in \Gamma$  é o "símbolo inicial da pilha"; (respeitando  $Z_0 \notin \Sigma$ )

 $\delta: Q \times \Sigma \cup \{\epsilon\} \times \Gamma \rightarrow$ 

#### Def: Autômato com Pilha (AP)

```
Um AP P é uma 7-tupla P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) tal que:
```

```
Q, \Sigma, q_0, F: Igual \epsilon-NFAs;
```

```
\Gamma é o alfabeto da pilha; (tipicamente \Sigma \subset \Gamma)
```

 $Z_0 \in \Gamma$  é o "símbolo inicial da pilha"; (respeitando  $Z_0 \notin \Sigma$ )

$$\delta: Q \times \Sigma \cup \{\epsilon\} \times \Gamma \to \{$$

#### Def: Autômato com Pilha (AP)

Um AP P é uma 7-tupla  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  tal que:

 $Q, \Sigma, q_0, F$ : Igual  $\epsilon$ -NFAs;

 $\Gamma$  é o alfabeto da pilha; (tipicamente  $\Sigma \subset \Gamma$ )

 $Z_0 \in \Gamma$  é o "símbolo inicial da pilha"; (respeitando  $Z_0 \notin \Sigma$ )

 $\delta: Q \times \Sigma \cup \{\epsilon\} \times \Gamma \rightarrow \{(q_1, \gamma_1)\}$ 

#### Def: Autômato com Pilha (AP)

Um AP P é uma 7-tupla  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  tal que:

 $Q, \Sigma, q_0, F$ : Igual  $\epsilon$ -NFAs;

 $\Gamma$  é o alfabeto da pilha; (tipicamente  $\Sigma \subset \Gamma$ )

 $Z_0 \in \Gamma$  é o "símbolo inicial da pilha"; (respeitando  $Z_0 \notin \Sigma$ )

 $\delta: Q \times \Sigma \cup \{\epsilon\} \times \Gamma \rightarrow \{(q_1, \gamma_1), (q_2, \gamma_2)\}$ 

#### Def: Autômato com Pilha (AP)

Um AP P é uma 7-tupla  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  tal que:

 $Q, \Sigma, q_0, F$ : Igual  $\epsilon$ -NFAs;

 $\Gamma$  é o alfabeto da pilha; (tipicamente  $\Sigma \subset \Gamma$ )

 $Z_0 \in \Gamma$  é o "símbolo inicial da pilha"; (respeitando  $Z_0 \notin \Sigma$ )

 $\delta: Q \times \Sigma \cup \{\epsilon\} \times \Gamma \rightarrow \{(q_1, \gamma_1), (q_2, \gamma_2), ...$ 

#### Def: Autômato com Pilha (AP)

Um AP P é uma 7-tupla  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  tal que:

 $Q, \Sigma, q_0, F$ : Igual  $\epsilon$ -NFAs;

 $\Gamma$  é o alfabeto da pilha; (tipicamente  $\Sigma \subset \Gamma$ )

 $Z_0 \in \Gamma$  é o "símbolo inicial da pilha"; (respeitando  $Z_0 \notin \Sigma$ )

 $\delta: Q \times \Sigma \cup \{\epsilon\} \times \Gamma \rightarrow \{(q_1, \gamma_1), (q_2, \gamma_2), ..., (q_k, \gamma_k)\}$ 

#### Def: Autômato com Pilha (AP)

Um AP P é uma 7-tupla  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  tal que:

 $Q, \Sigma, q_0, F$ : Igual  $\epsilon$ -NFAs;

 $\Gamma$  é o alfabeto da pilha; (tipicamente  $\Sigma \subset \Gamma$ )

 $Z_0 \in \Gamma$  é o "símbolo inicial da pilha"; (respeitando  $Z_0 \notin \Sigma$ )

$$\delta: Q \times \Sigma \cup \{\epsilon\} \times \Gamma \rightarrow \{(q_1, \gamma_1), (q_2, \gamma_2), ..., (q_k, \gamma_k)\},$$

 $q_i \in Q, \gamma_i \in \Gamma^*$ .