Introdução à Teoria da Computação Lema do Bombeamento

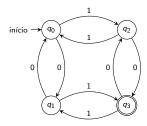
Professor Murilo V. G. da Silva

Departamento de Informática Universidade Federal do Paraná

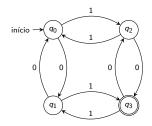
2025/2

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's

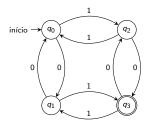


Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's



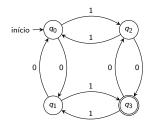
Considere a string w = 100101

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's



Considere a string w=100101 (note: |w|> qtde de estados do AFD)

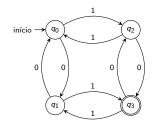
Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's



Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

• Estados visitados: $q_0, \mathbf{q_2}, \mathbf{q_3}, \mathbf{q_2}, q_0, q_1, q_3$

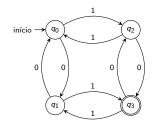
Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's



Considere a string w=100101 (note: |w|> qtde de estados do AFD)

ullet Estados visitados: $q_0, \underline{q_2, q_3, q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)

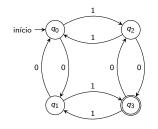
Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's



Considere a string w=100101 (note: |w|> qtde de estados do AFD)

- Estados visitados: q₀, q₂, q₃, q₂, q₀, q₁, q₃ (existe subsequência de estados começa e termina em q₂)
- w = 100101

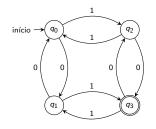
Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's



Considere a string w=100101 (note: |w|> qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- $w = 1\underline{00}101 = xyz$

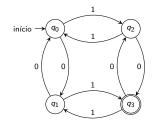
Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's



Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2, q_3, q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- w = 100101 = xyz Pergunta:

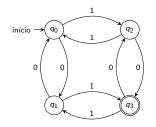
Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's



Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- w = 100101 = xyz Pergunta: 10000101 também é aceita?

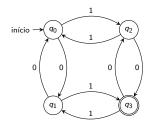
Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's



Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- $w = 1\underline{00}101 = xyz$ Pergunta: $1\underline{0000}101$ também é aceita? $(q_0, \underline{q_2}, q_3, q_2, q_3, q_2, q_0, q_1, q_3)$

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's

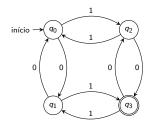


Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- $w = 1\underline{00}101 = xyz$ Pergunta: $1\underline{00}\underline{00}101$ também é aceita? $(q_0, \underline{q_2}, q_3, q_2, q_3, q_2, q_3, q_2, q_0, q_1, q_3)$

Pergunta:

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's

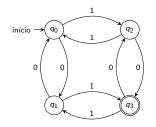


Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- $w = 1\underline{00}101 = xyz$ Pergunta: $1\underline{00}\underline{00}101$ também é aceita? $(q_0, \underline{q_2}, q_3, q_2, q_3, \underline{q_2}, q_0, q_1, q_3)$

Pergunta: 1(00)³101 também é aceita?

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's

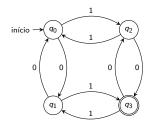


Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

- Estados visitados: $q_0, \underline{q_2, q_3, q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- w = 100101 = xyz Pergunta: 10000101 também é aceita? $(q_0, \frac{q_2, q_3, q_2, q_3, q_2}{q_3, q_2, q_3, q_2}, q_0, q_1, q_3)$

Pergunta: $1(00)^3$ 101 também é aceita? E a string 1101?

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's

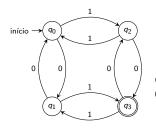


Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- w = 100101 = xyz Pergunta: 10000101 também é aceita? $(q_0, \frac{q_2, q_3, q_2, q_3, q_2}{q_0, q_1, q_3}, q_0, q_1, q_3)$

Pergunta: $1(00)^3$ 101 também é aceita? E a string 1101?

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's



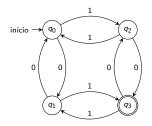
Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- w = 100101 = xyz Pergunta: 10000101 também é aceita? $(q_0, \frac{q_2, q_3, q_2, q_3, q_2}{q_3, q_2, q_3, q_2}, q_0, q_1, q_3)$

Pergunta: 1(00)³101 também é aceita? E a string 1101?

• De maneira geral, $\forall k$, a string xy^kz também é aceita

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's

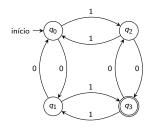


Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- w = 100101 = xyz Pergunta: 10000101 também é aceita? $(q_0, \frac{q_2, q_3, q_2, q_3, q_2}{q_3, q_2, q_3, q_2}, q_0, q_1, q_3)$

- De maneira geral, $\forall k$, a string xy^kz também é aceita
- De maneira mais geral:

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's

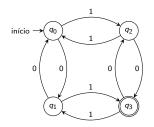


Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- w = 100101 = xyz Pergunta: 10000101 também é aceita? $(q_0, \frac{q_2, q_3, q_2, q_3, q_2}{q_3, q_2, q_3, q_2}, q_0, q_1, q_3)$

- De maneira geral, $\forall k$, a string xy^kz também é aceita
- De maneira mais geral: Existe tamanho t

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's

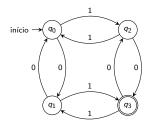


Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- $w = 1\underline{00}101 = xyz$ Pergunta: $1\underline{00}\underline{00}101$ também é aceita? $(q_0, \underline{q_2}, q_3, \underline{q_2}, q_3, \underline{q_2}, q_0, q_1, q_3)$

- De maneira geral, $\forall k$, a string xy^kz também é aceita
- De maneira mais geral: Existe tamanho tPara toda string $w \in L$ desde que |w| > t

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's

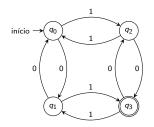


Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- $w = 1\underline{00}101 = xyz$ Pergunta: $1\underline{0000}101$ também é aceita? $(q_0, \underline{q_2}, q_3, q_2, q_3, q_2, q_0, q_1, q_3)$

- De maneira geral, $\forall k$, a string xy^kz também é aceita
- De maneira mais geral: Existe tamanho tPara toda string $w \in L$ desde que |w| > tExiste x, y, z satisfazendo

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's

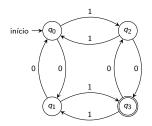


Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- $w = 1\underline{00}101 = xyz$ Pergunta: $1\underline{0000}101$ também é aceita? $(q_0, \underline{q_2}, q_3, q_2, q_3, q_2, q_0, q_1, q_3)$

- De maneira geral, $\forall k$, a string xy^kz também é aceita
- De maneira mais geral: Existe tamanho tPara toda string $w \in L$ desde que |w| > tExiste x, y, z satisfazendo w = xyz

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's

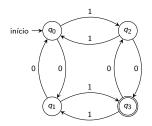


Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- $w = 1\underline{00}101 = xyz$ Pergunta: $1\underline{0000}101$ também é aceita? $(q_0, \underline{q_2}, q_3, q_2, q_3, q_2, q_0, q_1, q_3)$

- De maneira geral, $\forall k$, a string xy^kz também é aceita
- De maneira mais geral: Existe tamanho tPara toda string $w \in L$ desde que |w| > tExiste x, y, z satisfazendo w = xyz tal que $xy^kz \in L$

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's



Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

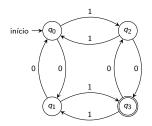
- Estados visitados: $q_0, \mathbf{q_2}, \mathbf{q_3}, \mathbf{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em $\mathbf{q_2}$)
- $w = 1\underline{00}101 = xyz$ Pergunta: $1\underline{0000}101$ também é aceita? $(q_0, \underline{q_2}, q_3, q_2, q_3, q_2, q_0, q_1, q_3)$

Pergunta: 1(00)³101 também é aceita? E a string 1101?

- De maneira geral, $\forall k$, a string xy^kz também é aceita
- $lack ext{De maneira mais geral: Existe tamanho t}$ Para toda string $w \in L$ desde que |w| > t

Fara toda string $w \in L$ desde que |w| > tExiste x, y, z satisfazendo w = xyz tal que $xy^kz \in L$ outras duas propriedades de x, y, z:

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's



Considere a string w = 100101 (note: |w| >qtde de estados do AFD)

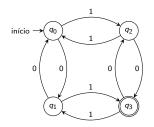
- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- $w = 1\underline{00}101 = xyz$ Pergunta: $1\underline{0000}101$ também é aceita? $(q_0, \underline{q_2}, q_3, q_2, q_3, q_2, q_0, q_1, q_3)$

Pergunta: 1(00)³101 também é aceita? E a string 1101?

- De maneira geral, $\forall k$, a string xy^kz também é aceita
- ullet De maneira mais geral: Existe tamanho t

Para toda string $w \in L$ desde que |w| > tExiste x, y, z satisfazendo w = xyz tal que $xy^kz \in L$ outras duas propriedades de x, y, z: (1) $y \neq \epsilon$

Considere a linguagem regular L: strings binárias com número ímpar de 1's e ímpar de 0's



Considere a string w=100101 (note: |w|> qtde de estados do AFD)

- Estados visitados: $q_0, \frac{q_2, q_3, q_2}{q_2}, q_0, q_1, q_3$ (existe subsequência de estados começa e termina em q_2)
- w = 100101 = xyz Pergunta: 10000101 também é aceita? $(q_0, \frac{q_2, q_3, q_2, q_3, q_2}{q_0, q_1, q_3})$

Pergunta: 1(00)³101 também é aceita? E a string 1101?

- De maneira geral, $\forall k$, a string xy^kz também é aceita
- lacktriangle De maneira mais geral: Existe tamanho t

Para toda string $w \in L$ desde que |w| > tExiste x, y, z satisfazendo w = xyz tal que $xy^kz \in L$ outras duas propriedades de x, y, z: (1) $y \neq \epsilon$ (2) $|xy| \leq t$

Lema do Bombeamento

Se L é uma linguagem regular,

Lema do Bombeamento

Se L é uma linguagem regular, então existe uma constante t tal que

Lema do Bombeamento

Se L é uma linguagem regular, então existe uma constante t tal que para toda string w de tamanho pelo menos t da linguagem L,

Lema do Bombeamento

Se L é uma linguagem regular, então existe uma constante t tal que para toda string w de tamanho pelo menos t da linguagem L, $\exists x, y, z \in \Sigma^*$ tal que w = xyz e o seguinte é verdadeiro:

Lema do Bombeamento

Se L é uma linguagem regular, então existe uma constante t tal que para toda string w de tamanho pelo menos t da linguagem L, $\exists x, y, z \in \Sigma^*$ tal que w = xyz e o seguinte é verdadeiro:

(1)
$$y \neq \epsilon$$

(2)
$$|xy| \leq t$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L$

Exemplo de uso do LB

Exemplo de uso do LB

Teorema: $L_{01} = \{0^{i}1^{i} : i \geq 1\}$ não é regular.

Exemplo de uso do LB

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular.

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

 $\exists x, y, z \text{ tal que } w = xyz$

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{01}$.

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{01}$.

Seja $w = 0^t 1^t$.

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{01}$.

Seja $w = 0^t 1^t$. Note que w satisfaz as condições do LB.

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{01}$.

Seja $w = 0^t 1^t$. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{01}$.

Seja $w = 0^t 1^t$. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (2), temos $|xy| \le t$ e portanto xy contém apenas 0's.

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{01}$.

Seja $w = 0^t 1^t$. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (2), temos $|xy| \le t$ e portanto xy contém apenas 0's.

Logo, todos os t símbolos 1 da string w estão contidos em z.

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{01}$.

Seja $w = 0^t 1^t$. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (2), temos $|xy| \le t$ e portanto xy contém apenas 0's.

• Logo, todos os t símbolos 1 da string w estão contidos em z.

Usando (3), $xy^kz \in L_{01}$, para qualquer $k \ge 0$.

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{01}$.

Seja $w = 0^t 1^t$. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (2), temos $|xy| \le t$ e portanto xy contém apenas 0's.

ullet Logo, todos os t símbolos 1 da string w estão contidos em z.

Usando (3), $xy^kz \in L_{01}$, para qualquer $k \ge 0$. Portanto $xy^0z \in L_{01}$.

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{01}$.

Seja $w = 0^t 1^t$. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (2), temos $|xy| \le t$ e portanto xy contém apenas 0's.

Logo, todos os t símbolos 1 da string w estão contidos em z.

Usando (3), $xy^kz \in L_{01}$, para qualquer $k \ge 0$. Portanto $xy^0z \in L_{01}$.

• Logo, $xz \in L_{01}$.

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{01}$.

Seja $w = 0^t 1^t$. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (2), temos $|xy| \le t$ e portanto xy contém apenas 0's.

• Logo, todos os t símbolos 1 da string w estão contidos em z.

Usando (3), $xy^kz \in L_{01}$, para qualquer $k \ge 0$. Portanto $xy^0z \in L_{01}$.

• Logo, $xz \in L_{01}$.

Usando (1), |xz| < |xyz|.

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{01}$.

Seja $w = 0^t 1^t$. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (2), temos $|xy| \le t$ e portanto xy contém apenas 0's.

• Logo, todos os t símbolos 1 da string w estão contidos em z.

Usando (3), $xy^kz \in L_{01}$, para qualquer $k \ge 0$. Portanto $xy^0z \in L_{01}$.

• Logo, $xz \in L_{01}$.

Usando (1), |xz| < |xyz|.

Logo, |xz| < 2t.

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{01}$.

Seja $w = 0^t 1^t$. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (2), temos $|xy| \le t$ e portanto xy contém apenas 0's.

• Logo, todos os t símbolos 1 da string w estão contidos em z.

Usando (3), $xy^kz \in L_{01}$, para qualquer $k \ge 0$. Portanto $xy^0z \in L_{01}$.

• Logo, $xz \in L_{01}$.

Usando (1), |xz| < |xyz|.

• Logo, |xz| < 2t.

Portanto xz tem t símbolos 1 e no máximo t-1 símbolos 0.

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{01}$.

Seja $w = 0^t 1^t$. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (2), temos $|xy| \le t$ e portanto xy contém apenas 0's.

• Logo, todos os t símbolos 1 da string w estão contidos em z.

Usando (3), $xy^kz \in L_{01}$, para qualquer $k \ge 0$. Portanto $xy^0z \in L_{01}$.

• Logo, $xz \in L_{01}$.

Usando (1), |xz| < |xyz|.

• Logo, |xz| < 2t.

Portanto xz tem t símbolos 1 e no máximo t-1 símbolos 0. Uma contradição, pois $xz \in L_{01}$.

Teorema: $L_{01} = \{0^i 1^i : i \ge 1\}$ não é regular.

Prova: Suponha que L_{01} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{01}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

(1)
$$y \neq \epsilon$$
 (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{01}$.

Seja $w = 0^t 1^t$. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (2), temos $|xy| \le t$ e portanto xy contém apenas 0's.

• Logo, todos os t símbolos 1 da string w estão contidos em z.

Usando (3), $xy^kz \in L_{01}$, para qualquer $k \ge 0$. Portanto $xy^0z \in L_{01}$.

• Logo, $xz \in L_{01}$.

Usando (1), |xz| < |xyz|.

• Logo, |xz| < 2t.

Portanto xz tem t símbolos 1 e no máximo t-1 símbolos 0. Uma contradição, pois $xz \in L_{01}$. Logo L_{01} não é regular.