Introdução à Teoria da Computação Lema do Bombeamento (cont.)

Professor Murilo V. G. da Silva

Departamento de Informática Universidade Federal do Paraná

2025/2

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular.

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

 $\exists x, y, z \text{ tal que}$

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

 $\exists x, y, z \text{ tal que } w = xyz$

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades:

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^k z \in L_{uP}$.

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w=1^p$, para um primo p>t.

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB. Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$.

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$. Portanto $xy^{p+1}z \in L_{uP}$.

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$. Portanto $xy^{p+1}z \in L_{uP}$.

Seja |y| = n.

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$. Portanto $xy^{p+1}z \in L_{uP}$.

Seja |y| = n. Note que $|xy^{p+1}z| =$

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$. Portanto $xy^{p+1}z \in L_{uP}$.

Seja |y| = n. Note que $|xy^{p+1}z| = |xz| + |y^{p+1}|$

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$. Portanto $xy^{p+1}z \in L_{uP}$.

Seja |y| = n. Note que $|xy^{p+1}z| = |xz| + |y^{p+1}| = (p-n) + n \cdot (p+1)$.

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$. Portanto $xy^{p+1}z \in L_{uP}$.

Seja |y| = n. Note que $|xy^{p+1}z| = |xz| + |y^{p+1}| = (p-n) + n \cdot (p+1)$. Logo,

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$. Portanto $xy^{p+1}z \in L_{uP}$.

Seja
$$|y| = n$$
. Note que $|xy^{p+1}z| = |xz| + |y^{p+1}| = (p-n) + n \cdot (p+1)$. Logo,

$$|xy^{p+1}z| = p - n + np + n$$
$$= p + np$$
$$= p \cdot (1 + n)$$

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$. Portanto $xy^{p+1}z \in L_{uP}$.

Seja
$$|y| = n$$
. Note que $|xy^{p+1}z| = |xz| + |y^{p+1}| = (p-n) + n \cdot (p+1)$. Logo,

$$|xy^{p+1}z| = p - n + np + n$$
$$= p + np$$
$$= p \cdot (1 + n)$$

Note:

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$. Portanto $xy^{p+1}z \in L_{uP}$.

Seja |y| = n. Note que $|xy^{p+1}z| = |xz| + |y^{p+1}| = (p-n) + n \cdot (p+1)$. Logo,

$$|xy^{p+1}z| = p - n + np + n$$
$$= p + np$$
$$= p \cdot (1 + n)$$

Note: $p \notin \text{primo} \Rightarrow p > 2$,

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$. Portanto $xy^{p+1}z \in L_{uP}$.

Seja |y| = n. Note que $|xy^{p+1}z| = |xz| + |y^{p+1}| = (p-n) + n \cdot (p+1)$. Logo,

$$|xy^{p+1}z| = p - n + np + n$$
$$= p + np$$
$$= p \cdot (1 + n)$$

Note: $p \in \text{primo} \Rightarrow p > 2$, condição $(1) \Rightarrow (1 + n) > 2$.

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$. Portanto $xy^{p+1}z \in L_{uP}$.

Seja |y| = n. Note que $|xy^{p+1}z| = |xz| + |y^{p+1}| = (p-n) + n \cdot (p+1)$. Logo,

$$|xy^{p+1}z| = p - n + np + n$$
$$= p + np$$
$$= p \cdot (1 + n)$$

Note: $p \in \text{primo} \Rightarrow p > 2$, $\text{condição } (1) \Rightarrow (1+n) > 2$. Como $p \ge 2 \in (1+n) \ge 2$,

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$. Portanto $xy^{p+1}z \in L_{uP}$.

Seja |y| = n. Note que $|xy^{p+1}z| = |xz| + |y^{p+1}| = (p-n) + n \cdot (p+1)$. Logo,

$$|xy^{p+1}z| = p - n + np + n$$
$$= p + np$$
$$= p \cdot (1 + n)$$

Note: $p \in \text{primo} \Rightarrow p > 2$, condição $(1) \Rightarrow (1 + n) > 2$.

Como $p \ge 2$ e $(1+n) \ge 2$, $|xy^{p+1}z|$ não é primo.

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$. Portanto $xy^{p+1}z \in L_{uP}$.

Seja |y| = n. Note que $|xy^{p+1}z| = |xz| + |y^{p+1}| = (p-n) + n \cdot (p+1)$. Logo,

$$|xy^{p+1}z| = p - n + np + n$$
$$= p + np$$
$$= p \cdot (1 + n)$$

Note: $p \notin \text{primo} \Rightarrow p > 2$, condição $(1) \Rightarrow (1 + n) > 2$.

Como $p \ge 2$ e $(1+n) \ge 2$, $|xy^{p+1}z|$ não é primo. Isso contradiz $xy^{p+1}z \in L_p$.

Teorema: $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Suponha que L_{uP} é regular. Pelo LB, existe $t \in \mathbb{N}$, tal que se $w \in L_{uP}$ e $|w| \ge t$

$$\exists x, y, z \text{ tal que } w = xyz$$

respeitando as propriedades: (1) $y \neq \epsilon$ (2) $|xy| \leq t$ (3) $\forall k \geq 0, xy^kz \in L_{uP}$.

Seja $w = 1^p$, para um primo p > t. Note que w satisfaz as condições do LB.

Logo w = xyz e as três propriedades acima valem.

Usando (3), $xy^kz \in L_{uP}$, para qualquer $k \ge 0$. Portanto $xy^{p+1}z \in L_{uP}$.

Seja |y| = n. Note que $|xy^{p+1}z| = |xz| + |y^{p+1}| = (p-n) + n \cdot (p+1)$. Logo,

$$|xy^{p+1}z| = p - n + np + n$$
$$= p + np$$
$$= p \cdot (1 + n)$$

Note: $p \notin \text{primo} \Rightarrow p > 2$, condição $(1) \Rightarrow (1 + n) > 2$.

Como $p \ge 2$ e $(1+n) \ge 2$, $|xy^{p+1}z|$ não é primo. Isso contradiz $xy^{p+1}z \in L_p$. Logo L_{uP} não é regular.

Teorema: A linguagem $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Slide anterior.

Teorema: A linguagem $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Slide anterior.

Também é possível provar o seguinte:

Teorema: A linguagem $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Slide anterior.

Também é possível provar o seguinte:

Teorema: A linguagem $L_P = \{w : N(w) \text{ \'e um n\'umero primo}\}$ não \'e regular.

Teorema: A linguagem $L_{uP} = \{1^p : p \text{ \'e um n\'umero primo }\}$ não \'e regular.

Prova: Slide anterior.

Também é possível provar o seguinte:

Teorema: A linguagem $L_P = \{w : N(w) \text{ \'e um n\'umero primo}\}$ não \'e regular.

Prova: Exercício Opcional.