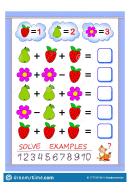
Introdução à Complexidade Computacional Parte 1

Professor Murilo V. G. da Silva

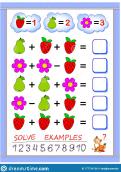
Departamento de Informática Universidade Federal do Paraná

2025 / 2

Alguns problemas são mais difíceis que outros?



Alguns problemas são mais difíceis que outros?

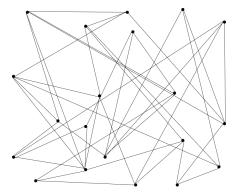


6 dreamstime.com

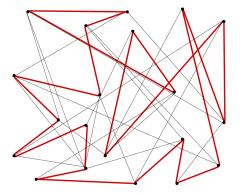
Dado (x, y, z), é verdade que x + y = z?

Existe xeque-mate garantido para as brancas?

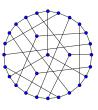
Considere o problema do Grafo Hamiltoniano:



Considere o problema do Grafo Hamiltoniano:



Decisão polinomial vs Verificação polinomial vs Exponencial



Grafo Hamiltoniano

Xadrez Generalizado

Classes de Complexidade

Exponencial é ruim?

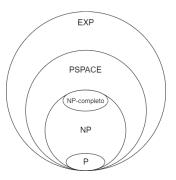
Classes de Complexidade

Exponencial é ruim? Explicação visual:

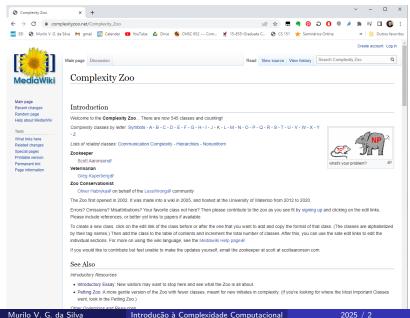
Figura: Barak & Arora, pág. 5

Classes de Complexidade

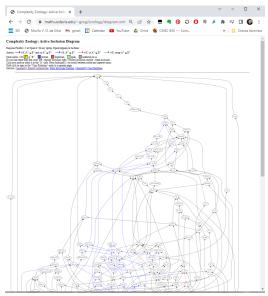
Algumas classes de complexidade que vamos estudar:



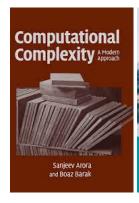
Existem muito mais classes de complexidade!



Existem muito mais classes de complexidade!



Livros especializados na área



Barak/Arora

Goldreich

Papadimitriou

- (1) Dados dois números inteiros, calcular a soma dos dois números;
- (2) Dado um tabuleiro de xadrez em que as peças brancas têm a vez de jogar, determinar a jogada ótima para as peças brancas.

- (1) Dados dois números inteiros, calcular a soma dos dois números;
- (2) Dado um tabuleiro de xadrez em que as peças brancas têm a vez de jogar, determinar a jogada ótima para as peças brancas.
 - Parece "óbvio" que encontrar z, tal que z = x + y é um problema simples.

- (1) Dados dois números inteiros, calcular a soma dos dois números;
- (2) Dado um tabuleiro de xadrez em que as peças brancas têm a vez de jogar, determinar a jogada ótima para as peças brancas.
 - Parece "óbvio" que encontrar z, tal que z = x + y é um problema simples.
 - Porém, z tem pelo menos 64 dígitos

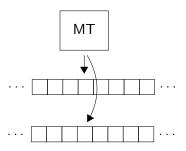
- (1) Dados dois números inteiros, calcular a soma dos dois números;
- (2) Dado um tabuleiro de xadrez em que as peças brancas têm a vez de jogar, determinar a jogada ótima para as peças brancas.
 - Parece "óbvio" que encontrar z, tal que z = x + y é um problema simples.
- Porém, z tem pelo menos 64 dígitos (existem 10^{64} números com o tamanho de z).

- (1) Dados dois números inteiros, calcular a soma dos dois números;
- (2) Dado um tabuleiro de xadrez em que as peças brancas têm a vez de jogar, determinar a jogada ótima para as peças brancas.
 - Parece "óbvio" que encontrar z, tal que z = x + y é um problema simples.
 - Porém, z tem pelo menos 64 dígitos (existem 10^{64} números com o tamanho de z).
 - Mais importante: Somar com n dígitos vs "xadrez generalizado" $(n \times n)$.

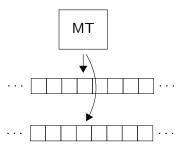
- (1) Dados dois números inteiros, calcular a soma dos dois números;
- (2) Dado um tabuleiro de xadrez em que as peças brancas têm a vez de jogar, determinar a jogada ótima para as peças brancas.
 - Parece "óbvio" que encontrar z, tal que z = x + y é um problema simples.
- Porém, z tem pelo menos 64 dígitos (existem 10^{64} números com o tamanho de z).
- Mais importante: Somar com n dígitos vs "xadrez generalizado" $(n \times n)$.
- Obs: N\u00e3o confundir problemas indecid\u00edveis com problemas intrat\u00e1veis.

Máquina de Turing com fita de entrada (apenas para leitura) e uma fita de trabalho.

Máquina de Turing com fita de entrada (apenas para leitura) e uma fita de trabalho.

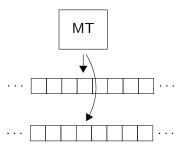


Máquina de Turing com fita de entrada (apenas para leitura) e uma fita de trabalho.



Neste modelo quando escrevemos M(x) = y queremos dizer:

Máquina de Turing com fita de entrada (apenas para leitura) e uma fita de trabalho.



Neste modelo quando escrevemos M(x) = y queremos dizer:

ullet Quando x é colocada na primeira fita, a máquina termina com y na segunda fita.

Seja M uma MT,

Seja M uma MT,

Complexidade de tempo

A complexidade de tempo de M

Seja M uma MT,

Complexidade de tempo

A complexidade de tempo de M é uma função $t_{\mathrm{M}}:\mathbb{N}\to\mathbb{N}$ tal que, para qualquer entrada de tamanho n,

Seja M uma MT,

Complexidade de tempo

A complexidade de tempo de M é uma função $t_M: \mathbb{N} \to \mathbb{N}$ tal que, para qualquer entrada de tamanho n, M para depois de executar no máximo $t_M(n)$ transições.

Seja M uma MT,

Complexidade de tempo

A complexidade de tempo de M é uma função $t_M: \mathbb{N} \to \mathbb{N}$ tal que, para qualquer entrada de tamanho n, M para depois de executar no máximo $t_M(n)$ transições.

Exemplo: Considere a MT $M_{\rm SOMA}$ para somar que vimos anteriormente.

Seja M uma MT,

Complexidade de tempo

A complexidade de tempo de M é uma função $t_M: \mathbb{N} \to \mathbb{N}$ tal que, para qualquer entrada de tamanho n, M para depois de executar no máximo $t_M(n)$ transições.

Exemplo: Considere a MT $M_{
m SOMA}$ para somar que vimos anteriormente.

 Para qualquer entrada de tamanho n, M_{SOMA} sempre para depois de fazer, no máximo, 2n + 1 transições.

Seja M uma MT,

Complexidade de tempo

A complexidade de tempo de M é uma função $t_M: \mathbb{N} \to \mathbb{N}$ tal que, para qualquer entrada de tamanho n, M para depois de executar no máximo $t_M(n)$ transições.

Exemplo: Considere a MT M_{SOMA} para somar que vimos anteriormente.

- Para qualquer entrada de tamanho n, M_{SOMA} sempre para depois de fazer, no máximo, 2n + 1 transicões.
- Portanto, a complexidade de tempo de M_{SOMA} é a função $t_{M_{\text{SOMA}}}(n) = 2n + 1$.

Seja M uma MT,

Complexidade de tempo

A complexidade de tempo de M é uma função $t_M: \mathbb{N} \to \mathbb{N}$ tal que, para qualquer entrada de tamanho n, M para depois de executar no máximo $t_M(n)$ transições.

Exemplo: Considere a MT M_{SOMA} para somar que vimos anteriormente.

- Para qualquer entrada de tamanho n, M_{SOMA} sempre para depois de fazer, no máximo, 2n + 1 transicões.
- lacktriangle Portanto, a complexidade de tempo de $M_{
 m SOMA}$ é a função $t_{M_{
 m SOMA}}(n)=2n+1.$

Simplificando, dizemos " M_{SOMA} tem complexidade de tempo 2n + 1"

Seja M uma MT,

Seja M uma MT,

Complexidade de espaço

A complexidade de espaço de M

Seja M uma MT,

Complexidade de espaço

A complexidade de espaço de M é uma função $s_{\mathrm{M}}:\mathbb{N} \to \mathbb{N}$

Seja M uma MT,

Complexidade de espaço

A complexidade de espaço de M é uma função $s_{\mathrm{M}}:\mathbb{N}\to\mathbb{N}$ tal que, para qualquer entrada de tamanho n,

Seja M uma MT,

Complexidade de espaço

A complexidade de espaço de M é uma função $s_M: \mathbb{N} \to \mathbb{N}$ tal que, para qualquer entrada de tamanho n, M para usando no máximo $s_M(n)$ posições da fita 2.

Complexidade de Espaço de Máquinas de Turing

Seja M uma MT,

Complexidade de espaço

A complexidade de espaço de M é uma função $s_M: \mathbb{N} \to \mathbb{N}$ tal que, para qualquer entrada de tamanho n, M para usando no máximo $s_M(n)$ posições da fita 2.

Exemplo:

Complexidade de Espaço de Máquinas de Turing

Seja M uma MT,

Complexidade de espaço

A complexidade de espaço de M é uma função $s_M:\mathbb{N}\to\mathbb{N}$ tal que, para qualquer entrada de tamanho n, M para usando no máximo $s_M(n)$ posições da fita 2.

Exemplo: Suponha uma MT M tal que para toda entrada de tamanho n, M sempre para usando no máximo $\log n + 7$ posições da fita 2.

Complexidade de Espaço de Máquinas de Turing

Seja M uma MT,

Complexidade de espaço

A complexidade de espaço de M é uma função $s_M: \mathbb{N} \to \mathbb{N}$ tal que, para qualquer entrada de tamanho n, M para usando no máximo $s_M(n)$ posições da fita 2.

Exemplo: Suponha uma MT M tal que para toda entrada de tamanho n, M sempre para usando no máximo log n+7 posições da fita 2.

Neste caso dizemos que a complexidade de espaço de M é $\log n + 7$.

Notação: Se $f(n) = O(n^r)$ para algum $r \in \mathbb{N}$ constante,

Notação: Se $f(n) = O(n^r)$ para algum $r \in \mathbb{N}$ constante, então dizemos que f(n) = poli(n).

Notação: Se $f(n) = O(n^r)$ para algum $r \in \mathbb{N}$ constante, então dizemos que f(n) = poli(n).

Se M tem complexidade de tempo poli(n), então dizemos que M é polinomial.

Notação: Se $f(n) = O(n^r)$ para algum $r \in \mathbb{N}$ constante, então dizemos que f(n) = poli(n).

Se M tem complexidade de tempo poli(n), então dizemos que \underline{M} é polinomial.

Se M tem complexidade de espaço poli(n), dizemos que M é de espaço polinomial.

Notação: Se $f(n) = O(n^r)$ para algum $r \in \mathbb{N}$ constante, então dizemos que f(n) = poli(n).

Se M tem complexidade de tempo poli(n), então dizemos que \underline{M} é polinomial.

Se M tem complexidade de espaço poli(n), dizemos que M é de espaço polinomial.

MTNs polinomiais:

Notação: Se $f(n) = O(n^r)$ para algum $r \in \mathbb{N}$ constante, então dizemos que f(n) = poli(n).

Se M tem complexidade de tempo poli(n), então dizemos que \underline{M} é polinomial.

Se M tem complexidade de espaço poli(n), dizemos que M é de espaço polinomial.

MTNs polinomiais: <u>todos os ramos</u> da árvore de computações possíveis tem profundidade poli(n).

Notação: Se $f(n) = O(n^r)$ para algum $r \in \mathbb{N}$ constante, então dizemos que f(n) = poli(n).

Se M tem complexidade de tempo poli(n), então dizemos que M é polinomial.

Se M tem complexidade de espaço poli(n), dizemos que M é de espaço polinomial.

MTNs polinomiais: <u>todos os ramos</u> da árvore de computações possíveis tem profundidade poli(n).

Note: Independente das escolhas não determinísticas, ela sempre faz poli(n) transições

Seja L um problema de decisão.

Seja L um problema de decisão.

 Se existe uma MT polinomial que decide L, então dizemos que L é decidível em tempo polinomial

Seja *L* um problema de decisão.

- Se existe uma MT polinomial que decide L, então dizemos que L é decidível em tempo polinomial
- Se existe uma MTN polinomial que decide L, então dizemos que L é decidível em tempo polinomial não determinístico

Seja *L* um problema de decisão.

- Se existe uma MT polinomial que decide L, então dizemos que L é decidível em tempo polinomial
- Se existe uma MTN polinomial que decide L, então dizemos que L é decidível em tempo polinomial não determinístico

Seja *L* um problema de decisão.

- Se existe uma MT polinomial que decide L, então dizemos que L é decidível em tempo polinomial
- Se existe uma MTN polinomial que decide L, então dizemos que L é decidível em tempo polinomial não determinístico

Ver no livro definições para problemas decidíveis em:

Seja *L* um problema de decisão.

- Se existe uma MT polinomial que decide L, então dizemos que L é decidível em tempo polinomial
- Se existe uma MTN polinomial que decide L, então dizemos que L é decidível em tempo polinomial não determinístico

Ver no livro definições para problemas decidíveis em:

espaço polinomial;

Seja L um problema de decisão.

- Se existe uma MT polinomial que decide L, então dizemos que L é decidível em tempo polinomial
- Se existe uma MTN polinomial que decide L, então dizemos que L é decidível em tempo polinomial não determinístico

Ver no livro definições para problemas decidíveis em:

- espaço polinomial;
- espaço polinomial não determinístico;

Seja *L* um problema de decisão.

- Se existe uma MT polinomial que decide L, então dizemos que L é decidível em tempo polinomial
- Se existe uma MTN polinomial que decide L, então dizemos que L é decidível em tempo polinomial não determinístico

Ver no livro definições para problemas decidíveis em:

- espaço polinomial;
- espaço polinomial não determinístico;
- tempo exponencial.

A classe P: problemas decidíveis em tempo polinomial.

A classe P: problemas decidíveis em tempo polinomial.

A classe NP: problemas decidíveis em tempo polinomial não determinístico.

A classe P: problemas decidíveis em tempo polinomial.

A classe NP: problemas decidíveis em tempo polinomial não determinístico.

A classe **EXP**: problemas decidíveis em tempo exponencial.

A classe P: problemas decidíveis em tempo polinomial.

A classe NP: problemas decidíveis em tempo polinomial não determinístico.

A classe **EXP**: problemas decidíveis em tempo exponencial.

A classe **PSPACE**: problemas decidíveis em espaço polinomial.

Teorema: $P \subseteq NP$

 $\textbf{Teorema:}\ P\subseteq NP$

 ${\color{red}\textbf{Teorema:}}\ P\subseteq NP$

Prova: Seja $L \in P$.

1 Existe uma MT polinomial $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ que decide L.

$\textcolor{red}{\textbf{Teorema:}}\ P\subseteq NP$

- 1 Existe uma MT polinomial $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ que decide L.
- 2 Agora considere a Máquina de Turing não determinística $N = (Q, \Sigma, \Gamma, (\delta, \delta), q_0, B, F)$.

$\textcolor{red}{\textbf{Teorema:}}\ P\subseteq NP$

- 1 Existe uma MT polinomial $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ que decide L.
- 2 Agora considere a Máquina de Turing não determinística $N = (Q, \Sigma, \Gamma, (\delta, \delta), q_0, B, F)$.
- 3 A máquina N comporta-se exatamente da mesma maneira que M, portanto N também decide L em tempo polinomial.

$\textbf{Teorema:}\ P\subseteq NP$

- 1 Existe uma MT polinomial $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ que decide L.
- 2 Agora considere a Máquina de Turing não determinística $N = (Q, \Sigma, \Gamma, (\delta, \delta), q_0, B, F)$.
- 3 A máquina N comporta-se exatamente da mesma maneira que M, portanto N também decide L em tempo polinomial.
- 4 Logo $L \in NP$ e consquentemente $P \subseteq NP$.

$\textcolor{red}{\textbf{Teorema:}}\ P\subseteq NP$

- 1 Existe uma MT polinomial $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ que decide L.
- 2 Agora considere a Máquina de Turing não determinística $N = (Q, \Sigma, \Gamma, (\delta, \delta), q_0, B, F)$.
- 3 A máquina N comporta-se exatamente da mesma maneira que M, portanto N também decide L em tempo polinomial.
- 4 Logo $L \in NP$ e consquentemente $P \subseteq NP$.
- Problema em aberto: $P \neq NP$?

Teorema: $P \subseteq NP$

- 1 Existe uma MT polinomial $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ que decide L.
- 2 Agora considere a Máquina de Turing não determinística $N = (Q, \Sigma, \Gamma, (\delta, \delta), q_0, B, F)$.
- 3 A máquina N comporta-se exatamente da mesma maneira que M, portanto N também decide L em tempo polinomial.
- 4 Logo $L \in NP$ e consquentemente $P \subseteq NP$.
- Problema em aberto: $P \neq NP$? (i.e., é verdade que $P \subseteq NP$?)
- E PSPACE e NPSPACE?

Teorema: $P \subseteq NP$

Prova: Seja $L \in P$.

- 1 Existe uma MT polinomial $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ que decide L.
- 2 Agora considere a Máquina de Turing não determinística $N = (Q, \Sigma, \Gamma, (\delta, \delta), q_0, B, F)$.
- 3 A máquina N comporta-se exatamente da mesma maneira que M, portanto N também decide L em tempo polinomial.
- 4 Logo $L \in NP$ e consquentemente $P \subseteq NP$.
- Problema em aberto: $P \neq NP$?

(i.e., \acute{e} verdade que P \subsetneq NP?)

E PSPACE e NPSPACE?

(vejam em Tópicos em Complexidade: PSPACE = NPSPACE)

Teorema: $P \subseteq NP$

Prova: Seja $L \in P$.

- 1 Existe uma MT polinomial $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ que decide L.
- 2 Agora considere a Máquina de Turing não determinística $N = (Q, \Sigma, \Gamma, (\delta, \delta), q_0, B, F)$.
- 3 A máquina N comporta-se exatamente da mesma maneira que M, portanto N também decide L em tempo polinomial.
- 4 Logo $L \in NP$ e consquentemente $P \subseteq NP$.
- Problema em aberto: $P \neq NP$?

(i.e., \acute{e} verdade que P \subsetneq NP?)

• E PSPACE e NPSPACE?

(vejam em Tópicos em Complexidade: PSPACE = NPSPACE)

Teorema: $P \subseteq NP \subseteq PSPACE \subseteq EXP$

Teorema: $P \subseteq NP$

Prova: Seja $L \in P$.

- 1 Existe uma MT polinomial $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ que decide L.
- 2 Agora considere a Máquina de Turing não determinística $N = (Q, \Sigma, \Gamma, (\delta, \delta), q_0, B, F)$.
- 3 A máquina N comporta-se exatamente da mesma maneira que M, portanto N também decide L em tempo polinomial.
- 4 Logo $L \in NP$ e consquentemente $P \subseteq NP$.
- Problema em aberto: $P \neq NP$?

(i.e., \acute{e} verdade que $P \subsetneq NP$?)

• E PSPACE e NPSPACE?

(vejam em Tópicos em Complexidade: PSPACE = NPSPACE)

Teorema: $P \subseteq NP \subseteq PSPACE \subseteq EXP$

Prova: (opcional)

Teorema: $P \subseteq NP$

Prova: Seja $L \in P$.

- 1 Existe uma MT polinomial $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ que decide L.
- 2 Agora considere a Máquina de Turing não determinística $N = (Q, \Sigma, \Gamma, (\delta, \delta), q_0, B, F)$.
- 3 A máquina N comporta-se exatamente da mesma maneira que M, portanto N também decide L em tempo polinomial.
- 4 Logo $L \in NP$ e consquentemente $P \subseteq NP$.
- Problema em aberto: $P \neq NP$?

(i.e., \acute{e} verdade que P \subsetneq NP?)

• E PSPACE e NPSPACE?

(vejam em Tópicos em Complexidade: PSPACE = NPSPACE)

Teorema: $P \subseteq NP \subseteq PSPACE \subseteq EXP$

Prova: (opcional)

Teorema: $P \subseteq NP$

Prova: Seja $L \in P$.

- 1 Existe uma MT polinomial $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ que decide L.
- 2 Agora considere a Máquina de Turing não determinística $N = (Q, \Sigma, \Gamma, (\delta, \delta), q_0, B, F)$.
- 3 A máquina N comporta-se exatamente da mesma maneira que M, portanto N também decide L em tempo polinomial.
- 4 Logo $L \in NP$ e consquentemente $P \subseteq NP$.
- Problema em aberto: $P \neq NP$?

(i.e., \acute{e} verdade que $P \subsetneq NP$?)

• E PSPACE e NPSPACE?

(vejam em Tópicos em Complexidade: PSPACE = NPSPACE)

Teorema: $P \subseteq NP \subseteq PSPACE \subseteq EXP$

Prova: (opcional)

• É verdade que NP \subsetneq PSPACE? (problema em aberto)

Teorema: $P \subseteq NP$

Prova: Seja $L \in P$.

- 1 Existe uma MT polinomial $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ que decide L.
- 2 Agora considere a Máquina de Turing não determinística $N = (Q, \Sigma, \Gamma, (\delta, \delta), q_0, B, F)$.
- 3 A máquina N comporta-se exatamente da mesma maneira que M, portanto N também decide L em tempo polinomial.
- 4 Logo $L \in NP$ e consquentemente $P \subseteq NP$.
- Problema em aberto: $P \neq NP$?

(i.e., \acute{e} verdade que $P \subsetneq NP$?)

E PSPACE e NPSPACE?

(vejam em Tópicos em Complexidade: PSPACE = NPSPACE)

Teorema: $P \subseteq NP \subseteq PSPACE \subseteq EXP$

Prova: (opcional)

- É verdade que NP \subsetneq PSPACE? (problema em aberto)
- É verdade que PSPACE Ç EXP?

Teorema: $P \subseteq NP$

Prova: Seja $L \in P$.

- 1 Existe uma MT polinomial $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ que decide L.
- 2 Agora considere a Máquina de Turing não determinística $N = (Q, \Sigma, \Gamma, (\delta, \delta), q_0, B, F)$.
- 3 A máquina N comporta-se exatamente da mesma maneira que M, portanto N também decide L em tempo polinomial.
- 4 Logo $L \in NP$ e consquentemente $P \subseteq NP$.
- Problema em aberto: $P \neq NP$?

(i.e., \acute{e} verdade que $P \subsetneq NP$?)

• E PSPACE e NPSPACE?

(vejam em Tópicos em Complexidade: PSPACE = NPSPACE)

Teorema: $P \subseteq NP \subseteq PSPACE \subseteq EXP$

Prova: (opcional)

- É verdade que NP \subsetneq PSPACE? (problema em aberto)
- É verdade que PSPACE ⊊ EXP? (problema em aberto)

Teorema: $P \subseteq NP$

Prova: Seja $L \in P$.

- 1 Existe uma MT polinomial $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ que decide L.
- 2 Agora considere a Máquina de Turing não determinística $N = (Q, \Sigma, \Gamma, (\delta, \delta), q_0, B, F)$.
- 3 A máquina N comporta-se exatamente da mesma maneira que M, portanto N também decide L em tempo polinomial.
- 4 Logo $L \in NP$ e consquentemente $P \subseteq NP$.
- Problema em aberto: $P \neq NP$?

(i.e., \acute{e} verdade que P \subsetneq NP?)

• E PSPACE e NPSPACE?

(vejam em Tópicos em Complexidade: PSPACE = NPSPACE)

Teorema: $P \subseteq NP \subseteq PSPACE \subseteq EXP$

Prova: (opcional)

- É verdade que NP \subsetneq PSPACE? (problema em aberto)
- É verdade que PSPACE \subsetneq EXP? (problema em aberto)

(vejam em Tópicos em Complexidade: P \subsetneq EXP)

