Introdução à Teoria da Computação Computabilidade

Professor Murilo V. G. da Silva

Departamento de Informática Universidade Federal do Paraná

2025 / 2

Detalhes de "baixo nível" em MTs

- Algoritmos podem tomar como entrada números, grafos, árvores, etc
 MTs apenas tomam strings binárias como entrada!
- Precisamos codificar a entrada como strings binárias

Exemplo: Seja G = (V, E), onde $V = \{v_1, v_2, v_3\}$ e $E = \{v_1v_2, v_1v_3\}$ um grafo.

Como a matriz de adjacência deste grafo é $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, então podemos usar a seguinte string para representar o grafo: 011100100.

esquema de codificação utilizado aqui: concatenação das linhas da matriz

Notação: Dado um objeto matemático S,

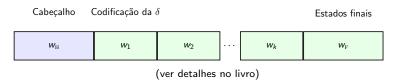
a notação LS_{\perp} se refere a string que representa a codificação de S em binário.

• No exemplo acima, $\lfloor G \rfloor = 011100100$.

Ponto chave: Máquinas de Turing também podem ser representadas em binário

Detalhes de "baixo nível" em MTs

Exercício: Defina esquema de codificação para Máquinas de Turing:



• Exercício: Mostre qual é a string $\lfloor M_{01} \rfloor$ (M_{01} é o exemplo da primeira aula sobre MTs)

Mais detalhes de "baixo nível" para Máquinas de Turing:

Notação: Se uma MT toma múltiplas strings de entrada $(x_1, x_2, x_3, ..., x_n)$, usaremos tanto a notação $M(x_1, x_2, ..., x_n)$ quanto a notação $M(x_1x_2x_3....x_n)$.

Funções booleanas computáveis

Execução de um Algoritmo pode ser vista como uma computação de uma função booleana

Seja $f:\{0,1\}^* \to \{0,1\}$ uma função booleana.

Se existe um algoritmo M_f tal que:

- Se f(x) = 1, então M_f aceita x;
- Se f(x) = 0, então M_f rejeita x

Neste caso dizemos que f é uma função booleana computável.

Funções booleanas computáveis

Agora considere a seguinte notação:

Notação: Suponha que uma string binária x é fornecida como entrada para uma MT M,

Neste caso escreveremos:

- M(x) = 1 quando M aceita x e para.
- M(x) = 0 quando M rejeita x e para.
- M(x) = LOOP quando M não para com a entrada x.
- M(x) = PARA quando M para com a entrada x.

Observações elementares:

- (i) M(x) = PARA, então M(x) = 0 ou M(x) = 1.
- (ii) Se M é um algoritmo, então $\forall x \in \Sigma^*$, temos que M(x) = PARA.
- (iii) Se f é uma função booleana computável, então, por definição, $\exists M$ tal que $\forall x \in \Sigma^*$ temos M(x) = f(x).

Funções computáveis

Notação: Dada uma MT $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ e $X \in \Sigma^*$. Escrevemos M(X) = Y

• no caso em que $(\epsilon, q_0, \mathbf{x}) \vdash_M^* (y', q_P, y'')$ tal que y = y'y'' e M para quando atinje a configuração (y', q_P, y'') .

(ver no livro: ambiguidade da notação)

- Exemplo: máquina M_{COPY} que duplica string: $M_{\text{COPY}}(x) = xx$ (exercício do livro)
- Exemplo: máquina M_{SOMA} : $M_{\text{SOMA}}(1010,0010) = 1100$ (exercício do livro)
- Exemplo: Dados $a,b\in\mathbb{Z}$, máquina tal que $M(\llcorner a\lrcorner, \llcorner b\lrcorner) = \llcorner a + b\lrcorner$

Função computável: Uma função $f: \Sigma^* \to \Sigma^*$ para a qual existe uma MT M tal que $\forall x \in \Sigma^*$, M(x) = f(x), é denominada uma função computável.

Note que uma função booleana computável é um caso particular de uma função computável.

Def. O problema da parada é definido pela linguagem

$$L_{\mathrm{H}} = \{ \lfloor M \rfloor \times : \text{ tal que } M \text{ \'e uma MT, } x \in \Sigma^* \text{ e } M(x) = _{\mathrm{PARA}} \}.$$

O que significaria resolver o problema da parada? Mostrar uma MT $M_{
m H}$ que decide $L_{
m H}$.

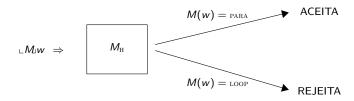
Ou seja, uma MT $M_{\rm H}$ que tome ($\lfloor M \rfloor$, \times) como entrada e faça:

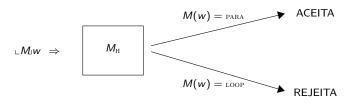
- Se M(x) = PARA, então $M_H(LM L, x) = 1$.
- Se M(x) = LOOP, então $M_H(LM J, x) = 0$.

Teorema da Parada: Não existe algoritmo que decide a linguagem $L_{\rm H}$.

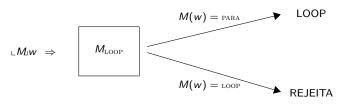
Suponha que exista uma Máquina de Turing $M_{\rm H}$ que decida $L_{\rm H}$.

Portanto $M_{\rm H}$ se comporta assim:



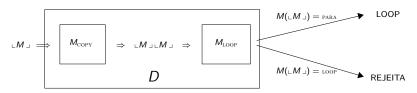


Se $M_{\rm H}$ existe, então $M_{
m LOOP}$ (abaixo) deve existir:



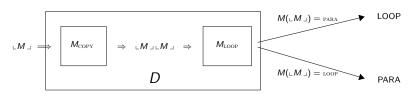
Agora vamos construir uma MT D da seguinte forma

- D é a combinação de duas MTs distintas:
 - uma máquina M_{COPY} , que duplica a string de entrada: $M_{\text{COPY}}(w) = ww$
 - ullet a máquina $M_{
 m LOOP}$ do slide anterior

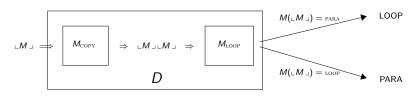


Agora vamos construir uma MT D da seguinte forma

- D é a combinação de duas MTs distintas:
 - uma máquina M_{COPY} , que duplica a string de entrada: $M_{\text{COPY}}(w) = ww$
 - ullet a máquina $M_{
 m LOOP}$ do slide anterior

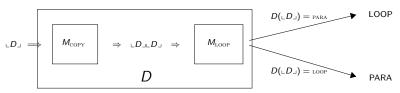


O comportamento de D com a entrada $\lfloor M \rfloor$ é o seguinte: $D(\lfloor M \rfloor) = \text{LOOP} \Leftrightarrow M(\lfloor M \rfloor) = \text{PARA}$.



Lembrando: $D(LOOP \Leftrightarrow M(LM) = PARA.$

O que acontece quando fornecemos $\lfloor D \rfloor$ como entrada para a máquina D?



Ou seja, $D(\llcorner D \lrcorner) = {}_{\mathsf{PARA}} \Leftrightarrow D(\llcorner D \lrcorner) = {}_{\mathsf{LOOP}}.$ Contradição, logo M_H não existe.

A Máquina de Turing Universal

Considere uma MT \mathcal{U} que toma como entrada: uma máquina M e uma string x obs: a rigor, a entrada de \mathcal{U} é ($\lfloor M \rfloor$, x)

- $\mathcal U$ deve simular o comportamento de M(x) ($\mathcal U$ deve "executar" o programa M com a entrada x)
 - Ou seja, o resultado de $\mathcal{U}(\lfloor M \rfloor, x)$ deve ser o mesmo da computação de M(x) (incluindo o caso em que M(x) = Loop, quando \mathcal{U} deve ficar em "loop infinito").
 - Também deve valer no caso M computar funções não booleanas Se M(x) = y, então $\mathcal{U}(\lfloor M \rfloor, x) = y$
- A primeira pergunta que devemos fazer: a máquina $\mathcal U$ existe?

Teorema: Existe uma MT \mathcal{U} tal que \forall MT M e $\forall x \in \Sigma^*$, temos $\mathcal{U}(\sqcup M \sqcup, x) = M(x)$.

A Máquina de Turing Universal

Teorema: Existe uma MT \mathcal{U} tal que \forall MT M e $\forall x \in \Sigma^*$, temos $\mathcal{U}(\llcorner M \lrcorner, x) = M(x)$.

Idéia da Prova: A 7-tupla $\mathcal U$ é razoavelmente grande e complicada, mas ideia geral nem tanto.

Esboço de uma MT \mathcal{U}_3 com 3 fitas para a tarefa desejada: (Pela equivalência entre uma e k fitas, \mathcal{U}_3 existe $\Rightarrow \mathcal{U}$ existe)

- Pré-processamento: $\lfloor M \rfloor$ deve ficar na primeira fita de \mathcal{U}_3 e x na segunda.
 - Fita 1: de \mathcal{U}_3 : mantemos intacta a descrição do programa M que será executado
 - Fita 2 de \mathcal{U}_3 : exato conteúdo da fita de M a cada passo
 - Fita 3: de \mathcal{U}_3 : estado de M a cada passo (um número em binário)
- A cada "ciclo" de U₃ (isso leva um certo número de transições)
 U₃ simula um passo de M e atualiza a fita 2 para estar como a fita (única) de M. (inclusive, o cabeçote da fita 2, fica posicionado na célula correta)
 - Caso M atingir estado final: \mathcal{U}_3 vai para estado final (algum cuidado deve ser tomado para que \mathcal{U} pare com a string correta na fita)
 - Caso M não tenha uma transição definida em $q \in Q \setminus F$: \mathcal{U}_3 irá para um estado não final sem nenhuma transição definda
 - Caso M fique em loop: U₃ vai simplesmente continuar simulando M indefinidamente também

O problema da parada mais uma vez

Teorema: L_H é recursivamente enumerável.

Prova: A partir da MT universal \mathcal{U} , podemos construir uma MT que aceite $L_{\rm H}$ (exercício do livro)

Corolário: $\mathcal{R} \subsetneq \mathcal{RE}$.

Prova: Consequência do teorema acima e de $\mathcal{R} \subseteq \mathcal{RE}$ (exercício do livro).

Teorema: Existe L tal que $L \notin \mathcal{RE}$.

Prova: O complemento de $L_{\rm H}$ não está em \mathcal{RE} . (exercício do livro)

Máquinas de Turing ou Pseudocódigo?

Considere o problema de testar por um número primo

- Com algum trabalho podemos projetar uma MT que faz isso
- Mas em geral NÃO vamos fazer isso.

Vamos apresentar um pseudocódigo, como abaixo:

```
Primo: (N)
```

- 1: if N=1 then
- 2: Retorna Falso
- 3: for i = 2; $i < \sqrt{N}$; i++ do
- 4: **if** $N \mod i = 0$ **then**
- 5: Retorna Falso
- 6: Retorna Verdadeiro

Mais adiante vamos provar que MTs e programas escritos em assembly são equivalentes

- Programas escritos em C, C++, Python, etc são equivalentes a programas em assembly (isso vale para qualquer linguagem)
- Programas em pseudocódigo também (desde que o pseudocódigo seja escrito de maneira rigorosa)

Quando usar MTs e quando usar pseudocódigo? (ver discussão no livro)

MTs não determinísticas

Máquina de Turing não determinística (MTN): uma 7-tupla $N = (Q, \Sigma, \Gamma, (\delta_0, \delta_1), q_0, B, F)$.

- $Q, \Sigma, \Gamma, q_0, B, F$ iguais à definição de MTs;
- Um par (δ₀, δ₁) de funções de transição, (sendo cada uma delas idêntica à funções de MT determinísticas)

Funcionamento da máquina: A cada passo, a máquina advinha qual função usar

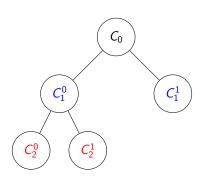
• Existem outras definições para MTNs, e.g.,uma única função $\delta(p,X)$ que devolve um conjunto de triplas

$$\{(q_1, Y_1, D_1), (q_2, Y_2, D_2), ..., (q_k, Y_k, D_k)\}$$

Uma configuração de uma MTN: uma tripla (α, q, β) (análogo à MTs)

- Passos computacionais definidos de maneira análoga também
- Porém, existe uma Árvore de computações possíveis:
 - ⇒ árvore de configurações

Árvore de computações possíveis



Neste exemplo:

- Configuração inicial da máquina: C₀
- $\exists C_1^0 \in C_1^1$ tal que as duas possibilidades são válidas: $C_0 \vdash_N C_1^0 \in C_0 \vdash_N C_1^1$.
- $\exists C_2^0 \in C_2^1$ tal que $C_1^0 \vdash_N C_2^0 \in C_1^0 \vdash_N C_2^1$.
- Configurações em que a máquina para: C_2^0 , C_2^1 e C_1^1 (não necessariamente finais)

Computação não determinística

Def.: Linguagem de uma MTN N, denotado L(N) (ver livro)

Teorema: Se L é aceita por uma MTN N, então $\forall x \in L$, a árvore de computações possíveis de N com x tem pelo menos um ramo finito.

Prova: Se $x \in L(N)$, existe configuração final C_F tal que $(\epsilon, q_0, x) \vdash_N^* C_F$.

Teorema: Se N é uma MTN, então existe uma MT M tal que L(N) = L(M).

Prova: Busca em largura na árvore de computações possíveis (detalhes no livro)

Teorema: Se M é uma MT, então existe uma MTN N tal que L(M) = L(N).

Prova: Seja $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$

• Faça $N = (Q, \Sigma, \Gamma, (\delta, \delta), q_0, B, F)$