Introdução à Teoria da Computação Gramáticas - Parte 2

Professor Murilo V. G. da Silva

Departamento de Informática Universidade Federal do Paraná

2025/2

Produção de strings: formalizando

Produção de string (um passo)

Seja G = (V, T, P, S) uma gramática.

- Seja uma string $\alpha A\beta$ onde $A \in V$ e $\alpha, \beta \in (V \cup T)^*$.
- Seja $A \rightarrow \gamma$ uma regra de P.

Dizemos que $\alpha A\beta$ produz em um passo $\alpha\gamma\beta$ em G.

Notação: $\alpha A\beta \Rightarrow_{\alpha} \alpha \gamma \beta$ (por conveniência, às vezes escrevemos $\alpha A\beta \Rightarrow \alpha \gamma \beta$)

• Exemplo: Na gramática das expressões aritméticas, temos $a * (I+E) \Rightarrow a * (a+E)$

Produção de string (múltiplos passos)

Seja G = (V, T, P, S) uma gramática. Sejam $\alpha, \beta \in (V \cup T)^*$,

Exercício: Leia no livro a definição para $\alpha \Rightarrow_{\mathsf{G}}^* \beta$

Novamente, por conveniência, às vezes escrevemos $\alpha \Rightarrow \beta$.

• Exemplo: Na gramática das expressões aritméticas, temos $E \Rightarrow^* a * (a + b00)$

Linguagens de gramáticas e APs

Linguagem de uma gramática

Dada uma gramática G = (V, T, P, S), a linguagem de G é

$$\textit{L(G)} = \{ \textcolor{red}{\textit{w}} \in \textit{T}^* \ : \ \textcolor{red}{\textit{S}} \Rightarrow_{_{\!\!\!\!\!G}}^* \textcolor{red}{\textit{w}} \}.$$

• Dizemos que a linguagem L é gerada por G se L = L(G).

Teorema: Uma linguagem L é livre de contexto $\Leftrightarrow \exists$ uma gramática G tal que L = L(G).

Ideia da prova: Argumentar que $w \in L(G) \Leftrightarrow$ existe uma AP P tal que $w \in N(P)$.

Relembrando a gramática anterior:

$$G_{\text{EX}} = (\{I, E\}, \{a, b, 0, 1, +, *, (,)\}, A_1, E)$$
 tal que as regras de A_1 são:

$$E \rightarrow I|E + E|E * E|(E)$$

 $I \rightarrow a|b|Ia|Ib|I0|I1$

Vamos derivar $E + E \Rightarrow$

Qual variável escolher para aplicar regra?
$$E + E \Rightarrow I + E$$

 $E + E \Rightarrow E + I$

Produzindo a + b de duas maneiras diferentes:

(i)
$$E \Rightarrow E + E \Rightarrow I + E \Rightarrow a + E \Rightarrow a + I \Rightarrow a + b$$

(ii)
$$E \Rightarrow E + E \Rightarrow E + I \Rightarrow I + I \Rightarrow a + I \Rightarrow a + b$$

A string pode ser produzida por várias derivações diferentes

Uma derivação de uma gramática G = (V, T, P, S) é uma sequência de passos

$$\alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \Rightarrow \alpha_k$$

sendo $S = \alpha_1$ e cada $\alpha_i \Rightarrow \alpha_{i+1}$ é uma produção válida na gramática G.

Duas derivações diferentes de a + b * c:

$$E\Rightarrow E+E\Rightarrow E+E*E\Rightarrow E+E*I\Rightarrow E+E*c\Rightarrow I+E*c\Rightarrow a+E*c\Rightarrow a+I*c\Rightarrow a+b*c$$

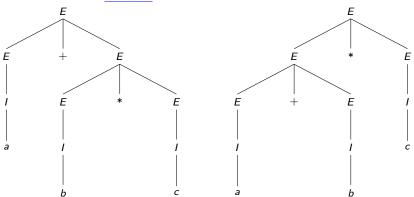
$$E\Rightarrow E*E\Rightarrow E+E*E\Rightarrow E+E*I\Rightarrow E+E*c\Rightarrow I+E*c\Rightarrow a+E*c\Rightarrow a+I*c\Rightarrow a+b*c$$

Duas derivações diferentes de a + b * c:

$$E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow E + E * I \Rightarrow E + E * c \Rightarrow I + E * c \Rightarrow a + E * c \Rightarrow a + I * c \Rightarrow a + b * c$$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow E + E * I \Rightarrow E + E * c \Rightarrow I + E * c \Rightarrow a + E * c \Rightarrow a + I * c \Rightarrow a + b * c$$

Árvores sintáticas das derivações:

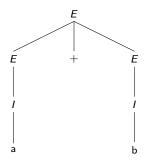


Duas derivações para a string a * b:

(i)
$$E \Rightarrow E + E \Rightarrow I + E \Rightarrow a + E \Rightarrow a + I \Rightarrow a + b$$

(ii) $E \Rightarrow E + E \Rightarrow E + I \Rightarrow I + I \Rightarrow a + I \Rightarrow a + b$

Ambas derivações (i) e (ii) tem a mesma árvore sintática:



Seja G = (V, T, P, S) uma gramática e seja $w = w_1 w_2 ... w_k$ uma string de L(G).

Seja $\mathcal D$ uma derivação w em G. A *árvore sintática da derivação* $\mathcal D$ é uma árvore com raíz S com a seguintes relações entre os nós:

• Se o passo $\alpha A\beta \Rightarrow \alpha \gamma \beta$ aparece na derivação \mathcal{D} e $\gamma = \gamma_1 \gamma_2 ... \gamma_l$, então o nó A é pai dos nós $\gamma_1, \gamma_2, ..., \gamma_l$, da esquerda para a direita.

O conjunto das árvores sintáticas de todas as possíveis derivações de w é chamado de conjunto das árvores sintáticas da string w.

- Exemplo: As duas árvores do *slide 5* estão contidas no conjunto das árvores sintáticas de *a* + *b* * *c*.
- Exercício: Mostrar que todas as derivações tem como árvore exatamente uma das duas árvores do slide 5 anterior

Mostrar que a árvore do slide 6 é a única árvore sintática de a + b.

Seja G = (V, T, P, S) uma gramática e seja $w = w_1 w_2 ... w_k$ uma string de L(G).

Dada uma \mathcal{D} uma derivação w em G, a *árvore sintática da derivação* \mathcal{D} é uma árvore com raíz S com a seguintes relações entre os nós:

• Se o passo $\alpha A\beta \Rightarrow \alpha \gamma \beta$ aparece na derivação \mathcal{D} e $\gamma = \gamma_1 \gamma_2 ... \gamma_l$, então o nó A é pai dos nós $\gamma_1, \gamma_2, ..., \gamma_l$, da esquerda para a direita.

O conjunto das árvores sintáticas de todas as possíveis derivações de w é chamado de conjunto das árvores sintáticas da string w.

Def.: A gramática G é ambígua se existe $w \in L(G)$ que possui mais de uma árvore sintática. Caso contrário G é dita não ambígua.

Exemplos:

- A gramática G_{PAL} não é ambígua.
- A gramática G_{EX} é ambígua.

Gramáticas ambíguas e derivações mais a esquerda

Relembrando a gramática anterior:

$$G_{\text{EX}} = (\{I, E\}, \{a, b, 0, 1, +, *, (,)\}, A_{\text{EX}}, E)$$
 tal que as regras de A_1 são:

$$E \rightarrow I|E + E|E * E|(E)$$

 $I \rightarrow a|b|Ia|Ib|I0|I1$

Voltando a questão anterior: qual variável aplicar em E + E na produção?

Derivação mais a esquerda

Na derivação $\alpha \Rightarrow \beta$ sempre escolha aplicar a regra à variável mais a esquerda de α

- Isso é dito uma produção mais a esquerda em um passo.
- Notação: ⇒

e.g.,
$$E + E \Rightarrow_{lm} I + E$$

Analogamente também definir produção mais a esquerda ($\Rightarrow_{\underline{lm}}^*$).

Gramáticas ambíguas

Exemplo de produção mais à esquerda:

Relembre a derivação \mathcal{D} abaixo:

$$E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a * (E) \Rightarrow a * (E + E) \Rightarrow a * (I + E)$$

\Rightarrow a * (a + E) \Rightarrow a * (a + I) \Rightarrow a * (a + I0) \Rightarrow a * (a + 00) \Rightarrow a * (a + b00) \Rightarrow (note: \Rightarrow uma derivação mais a esquerda)

Portanto, também podemos escrever $E \Rightarrow_{\text{lm}}^* a * (a + b00)$.

• Similarmente definimos derivações mais a direita $(\Rightarrow_{rm} e \Rightarrow_{rm}^*)$.

Teorema: Seja G uma gramática. Toda string de L(G) tem exatamente uma derivação mais à esquerda $\Leftrightarrow G$ não é ambígua.

Teorema: Seja G uma gramática. Toda string de L(G) tem exatamente uma derivação mais à direita $\Leftrightarrow G$ não é ambígua.

Ambiguidade e APDs

- Obs: Se L admite uma gramática ambígua G tal que L(G) = L não significa que toda gramática que gere a linguagem seja ambígua
- Exemplo: Podemos construir uma gramática não ambígua G'_{EX} tal que $L(G'_{EX}) = L(G_{EX})$

Def.: Seja L uma linguagem. Se existe uma gramática não ambígua G tal que L(G) = L, então L é dita uma linguagem (livre de contexto) não ambígua.

Entretanto, considere a seguinte linguagem:

• $L_{\text{AMB}} = \{a^n b^n c^m d^m : n > 0, m > 0\} \cup \{a^n b^m c^m d^n; n > 0, m > 0\}$ obs: L_{AMB} é livre de contexto (exercício no livro)

Teorema: Toda gramática G tal que $L_{AMB} = L(G)$ é ambígua.

A linguagem livre de contexto acima é dita inerentemente ambígua.

Ambiguidade e APDs

Teorema: Seja *L* uma linguagem.

 \exists APD P tal que $L=L(P)\Rightarrow\exists$ uma gramática não ambígua G tal que L(G)=L.

• Entrentanto, a outra direção não vale:

Teorema: Não existe nenhum APD que aceite a linguagem L_{PAL} .

Isto é, existe pelo menos uma linguagem não ambígua que não admite APD

Aplicação de gramáticas em compiladores:

- Gramáticas de Linguagens de Programação normalmente estão contidas em um subconjunto estritamente contido no conjunto das linguagens de APDs
 - exemplo: conjunto das gramáticas LR(k)
 - O analisador síntático do compilador: funciona como um APD e constrói uma árvore de uma derivação mais a direita.
 - Realidade prática: as coisas são mais complicadas
 - "grosso" da gramática é do tipo LR(k): compilador usa um algoritmo LR(k)
 - pedaços pequenos da gramática tradados separadamente.

(às vezes nem mesmo livre de contexto)