Lista de Exercícios de Métodos Numéricos

12 de outubro de 2010

Para todos os algoritmos abaixo assumir n = 0, 1, 2, 3....

- Bisseção:
 - Algoritmo: $x_n = \frac{a+b}{2}$
 - Se $f(a) * f(x_n) < 0$ então $b = x_n$ senão $a = x_n$
 - Parada: $|f(x_n)| \le erro$ ou $|b-a| \le erro$
- Falsa Posição
 - Algoritmo: $x_n = a \frac{(b-a)*f(a)}{f(b)-f(a)}$
 - Se $f(a) * f(x_n) < 0$ então $b = x_n$ senão $a = x_n$
 - Parada: $|x_n x_{n-1}| \le erro (x_0 = aoux_0 = b)$
- Iteração Linear:
 - Algoritmo: $x_n = g(x_{n-1})$
 - Melhor extremo: |g'(x)| < 1 ou Se |g'(a)| < |g'(b)| então $x_0 = a$ senão $x_0 = b$
 - Parada: $|x_n x_{n-1}| \le erro$
- Newton-Raphson: $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- Secante: $x_{n+1} = \frac{x_{n-1} * f(x_n) x_n * f(x_{n-1})}{f(x_n) f(x_{n-1})}$

- Parada do Newton-Raphson ou da Secante: $|x_{n+1} x_n| \leq erro$
- Método Misto:

– Se
$$f(a) * f(x_1^N) < 0$$
 então $b = x_1^N$ senão $a = x_1^N$

- Algoritmo:
$$x_n = \frac{x_n^N + x_n^F}{2}$$

- Parada:
$$|x_n^F - x_n^N| \le erro$$

1. Considerando o erro=10⁻⁴.Use o método da Falsa Posição para obter a menor raiz positiva de:

(a)
$$\frac{x}{2} - tg(x) = 0$$

(b)
$$x^5 - 6 = 0$$

- 2. Dada a equação $f(x) = x^2 + x 6$ e $f(x) = x^4 3x^2 + x 3$, determinar pelo método iterativo linear as raízes reais, tomando $x_0 = 1.5$ com uma tolerância de $erro \le 0.01$ entre duas iterações consecutivas, operando com 5 casas decimais.
- 3. Aplicar o Método de Newton-Raphson a $f(x)=x^3-2x^2-3x+10$ e $f(x)=x^2-\cos(x)$ com $x_0=1.9$ e $erro \le 0.001$.
- 4. Calcular $\sqrt{5}$ e $\sqrt[5]{25}$ pelo método da Bisseção.
- 5. Considerando o $erro \le 10^{-3}$. Calcule uma raiz real utilizando o método misto para as equações abaixo:

(a)
$$f(x) = x + ln(x) = 0$$

(b)
$$f(x) = e^{-x} - sen(x) = 0$$

6. Use o Método Misto para encontrar soluções com precisão de 10^{-5} para os seguintes problemas:

(a)
$$e^x + 2^{-x} + 2 * cos(x) - 6 = 0$$

(b)
$$(x-2)^2 - ln(x) = 0$$

Exercícios de Cálculo Numérico Zero de Função

- 1. Dê um exemplo de função f(x), que tenha pelo menos uma raiz, que não pode ser determinada usando o Método da Bisseção.
- 2. Dê um exemplo de função f(x), que tenha pelo menos uma raiz, onde o Método de Newton-Raphson não converge.
- 3. A equação $x^2 7x + 12 = 0$ tem 3 e 4 como raízes. Considere a função de iteração dada por $\varphi(x) = x^2 6x + 12$. Determine o intervalo (a, b), onde para qualquer que seja x_0 escolhido a sequência $x_{n+1} = \varphi(x_n)$ converge para a raiz x = 3. Mostre que a convergência é quadrática.
- 4. Para determinar a raiz quadrada de um número $c \ge 0$, basta resolver a equação $x^2-c=0$. É possível determinar sua raiz quadrada usando a função de iteração $\varphi(x)=c/x$. Justifique a resposta.
- 5. As funções de iterações $\varphi_1(x) = x^2/2 2x + 4$ e $\varphi_2(x) = x^2/2 2.5x + 5$, geram sequências convergentes para a raiz $\overline{x} = 2$, para qualquer aproximação inicial $x_0 \in (1.5, 3)$. Qual das duas funções geram sequências mais rapidamente convergente para esta raiz. Justifique a resposta.
- 6. Determine um intervalo (a, b) e uma função de iteração $\varphi(x)$ associada, de tal forma que $\forall x_0 \in (a, b)$ a função de iteração gere uma sequência convergente para a(s) raiz(es) de cada uma das funções abaixo, usando o método iterativo linear (MIL) com tolerância $\epsilon \leq 1.10^{-3}$.
 - (a) $f_1(x) = \sqrt{x} e^{-x}$
 - (b) $f_2(x) = \ln(x) x + 2$
 - (c) $f_3(x) = e^{x/2} x^3$
 - (d) $f_4(x) = \text{sen}(x) x^2$
 - (e) $f_5(x) = x/4 \cos(x)$
- 7. Determine a(s) raiz(es) da função $f_1(x)$, usando o método da Bisseção, Método da Falsa posição e da Falsa posição modificada com tolerância $\varepsilon = 1.10^{-3}$. Quantas iterações foram necessárias para cada um dos métodos.
- 8. Determine as raízes do exercício (6), usando o Método de Newton-Raphson.
- 9. Determine as raízes do exercício (6), usando o Método das Secantes.
- 10. Determine os pontos extremos do exercício (6), usando o Método de Newton-Raphson.
- 11. Determine o ponto de intersecção entre as funções $f_1(x)$ e $f_2(x)$, $f_2(x)$ e $f_3(x)$ e entre $f_1(x)$, $f_2(x)$ e $f_3(x)$.

12. O Teorema do Valor Médio, diz que para função diferenciável f(x), existe um número $0 < \alpha < 1$, tal que :

$$f(x) = f(a) + (x - a)f'(a + \alpha(x - a))$$

Considere a = 0; $\alpha = 1/2$ e $f(x) = \arctan(x)$. Determine o x > 0 que satisfaz a igualdade acima.

13. Sabe-se que se $x = \xi$ é uma raiz dupla de f(x) então o Método de Newton-Raphson não converge quadraticamente. Mostre que se $f'(\xi) = 0$, mas todas as outras condições de convergência estão satisfeitas, então a iteração:

$$x_{n+1} = \varphi(x_n) = x_n - \frac{2f(x_n)}{f'(x_n)}$$

converge quadraticamente.

- 14. Seja $x = \xi$ uma raiz de f(x), tal que $f'(\xi) \neq 0$ e $f''(\xi) = 0$. Mostre que neste caso o Método de Newton-Raphson tem convergência cúbica.
- 15. Encontre todas as raízes reais do polinômio abaixo pelo método de Newton-Raphson.

$$p(x) = x^4 - 2x^3 + 4x - 1.6$$

16. Uma pessoa tomou um empréstimo de A reais, que acrescenta os juros no total antes de computar o pagamento mensal. Assim, se a taxa mensal de juros, em porcentagem, é q e o empréstimo é pelo prazo de n meses, a quantia total que o tomador concorda em pagar é:

$$C = A + A.n. \frac{q}{100}.$$

Isto é dividido por n para dar o total de cada pagamento P, ou seja

$$P = \frac{C}{n} = A\left(\frac{1}{n} + \frac{q}{100}\right)$$

Isto é perfeitamente legal e muito usado em lojas de departamento . (É chamado o empréstimo com acréscimo). Mas a verdadeira taxa de juros que o tomador está pagando é alguma coisa além de q%, porque ele não conserva o total do empréstimo por todos os n meses: Ele está pagando-o de volta com o decorrer do tempo. A verdadeira taxa de juros pode ser encontrada pela determinação de uma raiz x da equação:

$$F(x) = (Ax - P)(1+x)^n + P = 0$$

Isto fornece a taxa de juros por período de pagamento, que pode ser convertida em taxa anual multiplicando-se a mesma por 12. Seja A=R\$1000, n=24 e q=5%. Determine a verdadeira taxa de juros.

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO Disciplina MAT 174 – Cálculo Numérico I

Lista de Exercícios

- 1) Quantas iterações são necessárias para calcular a raiz de $f(x) = e^x x 2$, que fica no intervalo (1,2), utilizando o método da Bisseção com erro absoluto $< 10^{-1}$?
- 2) Encontre as raízes das funções abaixo utilizando o método da Bisseção, usando cinco iterações. Informe o erro máximo cometido.

a)
$$f(x) = x^3 - 5x^2 + 17x + 21$$

b)
$$f(x) = 2x - \cos x$$

c)
$$f(x) = x^2 - 5x + 6$$

- 3) Calcule a raiz de $f(x) = x^3 + x 100$ que fica no intervalo (4, 5) utilizando o método da Iteração Linear, erro relativo < 10^{-2} .
- 4) Considerando as funções polinomiais abaixo, faça:
 - Enumere as suas raízes positivas, negativas e complexas.
 - Calcule os limites superior e inferior das raízes positivas.
 - Separe e calcule as suas raízes reais positivas, com erro relativo < 10⁻².

a)
$$f(x) = x^4 - 14x^3 + 24x - 10$$

b)
$$f(x) = 4x^3 + 1.5x^2 - 5.75x + 4.37$$

c)
$$f(x) = x^5 + x^4 - 8x^3 - 16x^2 + 7x + 15$$

d)
$$f(x) = x^5 + x^3 + x^2 + x - 25$$

e)
$$f(x) = 2x^6 - 3x^5 - 2x^3 + x^2 - x + 1$$

5) Encontre ao menos uma raiz real das funções abaixo, com erro relativo < 10⁻³, usando método da Falsa Posição (Regula Falsi):

a)
$$f(x) = x^3 - x \cdot e^x + 3$$

b)
$$f(x) = sen x - ln x$$

6) Encontre as raízes das funções abaixo, com erro relativo < 10^{-5} , utilizando o método de Newton. Escolha um X_0 adequado.

a)
$$f(x) = 2x - senx + 4$$

b)
$$f(x) = 10^x + x^3 + 2$$

c)
$$f(x) = x^2 + e^{3x} - 3$$

- 7) Considere $f(x) = x^3 x 5$, que possui um zero no intervalo (0, 3). Calcule a sua raiz com erro inferior a 10^{-2} , utilizando o método da Iteração Linear.
- 8) Encontre as raízes reais das funções abaixo com erro relativo inferior a 10⁻², usando o método da Iteração Linear:
 - a) $f(x) = x^3 \cos x$
 - b) $f(x) = x^2 + e^{3x} 3$
 - c) $f(x) = 3x^4 x 3$
 - d) $f(x) = e^x + \cos x 5$
- 9) Calcule a raiz cúbica de 7, usando o método de Newton, com erro relativo inferior a 10⁻⁵.
- 10) Utilize os métodos da Bisseção, Regula Falsi, Iteração Linear e de Newton, e calcule, com cada um deles, o valor de $\sqrt[7]{2359}$ com cinco casas decimais exatas.