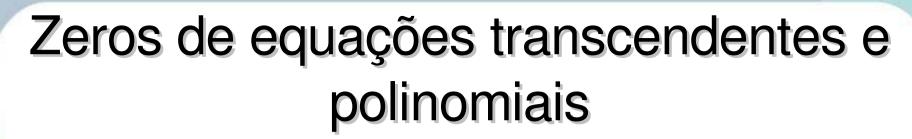
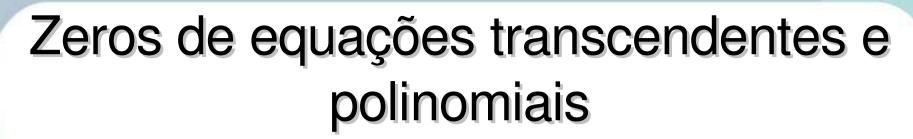
Métodos Numéricos - Notas de Aula

Prof^a Olga Regina Bellon

Junho 2007



- Tipos de Métodos
 - São dois os tipos de métodos para se achar a(s) raízes de uma equação:
 - Método direto
 - Fornece solução em apenas um único passo.
 - Esta raiz é exata, a menos de erros de arredondamento.



Exemplo - Método direto

• Seja,
$$F(x) = x^2 - 3x + 2$$

 A solução direta pode ser obtida através da fórmula de Baskara através da expressão:

$$x = \frac{\left(-b \pm \sqrt{(b^2 - 4ac)}\right)}{2a}$$

Conjunto solução: { 1, 2}

- Tipos de Métodos
 - Método iterativo ou indireto
 - Processo de cálculo infinito, recursivo.
 - O valor obtido a cada passo depende de valores obtidos em passos anteriores.
 - Na maioria das vezes não obtem solução exata para as raízes.
 - A solução é uma aproximação dentro de uma faixa de erro aceitável.

Exercício - Método indireto

 Calcular \(\sqrt{4} \) usando o método de Newton definido por:

$$x_{n} = \frac{\left(\frac{x}{x_{n-1}} + x_{n-1}\right)}{2}$$

- - x = o número a ser calculada a raiz.
 - x₀ = atribuição inicial qualquer.
 - Iniciar $x_0 = 1$.

Para
$$n = 1, 2, 3, ...$$

- Obtenção de Raízes
 - Equações do segundo grau
 - Solução facilmente obtida.
 - Equações transcedentes
 - Solução não é tão simples.

$$G \cdot e^x + x = 0$$
 usa em Visão Computacional.

$$ln(x) + x - 2 = 0$$

- Polinômio de grau maior que três
 - Solução algébrica também não é tão simples.

Natureza das raízes

- Freqüentemente as equações levam a raízes reais não racionais.
- São representadas de forma aproximada no computador (infinitos dígitos na mantissa).
- Possuem uma determinada precisão, com um erro tolerável.

- Métodos numéricos
 - Partem de valores inicialmente propostos.
 - Buscam aprimorar tais valores iniciais.
 - Visam diminuir os erros, aproximando-se dos valores das raízes procuradas.
 - Devem garantir que os erros ocorram dentro de uma margem aceitável, inferiores a valores pré-definidos.

Cálculo das raízes

- Duas etapas devem ser seguidas:
 - 1) Isolar a raiz
 - Achar um intervalo [a,b].
 - O intervalo deve ser o menor possível.
 - O intervalo deve conter uma e somente uma raiz da equação f(x) = 0.

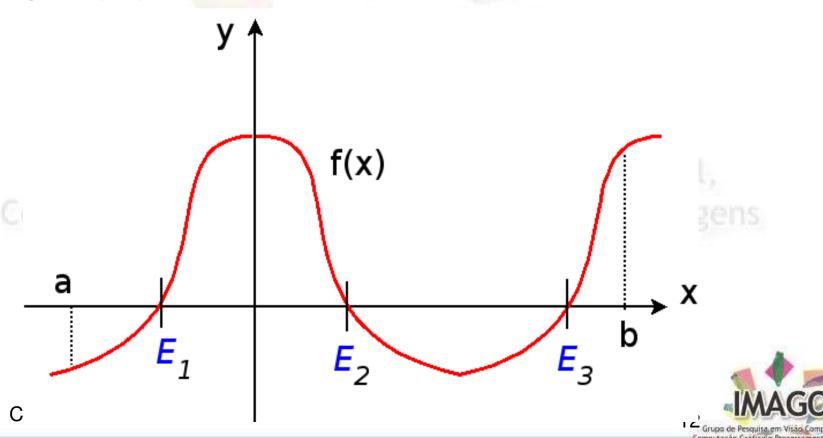
- Cálculo das raízes
 - 2) Melhorar o valor da raiz aproximada
 - Refinar a raiz até o grau de exatidão requerido.
 - Através de abordagem iterativa determinar um intervalo inicial.
 - Dentro do intervalo construir a seqüência {x;}.
 - A raiz x' será dada por:

$$x' = \lim_{i \to \infty} x_i$$

- Cálculo das raízes
 - Além das duas etapas anteriores é importante:
 - Estipular critérios de parada:
 - Na prática não se calcula infinitos termos.
 - Calcula-se apenas o suficiente para atingir a exatidão desejada.

- Isolamento de raízes
 - Análise teórica e gráfica da função f(x)
 - Teorema:
 - f(x) contínua num intervalo [a,b].
 - f(x) com sinais opostos nos pontos extremos deste intervalo $\rightarrow f(a)^*f(b) < 0$.
 - O intervalo contém no mínimo, uma raiz da equação f(x) = 0.

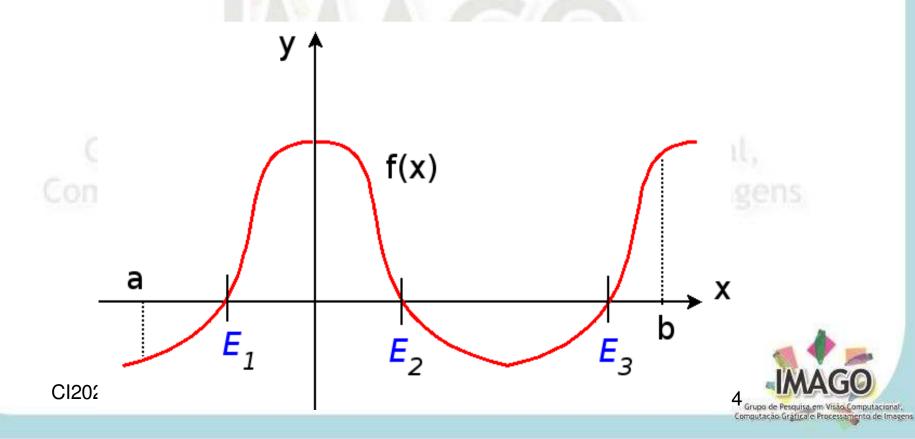
- Isolamento de raízes
 - Ou seja, existe no mínimo, um número E ∈ (a,b) tal que f(E) = 0.



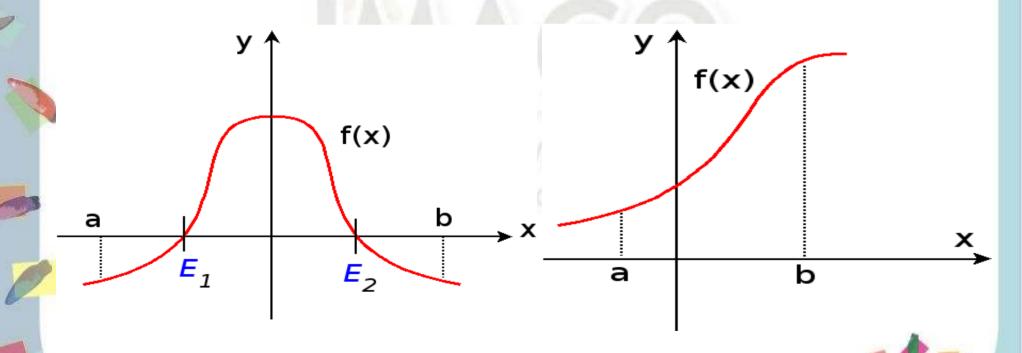
Número de raízes reais no intervalo delimitado.

- Teorema de Bolzano
 - Seja f(x) = 0 uma equação algébrica com coeficientes reais.
 - $x \in (a,b)$.

- Número de raízes reais no intervalo (a,b).
 - Se f(a) * f(b) < 0, então existe um número ímpar de raízes reais (contando suas multiplicidades).



 Se f(a) * f(b) > 0, então existe um número par de raízes reais (contando suas multiplicidades) ou não existe raízes.



- Refinamento
 - Isola-se a raiz no intervalo [a,b].
 - Calcula-se a raiz através de métodos numéricos.
 - Os métodos fornecem uma seqüência { x_i} de aproximação.
 - A seqüência é limitada à raiz exata ε.

- Refinamento
 - Em cada aproximação x_r
 - Verificar se x está "suficientemente" próximo da raiz através de dois modos diferentes.
 - $| f(x_n) | \le \varepsilon$ (abordagem pelo eixo y).
 - $|x_n x_{n-1}| \le \varepsilon$ (abordagem pelo eixo x).

- Refinamento
 - Observação
 - Dependendo dos números envolvidos é aconselhável usar os testes de erro relativo.

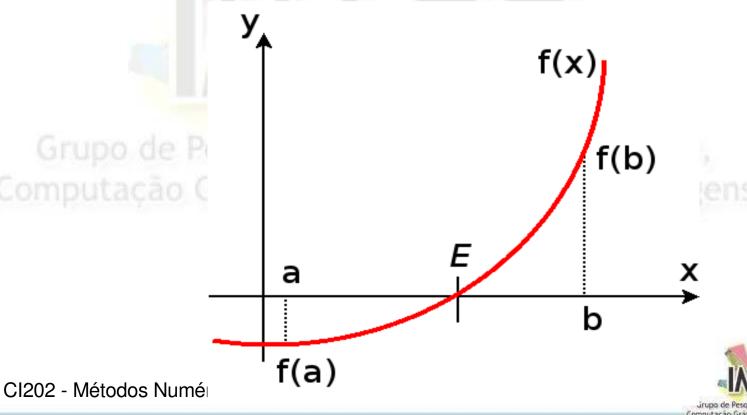
$$\frac{|x_n - x_{n-1}|}{x_{n-1}} \le \varepsilon$$

- Classificação dos métodos
 - Métodos de quebra
 - Mais intuitivos geometricamente.
 - São os que convergem mais lentamente.
 - Particiona o intervalo que contém a raiz em outros menores que ainda contenham a raiz.
 - Método da Bisseção.
 - Método da Falsa Posição.

- Classificação dos métodos
 - Métodos de ponto fixo
 - Começam de uma aproximação inicial x₀.
 - Constrói-se a seqüência { x_i }.
 - Cada termo é dado por $x_{i+1} = \xi(x_i)$.
 - ξ é uma função de iteração.
 - Método de Newton-Raphson.
 - Método da Iteração Linear.

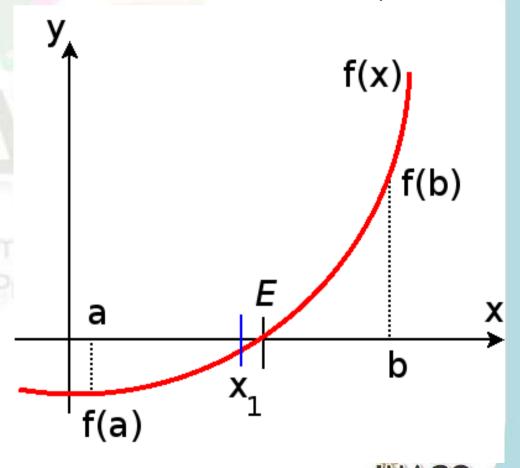
- Classificação dos métodos
 - Métodos de múltiplos pontos
 - Constituem uma generalização dos métodos de ponto fixo.
 - Para determinar um ponto x_{i+1} utiliza-se vários.
 pontos anteriores: x_i, x_{i-1}, ..., x_{i-p}.
 - Método da secante.

- Método da Bisseção
 - Seja F(x) uma função contínua definida no intervalo [a,b].
 - Seja E uma raiz da função, $E \in (a,b)$ tal que F(E) = 0.



- Método da Bisseção
 - Divide-se o intervalo [a,b] ao meio, obtém-se x₁.
 - Dois subintervalos:

- \bullet [x₁,b]
- Se $f(x_1) = 0$
- Então $E = X_1$
 - Senão...



Método da Bisseção

 Senão, a raiz estará no subintervalo onde a função tem sinais opostos nos pontos extremos.

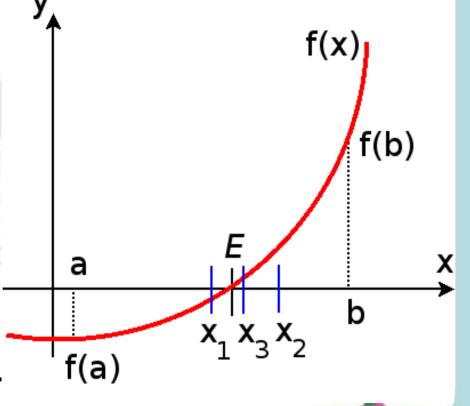
• Se $f(a).f(x_1) < 0$

•
$$E \in [a, x_1]$$
.

• Senão $f(a).f(x_1) > 0$

$$\bullet E \in [x_1, b].$$

 O processo se repeteaté que o critério de parada seja satisfeito.



Método da Bisseção

• Algoritmo:
$$x_n = \frac{a+b}{2}$$
, $para n = 1, 2, 3, ...$

- Se f(a) . $f(x_n) < 0$, então $b = x_n$
- Senão, a = x_n
- Critério de Parada:
 - $| f(x_n) | \leq erro$.
 - c_{\circ} ou, $|b-a| \leq erro$. Processamento de Imagens
- Restrição:
 - Deve-se conhecer um intervalo que contenha o valor desejado E.

- Método da Bisseção
 - Considerações Finais
 - As iterações não envolvem cálculos laboriosos.
 - Apesar de teoricamente seguro, pode ter falhas.
 - Pode ser difícil encontrar um intervalo [a,b], tal que f(a).f(b) < 0, em equações com raízes de multiplicidade par ou muito próximas.

Método da Bisseção

Considerações Finais

A convergência é muito lenta.

 Deve ser utilizado apenas para diminuir o intervalo que contém a raiz.

Método da Bisseção

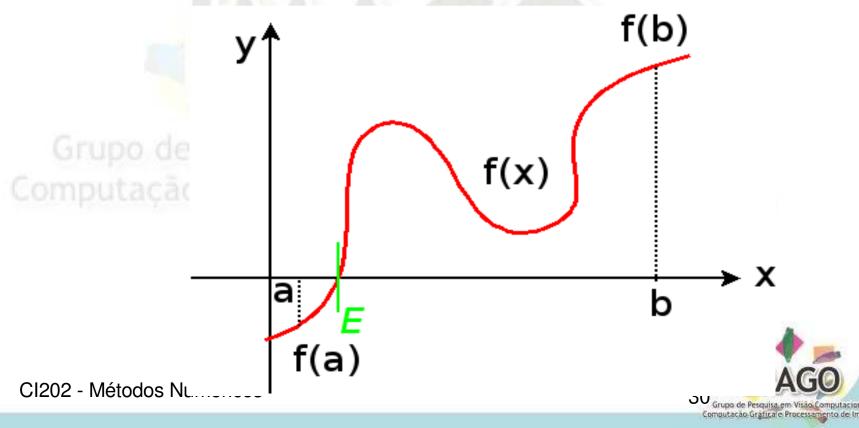
Exemplo

• Encontre uma estimativa para a raiz de $f(x) = e^x + x$, com erro menor ou igual a 0,050.

$$\mathbf{x}_{4} = -0.625 + (-0.563) / 2 = -0.594$$

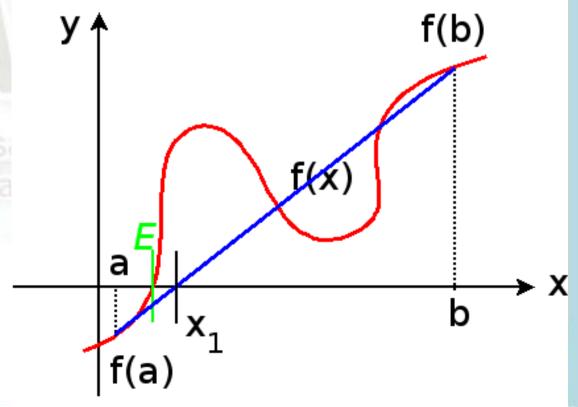
- Método da Bisseção
 - Exercicio
 - Como poderia ser usado o método da bisseção para estimar o valor de ?
 7
 - Estime esse valor com uma precisão de (ou erro menor que) 0,02.
 - $\mathbf{x}_{6} = 2,625 + (2,65625) / 2 = 2,6406$

- Método da Falsa Posição
 - Seja F(x) uma função contínua definida no intervalo [a,b].
 - Seja E uma raiz da função, $E \in (a,b)$ tal que F(E) = 0.



- Método da Falsa Posição
 - Divide-se o intervalo [a,b] na intersecção da reta que une os pontos (a,f(a)) e (b,f(b)) com o eixo x, obtémse x₁ e dois subintervalos.

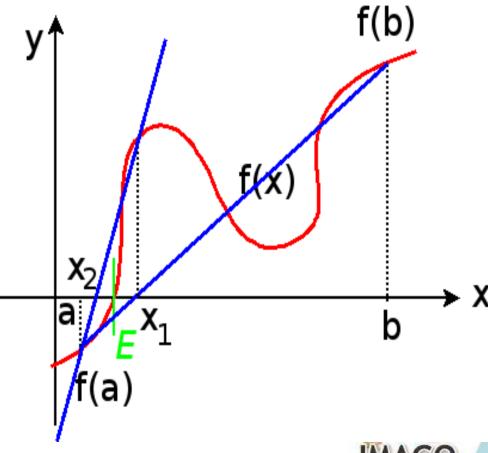
- Se $f(x_1) = 0$.
 - Então $E = X_1$
- Senão...



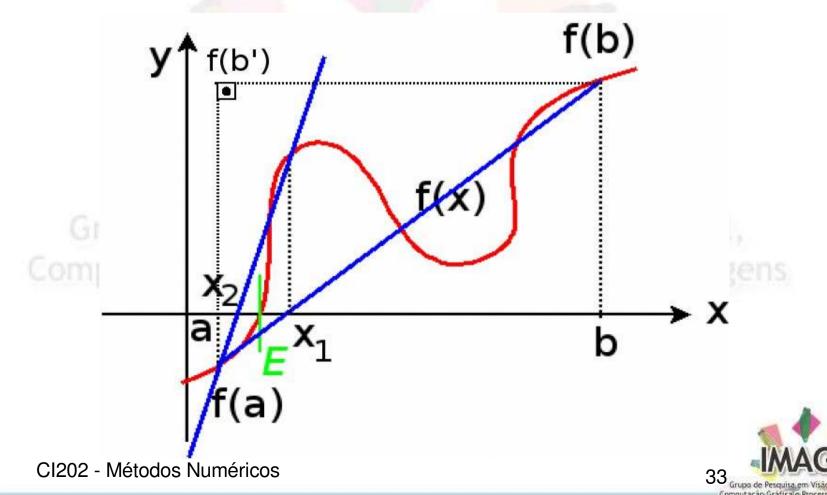
CI202 - Métodos Numéricos

Método da Falsa Posição

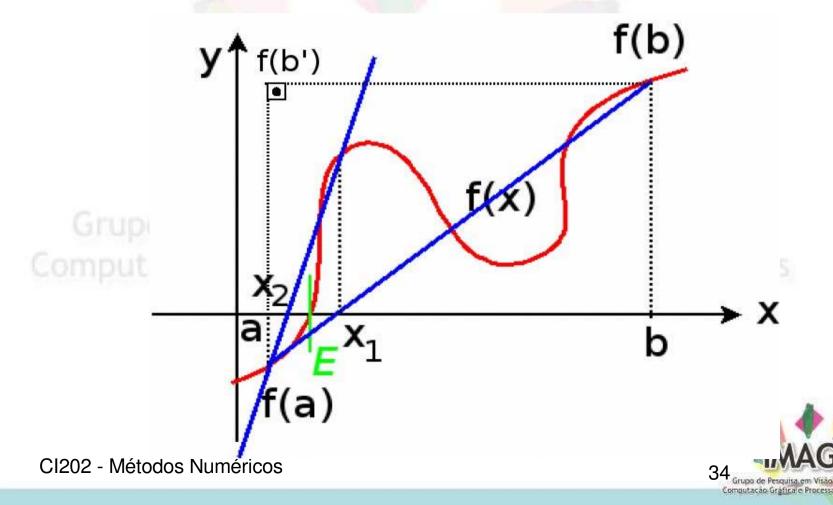
- Senão, a raiz estará no subintervalo onde a função tem sinais opostos nos pontos extremos.
 - Se $f(a).f(x_1) < 0$
 - $E \in [a, x_1]$.
 - Senão f(a).f(x₁)>0
 - $\bullet E \in [x_1, b].$
- O processo se repete até que o critério de parada seja satisfeito.



- Método da Falsa Posição
 - O algoritmo deste método pode ser encontrado através da análise dos triângulos formados pela reta (a,f(a)) e (b,f(b)) com o eixo x.



- Método da Falsa Posição
 - Seja o triângulo f(a)x₁a e o triângulo f(a)f(b)f(b'),
 então, pela propriedade da semelhança de triângulos temos:



Método da Falsa Posição

$$\frac{b-a}{x_1-a} = \frac{f(b)-f(a)}{-f(a)}$$

$$\frac{b-a}{f(b)-f(a)} = \frac{x_1-a}{-f(a)}$$
.

$$x_1 - a = \frac{(b-a)(-f(a))^{\bullet}}{f(b)-f(a)}$$

$$x_1 = a - \frac{(b-a)(f(a))}{f(b) - f(a)}$$

Método da Falsa Posição

• Algoritmo:
$$x_n = a - \frac{(b-a).f(a)}{f(b)-f(a)}$$
, $para n = 1, 2, 3, ...$

- Se f(a) . $f(x_n) < 0$, então $b = x_n$
- Senão, a = x_n
- Critério de Parada:

•
$$| x_n - x_{n-1} | \le erro$$
 $(x_0 = a ou x_0 = b).$

- Restrição:
 - Deve-se conhecer um intervalo que contenha o valor desejado E.

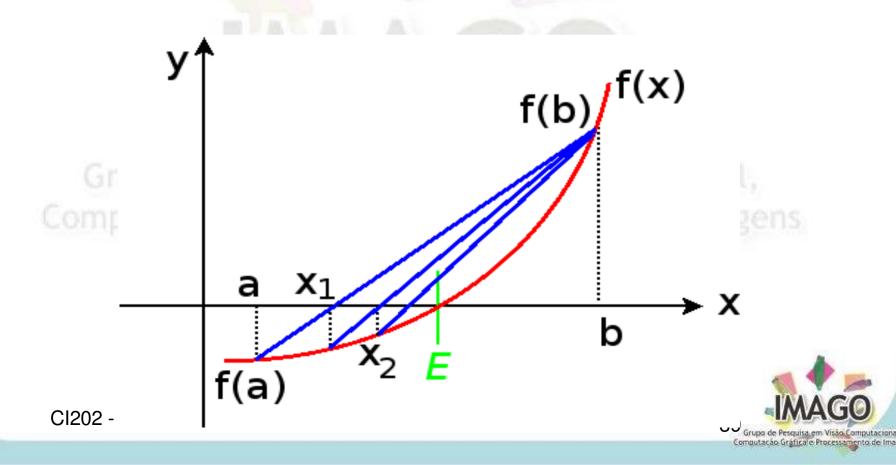
Método da Falsa Posição

Casos especiais

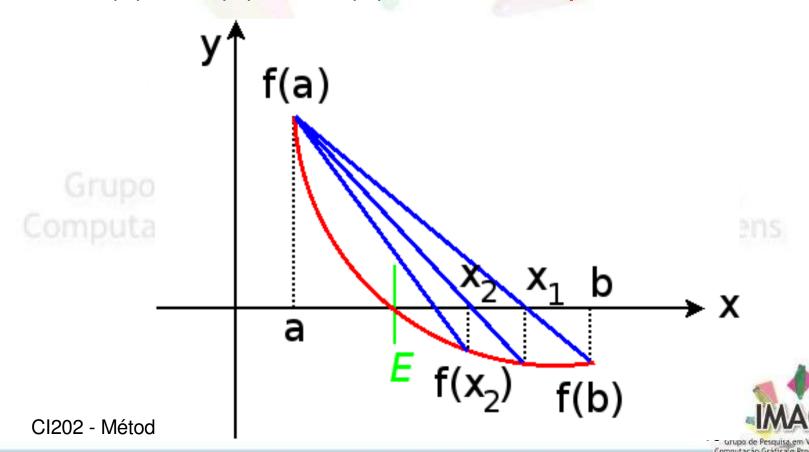
Se f(x) é continua no intervalo [a , b] com f(a).f(b)
 < 0 então o método gera uma seqüência convergente.

- Método da Falsa Posição
 - Casos especiais
 - Se f(x) é concava ou convexa em [a,b];
 - a segunda derivada existe em [a, b];
 - e f''(x) não muda de sinal nesse intervalo.
 - Tem-se sempre uma das extremidades fixas.
 - Este caso especial chama-se Método das Cordas.

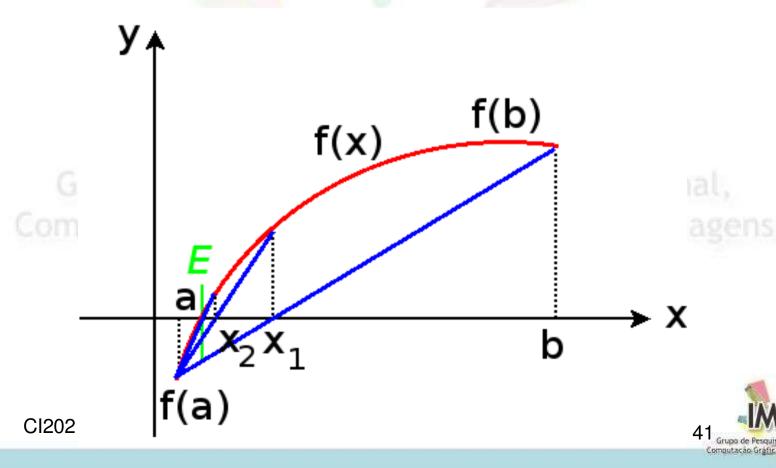
- Método da Falsa Posição
 - Casos especiais As figuras a seguir mostram graficamente os quatro casos que podem ocorrer.
 - f''(x)>0, f(a)<0 e $f(b)>0 \rightarrow b$ é ponto fixo.



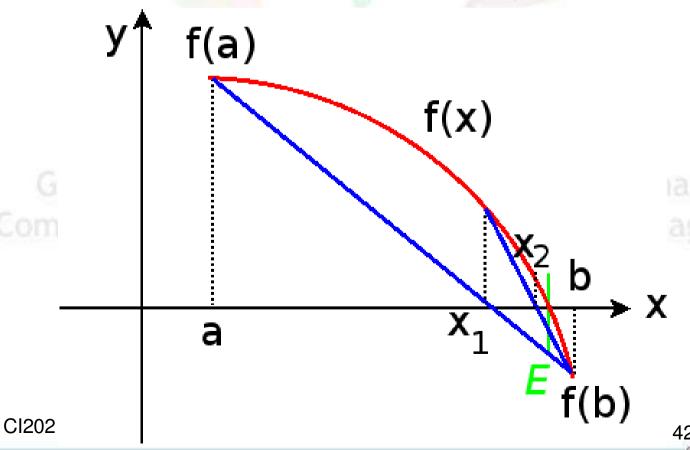
- Método da Falsa Posição
 - Casos especiais
 - f''(x)>0, f(a)>0 e f(b)<0 \rightarrow a é ponto fixo.



- Método da Falsa Posição
 - Casos especiais
 - f''(x)<0, f(a)<0 e $f(b)>0 \rightarrow a$ é ponto fixo.



- Método da Falsa Posição
 - Casos especiais
 - f''(x)<0, f(a)>0 e $f(b)<0 \rightarrow b$ é ponto fixo.



- Considerações Finais
 - Se o ponto fixo existir e for razoavelmente próximo da raiz,
 - o método tem boa convergência.
 - Caso contrário,
 - pode ser mais lento que o da bisseção.

Método da Falsa Posição

Exemplo 1

• Encontrar a menor raiz positiva da função de quarto grau f(x) = x⁴ - 26x² + 24x + 21 até que o erro absoluto seja igual ou inferior a 0,01. Os cálculos devem ser efetuados com 2 casas decimais e com arredondamento.

 Resposta E = 1,59 é a primeira raiz positiva do polinômio.

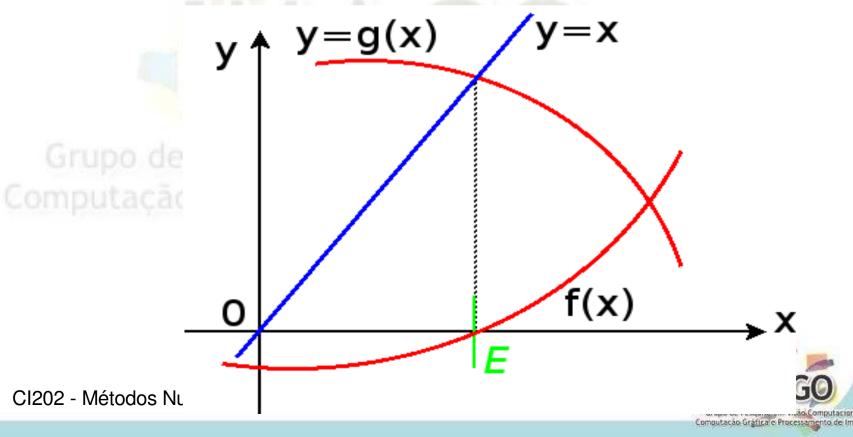
Método da Falsa Posição

Exemplo 1

a) Algoritmo:
$$x_n = a - \frac{(b-a) \cdot f(a)}{f(b) - f(a)}$$

•
$$f'(x) = 4x^3 - 52x + 24$$

- Método da Iteração Linear (método do ponto fixo)
 - Seja F(x) uma função contínua definida no intervalo [a,b].
 - Seja E uma raiz da função, $E \in (a,b)$ tal que F(E) = 0.



- Método da Iteração Linear (método do ponto fixo)
 - Por um artifício algébrico, pode-se transformar f(x)=0 em duas funções que lhe sejam equivalentes.

$$f(x) = 0 \rightarrow \begin{cases} y = x \\ y = g(x) \end{cases}$$

- Onde g(x) é chamada de função de iteração.
- Sendo x₀ a primeira aproximação da raiz E:
 - Calcula-se g(x₀). Processamento de Imagens

$$\mathbf{x}_1 = \mathbf{g}(\mathbf{x}_0), \ \mathbf{x}_2 = \mathbf{g}(\mathbf{x}_1), \ \mathbf{x}_3 = \mathbf{g}(\mathbf{x}_2), \ \mathbf{x}_4 = \dots$$

- Método da Iteração Linear
 - Algoritmo: $x_n = g(x_{n-1})$, para n = 1, 2, 3, ...
 - Critério de Parada:

$$| X_n - X_{n-1} | \leq erro.$$

- Melhor extremo:
 - O método tem sucesso quando | g'(x) | < 1 em todo o intervalo.
 - Extremo mais rápido.
 - Se | g'(a) | < | g'(b) |</p>

$$\mathbf{x}_0 = \mathbf{a}$$

• Senão,
$$x_0 = b$$

CI202 - Métodos Numéricos

- Método da Iteração Linear
 - Casos de convergência
 - Seja $f(x) = x^3 5x + 3$, possíveis g(x):

$$g(x) = \frac{x^3 + 3}{5}$$

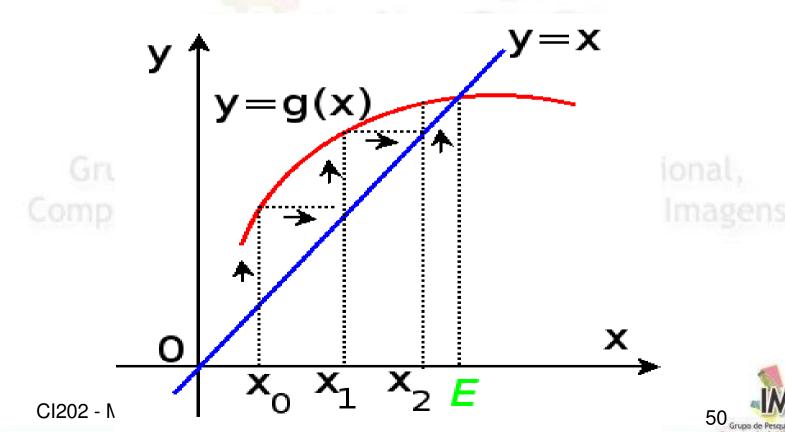
$$g(x) = (5x-3)^{1/3}$$

$$g(x) = \frac{5x-3}{x^2}$$

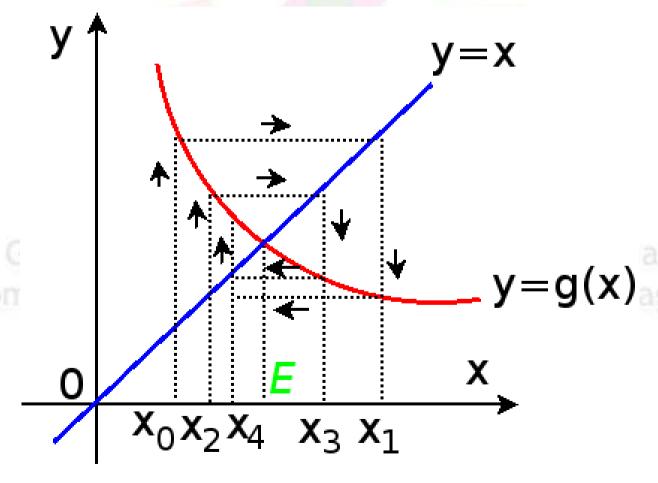
$$g(x) = \frac{5x-3}{x^2} \qquad g(x) = \frac{-3}{x^2-5}$$

 Como podem ter várias funções g(x), vamos estabelecer condições para que os resultados sejam satisfatórios.

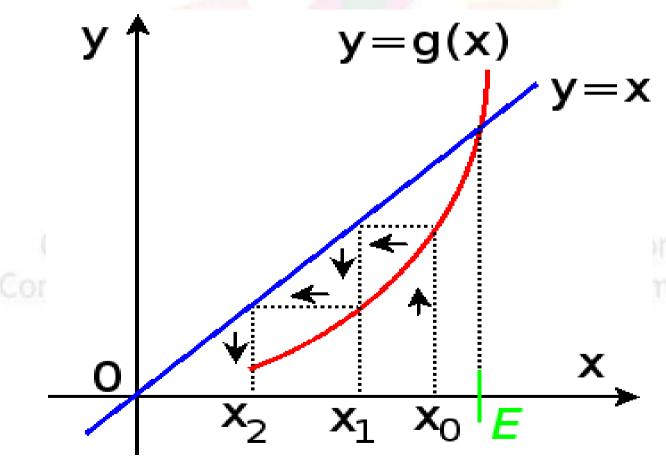
- Método da Iteração Linear
 - Observando graficamente, verifica-se que há funções g(x) não indicadas para a escolha.
 - Convergência monotônica → 0<g'(x) < 1.</p>



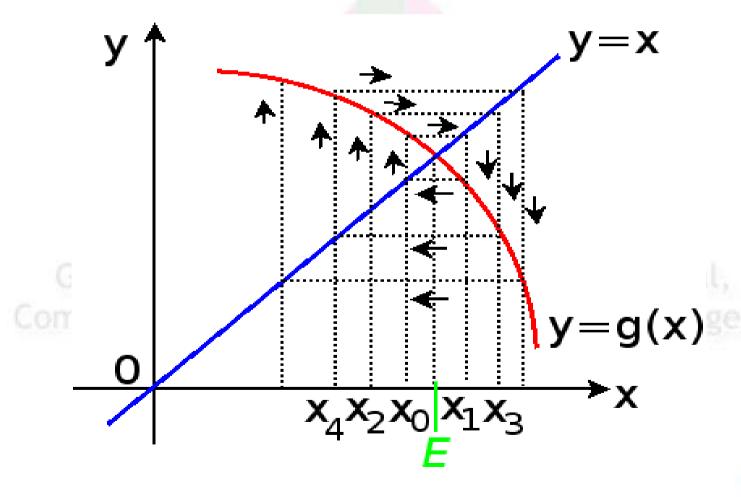
- Método da Iteração Linear
 - Convergência oscilante \rightarrow -1 < g'(x) < 0.



- Método da Iteração Linear
 - Divergência monotônica → g'(x) > 1.

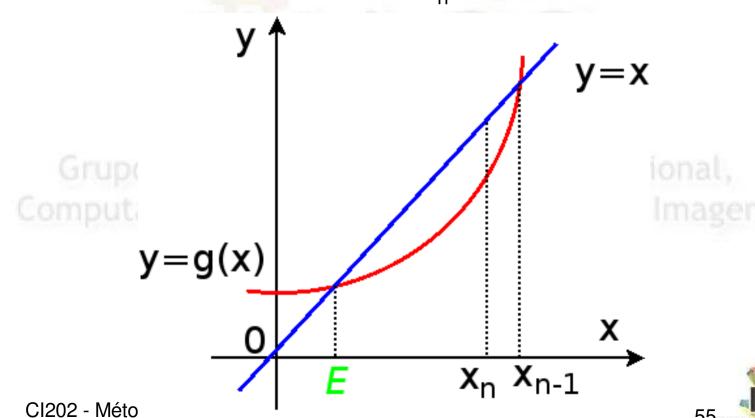


- Método da Iteração Linear
 - Divergência oscilante → g'(x) < -1.



- Método da Iteração Linear
 - Considerações Finais
 - A maior dificuldade do método é encontrar uma função de iteração que satisfaça à condição de convergência.
 - Teste de |g'(x)| < 1 pode levar a um engano se x_0 não estiver suficientemente próximo da raiz.
 - A velocidade de convergência dependerá de |'(E)|.
 - Quanto menor este valor maior será a convergência.

- Método da Iteração Linear
 - Considerações Finais
 - O teste de erro ($|x_n x_{n-1}| \le erro$) não implica necessariamente que $|x_n E| \le erro$.



Método da Iteração Linear

Exemplo 1

• Encontre uma estimativa para a raiz de $f(x) = x^2 + 2x - 4$, com um *erro* $\le 2*10^{-1}$.

- Resposta
 - A raiz desejada é E = 1,31.

Método da Iteração Linear

Exemplo 2

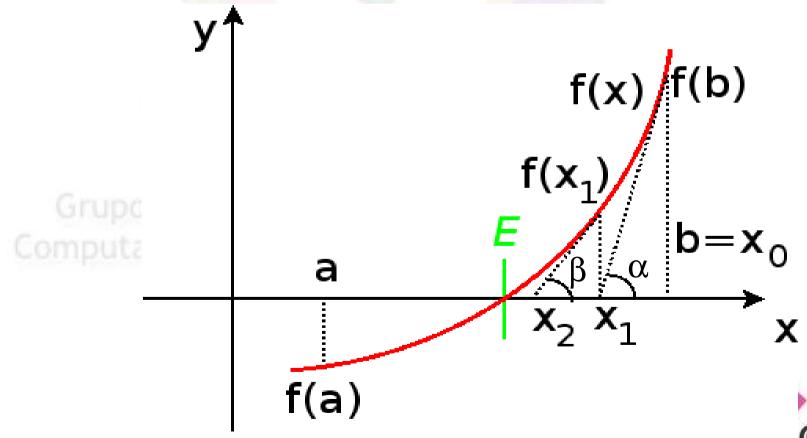
- Encontre uma estimativa para a raiz de $f(x) = x^2$
 - e^{x} , com um *erro* $\leq 2*10^{-2}$.

- Resposta
 - A raiz desejada é E = -0.70.

Método de Newton-Raphson

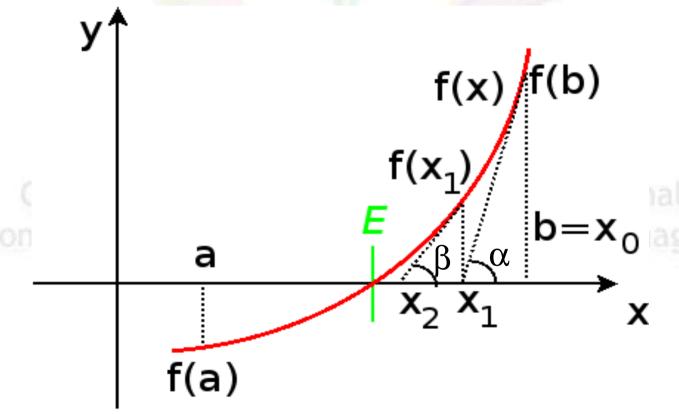
Cl202 - Métodos Numéricos

- Seja F(x) uma função contínua no intervalo [a,b].
- Seja E uma raiz da função, E ∈ (a,b) tal que f(E) = 0 e f'(x) ≠
 0.



- Método de Newton-Raphson
 - Toma-se x₀ = b. Então:

$$tg\alpha = f'(x_0)$$
 .. $f'(x_0) = \frac{f(x_0)}{x_0 - x_1}$.. $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$



Cl202 - Métodos Numéricos

59 Grupo de Pesquisa em Visão Computacional. Computação Gráfica o Processamento de Imagens

Método de Newton-Raphson

• Se $|x_1 - x_0| \le erro$, então x_1 é a raiz desejada.

• Senão deve-se calcular x_2 : $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$

Se | x₂ - x₁ | ≤ erro, então x₂ é a raiz desejada.

Senão calcula-se x₃, ...,x_n, até que |x_n-x_{n-1}|≤ erro.

Método de Newton-Raphson

• Algoritmo:
$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} para n = 1, 2, 3, ...$$

Critério de Parada:

$$| X_n - X_{n-1} | \leq erro.$$

Melhor extremo:

- Verificar qual extremo possui função e segunda derivada com mesmo sinal:
- $f(x_i) * f''(x_i) > 0$ $p/i = \{extremos do intervalo\}.$
- Restrição
 - Conhecer um intervalo que contenha E.

Método de Newton-Raphson

Exemplo

 Determinar com precisão menor ou igual a 0,01, a raiz da equação f(x) = 2x - cos(x).

- Resposta
 - A raiz desejada é E = 0.45.

- Método de Newton-Raphson
 - Condições de Newton-Raphson-Fourier
 - Segundo Newton, para haver convergência em seu método:
 - O intervalo (a,b) em análise deve ser suficientemente pequeno.
 - Contudo, para Raphson e Fourier um intervalo pequeno é aquele que contém uma e somente uma raiz.
 - Assim, algumas condições foram estabelecidas para que tal exigência fosse válida:

Método de Newton-Raphson

- Condições de Newton-Raphson-Fourier
 - 1) Se f(a).f(b) > 0, então existe um número par de raízes reais (contando suas multiplicidades) ou não existe raízes reais no intervalo (a,b) (Teorema de Bolzano);
 - 2) Se f(a).f(b) < 0, então existe um número ímpar de raízes reais (contando suas multiplicidades) no intervalo (a,b) (Teorema de Bolzano);

Método de Newton-Raphson

Condições de Newton-Raphson-Fourier

 3) Se f'(a).f'(b) > 0, então o comportamento da função neste intervalo poderá ser apenas crescente ou apenas decrescente, e nunca os dois se alternando;

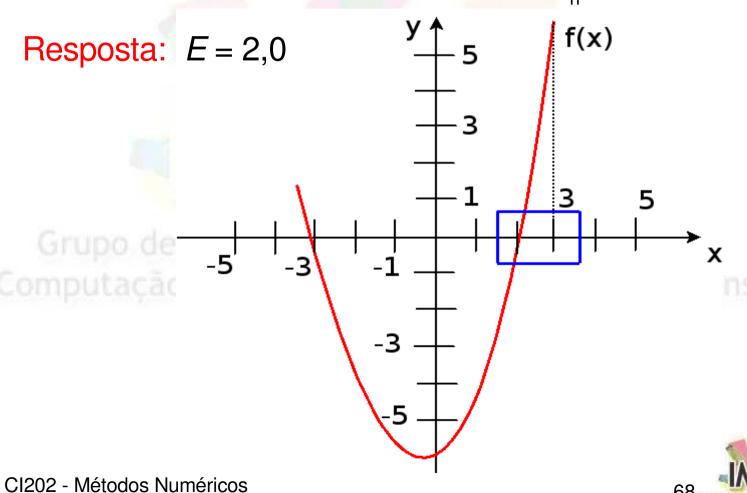
Grupo de Pesquisa em Visão Computacional,

 4) Se f'(a).f'(b) < 0, então a função alternará seu comportamento entre crescente e decrescente;

- Método de Newton-Raphson
 - Condições de Newton-Raphson-Fourier
 - 5) Se f"(a).f"(b) > 0, então a concavidade não muda no intervalo em análise;
 - 6) Se f"(a).f"(b) < 0, então a concavidade muda no intervalo em análise.
 - Portanto, haverá convergência à uma raiz no intervalo (a,b) se e somente se:
 - f(a).f(b) < 0, f'(a).f'(b) > 0 e f''(a).f''(b) > 0

- Método de Newton-Raphson
 - Vantagens e Desvantagens
 - O Método de Newton-Raphson tem convergência muito boa (quadrática). Entretanto, apresenta as seguintes desvantagens:
 - (i) Exige o cálculo e a análise do sinal de f'e f";
 - (ii) Se f'(x_{k-1}) for muito elevado a convergência será lenta;
 - (iii) Se f'(x_{k-1}) for próximo de zero pode ocorrer overflow.

- Método de Newton-Raphson
 - Exercício Calcule a raiz de $f(x) = x^2 + x 6$, $x_0 = 3$ como estimativa inicial e critério de parada $|f(x_0)| \le 0.020$.



Método da Secante

- Uma grande desvantagem no método de Newton é a necessidade de se obter a derivada f'(x) e calcular o seu valor numérico a cada iteração.
- Para contornar este problema, usa-se um modelo linear que se baseia nos dois valores calculados mais recentemente:

$$f'(x_n) \simeq \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}},$$

onde x_n e x_{n-1} são duas aproximações para a raiz.

Método da Secante

• Substituindo $f'(x_n) \simeq \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}},$

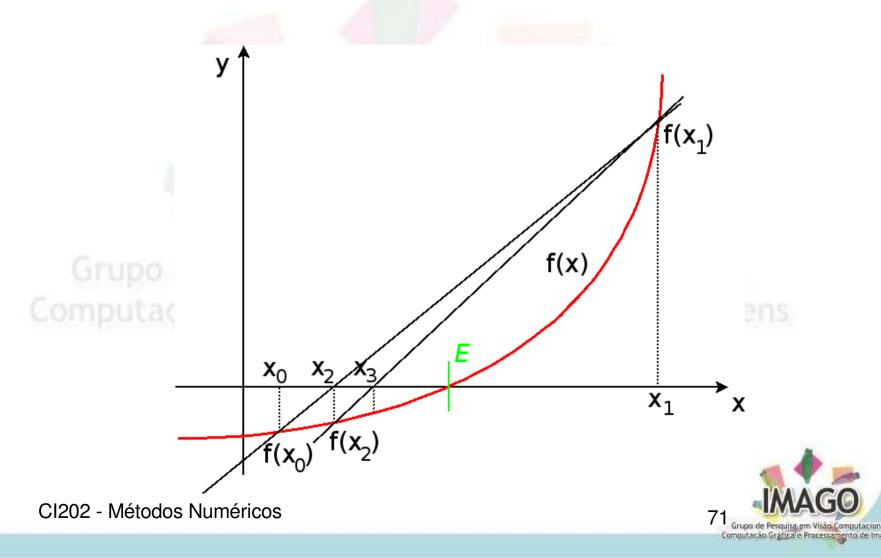
$$em x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$$

temos:
$$x_{n+1} = x_n - \frac{(x_n - x_{n-1}) \cdot f(x_n)}{f(x_n) - f(x_{n-1})}$$
, $para n = 1, 2, 3, ...$

 O método de Newton, quando modificado desta maneira, é conhecido como Método das Secantes.

Método da Secante

 No gráfico a seguir ilustramos graficamente como uma nova aproximação, pode ser obtida de duas anteriores.

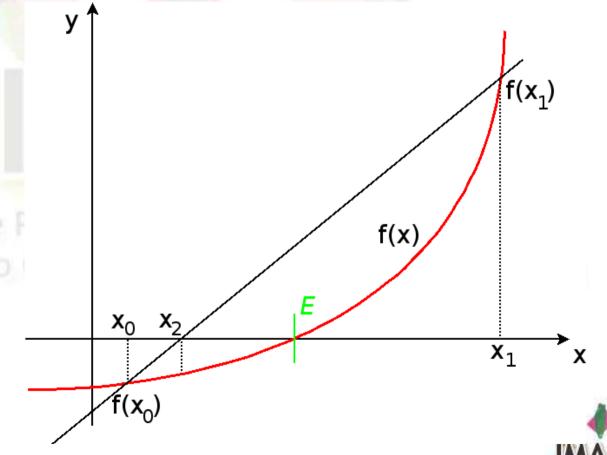


Método da Secante

CI202 - Métodos Numéricos

• Das duas aproximações iniciais x_0 e x_1 determina-se a reta que passa pelos pontos (x_0 , $f(x_0)$) e (x_1 , $f(x_1)$).

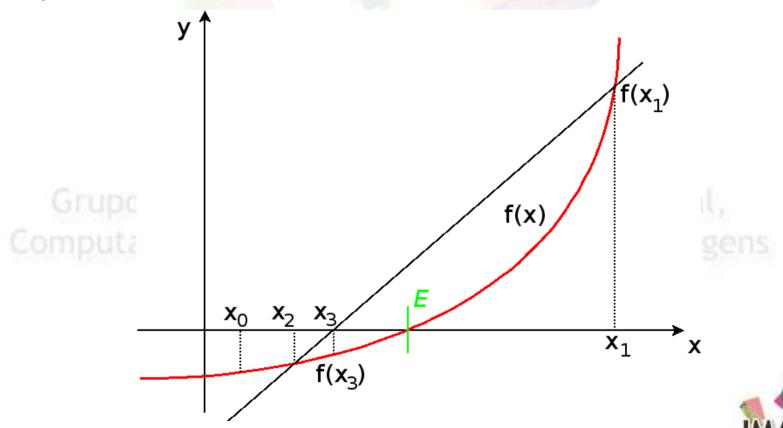
• A interseção desta reta com o eixo x fornece o ponto x_2 .



Método da Secante

CI202 - Métodos Numéricos

- Em seguida é calculado uma nova aproximação para a raiz a partir dos pontos $(x_1, f(x_1))$ e $(x_2, f(x_2))$.
 - O processo se repete até que seja satisfeito o critério de parada.



Método da Secante

- Observações
 - Este método não necessita da característica que é fundamental no método da falsa posição:
 - A exigência de que $f(x_n).f(x_{n-1}) < 0$;
 - A raiz não precisa estar entre as duas aproximações iniciais $(x_0 e x_1)$;
 - A convergência é mais rápida do que no método da Bisseção e da Falsa Posição, porém, pode ser mais lenta do que no método de Newton-Raphson.

Método da Secante

Algoritmo:

$$x_{n+1} = x_n - \frac{(x_n - x_{n-1}) \cdot f(x_n)}{f(x_n) - f(x_{n-1})}, para n = 1, 2, 3, ...$$

Critério de Parada:

Computação Gráfica e Processamento de Imagens

$$| X_{n+1} - X_n | \leq erro.$$

Método da Secante

• Exemplo - Determinar a raiz da equação $\sqrt{x}-5e^{-x}=0$, com erro inferior a 10^{-3} .

Grupo de Pesquisa em Visão Computacional,

Logo, a raiz da equação é 1,431.

Método da Secante

 Exercício - Calcular a raiz da função f(x) = 2x – cos(x) com erro ≤ 10⁻³. Efetue os cálculos com 5 casas decimais com arredondamento.

Logo, a raiz da equação é 0,45040.

Método Misto

- O método Misto, consiste na aplicação sequencial dos métodos Newton-Raphson e Falsa Posição, nesta ordem.
- O método NR é aplicado no primeiro passo, sempre a partir do melhor extremo, gerando x₁^N.
- Com x₁^N determina-se qual extremo do intervalo será substituído:

• Se
$$f(a) * f(x_1^N) < 0 \rightarrow b = x_1^N$$

senão a =
$$x_1^N$$

Método Misto

- Então aplica-se o método da Falsa Posição, gerando
 X₁^F.
- x₁^F será utilizado na próxima iteração pelo método NR.
- Mas antes é feito o teste de erro para verificar o critério de parada.
- Quando o critério de parada for satisfeito, tira-se a média aritmética simples do resultado da última iteração de ambos os métodos obtendo a resposta desejada.

Método Misto

Algoritmo:

$$x_n = \frac{x_n^N + x_n^F}{2}$$
, para $n = 1, 2, 3, ...$

Critério de Parada:

Computação Gráfica e Processamento de Image

$$| X_n^F - X_n^N | \le erro.$$

Método Misto

Exemplo

• Encontre uma estimativa para a raiz de $f(x) = x^2 + 2x - 4$, com um *erro* $\leq 2*10^{-2}$. Efetue os cálculos com 4 casas decimais com arredondamento.

A raiz da equação é (1,2361 + 1,2361) / 2 = 1,2361.