
Arquitetura II — introdução 2007-1

Por que estudar Arquitetura?

• ser um programador competente:

usar caches e memória virtual de forma vantajosa;

• aprender algoritmos e técnicas para alta velocidade:

tirar proveito da hierarquia de memória;

• usar bem recursos da máquina:

idem com relação a E/S, segmentação;

• poder trabalhar com eletrônica embarcada:

mercado novo e com poucos programadores competentes;

• entender artigos das revistas da ACM, IEEE;

• e, principalmente, ser feliz a vida é de vocês...

UFPR DInf BCC 3

Arquitetura II — introdução 2007-1

Por que estudar Arquitetura?

UFPR DInf BCC 2

Arquitetura II — introdução 2007-1

Arquitetura II

CI086 – Tópicos em Arquitetura de Computadores

CI702 – Arquitetura de Computadores

Roberto Hexsel

roberto@inf.ufpr.br

www.inf.ufpr.br/roberto/CI086.html

UFPR DInf BCC 1

Arquitetura II — introdução 2007-1

Material adicional para o curso

http://www.inf.ufpr.br/roberto/CI702.html

http://www.inf.ufpr.br/roberto/CI086.html

/public/soft/linux/simplescalar

~roberto/ci702

lista de e-mail em roberto-tac@inf.ufpr.br

não guardem este endereço em máquinas com uindous

UFPR DInf BCC 6

Arquitetura II — introdução 2007-1

Programa

⋆ Tendências tecnológicas (1) texto em www.*://roberto/CI702.html

⋆ avaliação de desempenho (1)

⋆ conjuntos de instruções - MIPS64 (2) todos devem estar com o livro!

⋆ revisão pipelines, processadores super-escalares (3)

⋆ paralelismo no ńıvel de instrução, hw e sw (4)

⋆ hierarquia de memória, caches, mem virtual (4)

⋆ 03mai prova

⋆ multiprocessadores, mem logicamente compartilhada (4)

⋆ sistemas de E/S, discos (2)

⋆ multicomputadores e clusters, mem logicamente distribúıda (2)

⋆ redes diretas (2)

⋆ 21jun prova e 04jul entrega do trabalho

⋆ 03jul final

UFPR DInf BCC 5

Arquitetura II — introdução 2007-1

Bibliografia

texto:

Computer Architecture: A Quantitative Approach, H&P-QA

J L Hennessy e D A Patterson, 3a Ed, Morgan Kaufmann, 2003.

cuja tradução ruim é

Arquitetura de Computadores – uma abordagem quantitativa,

J L Hennessy e D A Patterson, 1a Ed, Campus, 2003,

textos auxiliares:

Computer Organization and Design, P&H-COD

D A Patterson e J L Hennessy, 3a Ed, Morgan Kaufmann, 2005

existe tradução da segunda edição

Readings in Computer Architecture, 6 ∃ na biblioteca

M D Hill, N P Jouppi, G S Sohi, Morgan Kaufmann, 2000.

UFPR DInf BCC 4

Arquitetura II — introdução 2007-1

Requisitos a serem atendidos pelo arquiteto I

Área de aplicação: usos do computador

desktop desempenho balanceado para diversas tarefas;

sistemas interativos com gráficos, v́ıdeo e áudio;

servidor de computação cient́ıfica alto desempenho com

operações de ponto flutuante e gráficos;

servidor comercial alto desempenho com bancos de dados e

sistemas transacionais;

confiabilidade, disponibilidade e escalabilidade;

embutido suporte a aplicações espećıficas;

baixo custo e pequeno consumo de energia

UFPR DInf BCC 9

Arquitetura II — introdução 2007-1

Definição de Arquitetura de Computadores

1. arquitetura do conjunto de instruções (CdI):

conjunto de instruções e registradores viśıveis ao programador

Instruction Set Arquitecture = ISA

2. organização:

blocos como sistema de memória, barramentos, CPU

mais de uma implementação de mesmo conjunto de instruções

(AMD e Intel, 80{,1,2,3,4,5,6}86)

3. hardware:

tecnologia de implementação,

circuitos integrados (CMOS vs NMOS), pipelining vs multi-ciclo

Arquitetura engloba todos os três aspectos

UFPR DInf BCC 8

Arquitetura II — introdução 2007-1

Organização de Computadores

Modelo de Von Newman .

• computador com programa armazenado (1945)

• memória é um vetor de bits

∗ interpretação dos bits definida pelo arquiteto e

programador/compilador

• parte da memória contém instruções

• parte da memória contém dados

UFPR DInf BCC 7

Arquitetura II — introdução 2007-1

Requisitos a serem atendidos pelo arquiteto IV

Padrões: requeridos pelo mercado

ponto flutuante formatos e aritmética: IEEE754;

barramentos dispositivos de E/S: PCI, SCSI;

sistema operacional Unix, Windows, PalmOS;

redes suporte a tecnologias distintas (Ethernet, Infiniband);

linguagens de programação linguagem de alto ńıvel afeta

projeto do conjunto de instruções.

UFPR DInf BCC 12

Arquitetura II — introdução 2007-1

Requisitos a serem atendidos pelo arquiteto III

Suporte a Sistema Operacional:

tamanho do espaço de endereçamento important́ıssimo!!

pode limitar aplicabilidade;

→ EdE cresce ≥ 1/2 bit aa

gerenciamento de memória necessário para SOs modernos;

paginado ou segmentado;

proteção usos diferentes por SO e usuários;

proteção à páginas ou a segmentos.

UFPR DInf BCC 11

Arquitetura II — introdução 2007-1

Requisitos a serem atendidos pelo arquiteto II

Compatibilidade de software: software pré-existente

ńıvel de linguagem de programação maior flexibilidade;

novo compilador?

compatibilidade nos binários ISA completamente definido;

pouca flexibilidade mas sem investimentos em software novo.

UFPR DInf BCC 10

Arquitetura II — introdução 2007-1

Fotografia de um CI do Pentium IV
H&P QA Fig-1.7

UFPR DInf BCC 15

Arquitetura II — introdução 2007-1

Tendências da Tecnologia I

Tecnologias de implementação fundamentais

1– Circuitos Integrados para CPUs

núm de transistores cresce ≈35% aa 4X em 4 anos

tamanho do CI aprox 10 a 20% aa lado do retângulo

efeito combinado núm transistores/CI cresce ≈55% aa

Ver fabricação de circuitos integrados em www.intel.com→ museum

e em P&H-COD

UFPR DInf BCC 14

Arquitetura II — introdução 2007-1

Tecnologias Fundamentais

1. tecnologia de semicondutores: microprocessadores CMOS

2. tecnologia de semicondutores: memória dinâmica (DRAM)

3. tecnologia de armazenamento: discos magnéticos

4. tecnologia de interconexão: redes locais

UFPR DInf BCC 13

Arquitetura II — desempenho 2007-1

Processo de Projetar

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqq

qqq
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqq
q
q
q
q
q
q
q q

q
q
q
q
q
q

q
qq

qqqqqqqqqqqq

q q q q q q q q q q q q q q q q q q q q
q q

q
q
q
q
q
q
q
qq

q
q
q
q
q
q
q
q
q
q
q q q q q q q q q q q q q q q q

qq

ssqq

qq

sss

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

qq

qq

ss

idéiaprojeto

avaliação
implementação

Processo iterativo:

idéia =⇒ implementação =⇒ avaliação =⇒ re-projeto ...

avaliação geralmente implica em descartar idéias ruins

UFPR DInf BCC 18

Arquitetura II — desempenho 2007-1

Revisão

Arquitetura é:

conjunto de instruções + organização + hardware

especif abstrata + especif refinada + concreta

Tendências da Tecnologia

capacidade velocidade

lógica 2x em 3 anos 2x em 3 anos

DRAM 4x em 3 anos 2x em 10 anos

disco 4x em 3 anos 2x em 10 anos

processador — 2x em 1.5 anos

UFPR DInf BCC 17

Arquitetura II — desempenho 2007-1

Wafer de 8” com 564 MIPS R20K

UFPR DInf BCC 16

Arquitetura II — desempenho 2007-1

Métricas para Avaliação de Desempenho

aplicação respostas por hora; operações por segundo

linguagem produtividade do programador (?)

compilador qualidade do código gerado

ISA instruções por segundo (MIPS ou MFLOPS)

circ de dados megaBytes por segundo

unid. funcionais ciclos/operações por segundo

portas, fios ciclos por segundo

UFPR DInf BCC 21

Arquitetura II — desempenho 2007-1

Avaliação de Desempenho

Qual é o melhor avião?

avião capacidade alcance veloc produção

[p] [km] [km/h] [p∗km/h]

B-737 101 1008 957 96657

B-747 470 6640 976 458720

Concorde 132 6400 2160 285120

DC-8 146 13952 870 127020

O que importa são desempenho e custo

UFPR DInf BCC 20

Arquitetura II — desempenho 2007-1

Ferramentas para Avaliação de Desempenho

• sistema: programas de teste, rastros (traces)

• hardware: custo, atrasos, área, potência

• simulação nos ńıveis: CdI, register transfer, portas, circuitos

• Teoria de Filas

• Regras de projeto

• prinćıpios fundamentais

• Leis (de Moore, de Amdahl, et alli)

UFPR DInf BCC 19

Arquitetura II — desempenho 2007-1

Avaliação de Desempenho

• tempo de resposta, tempo decorrido [s/tarefa]

• tempo de CPU (usuário + sistema) [s]

• ciclo de relógio [ns] frequência do relógio [GHz]

• vazão/produção (throughput) [tarefas/s]

desempenho do sistema = tempo decorrido (sem carga)

desempenho de CPU = tempo de CPU dedicado ao usuário

desempenho de pico nunca é atingido na prática

desempenho de pico≫ desempenho sustentado

UFPR DInf BCC 24

Arquitetura II — desempenho 2007-1

Desempenho (ii)

desempenhoX

desempenhoY

=
tempo execY

tempo execX

=M

Exemplo:

Máquina A executa programa em 10 segundos;

máquina B executa mesmo programa em 15 segundos.

Quanto A é melhor que B ?

desempenhoA

desempenhoB

=
tempo execB

tempo execA

=
15

10
⇒ 50%

UFPR DInf BCC 23

Arquitetura II — desempenho 2007-1

Desempenho (i)

desempenhoX

△

=
1

tempo execX

X éM vezes mais rápido que Y se

o tempo de execução de Y éM vezes mais longo que o de X

desempenhoX

desempenhoY

=
tempo execY

tempo execX

=M

Desempenho tem unidade de “coisas” por segundo;

maior desempenho é melhor!

UFPR DInf BCC 22

Arquitetura II — desempenho 2007-1

Equação do Desempenho (iii)

Exemplo:

Programa executa na máquina A em 10s com relógio de 100MHz.

Queremos máquina B que execute mesmo programa em 6s. Por

causa da mudança no projeto da CPU, máquina B vai usar 1.2 vezes

mais ciclos de relógio que A. Qual o relógio de B ?

tempo de CPUA =
ciclos da CPUA

freq de relógioA

10s =
ciclos da CPUA

100× 106

⇒ #ciclos da CPUA = 1000× 106

UFPR DInf BCC 27

Arquitetura II — desempenho 2007-1

Equação do Desempenho (ii)

tempo de CPU = núm de instr× CPI× ciclo de relógio

=
núm de instr× CPI

freq de relógio

esta é a equação mais importante do semestre!

UFPR DInf BCC 26

Arquitetura II — desempenho 2007-1

Equação do Desempenho (i)

tempo de CPU = ciclos da CPU× ciclo de relógio

=
ciclos da CPU

freq de relógio

ciclos da CPU = núm de instr× núm de ciclos por instr

CPI
△

= ciclos por instrução

UFPR DInf BCC 25

Arquitetura II — desempenho 2007-1

Equação do Desempenho (v)

CPI =
n∑

j=0

CPIj × Fj

instr freq[%] ciclos CPIj

ALU 40 1 .40

load 25 3 .75

store 10 3 .30

desvios 25 2 .50

total 1.95

UFPR DInf BCC 30

Arquitetura II — desempenho 2007-1

Equação do Desempenho (iv)

tempo de CPU = N × CPI×R
núm instr x CPI x peŕıodo do relógio

CPI =

n∑

j

CPIj × Fj

onde Fj = Ij/N
Fj é a freqüência da instrução I

UFPR DInf BCC 29

Arquitetura II — desempenho 2007-1

tempo de CPUB =
1.2 ∗ ciclos da CPUA

freq de relógioB

⇒ freq de relógioB =
1.2 ∗ 1000× 106

6s

⇒ freq de relógioB = 200× 106

ganho de
10

6
= 0.67 ⇒ freq de relógio 100% maior

Exemplo: Programa executa na máquina A em 10s com relógio de 100MHz.

Queremos máquina B que execute mesmo programa em 6s. Por causa da mudança

no projeto da CPU, máquina B vai usar 1.2 vezes mais ciclos de relógio que A.

Qual o relógio de B ?

UFPR DInf BCC 28

Arquitetura II — desempenho 2007-1

Medidas de desempenho

MIPS = milhões de instruções por segundo

MIPS =
núm de instr

tempo decorrido× 106

=
freq de relógio

CPI× 106

Problemas

• independente do conjunto de instruções (RISC/CISC)

• varia para programas na mesma máquina (int×PF)

• pode variar na proporção inversa ao desempenho

UFPR DInf BCC 33

Arquitetura II — desempenho 2007-1

Administrativamente falando...

Todos já estão com o livro?

Mestrandos já estão com os artigos?

Ler:

How not to lie with statistics: the correct way to summarize

benchmark results, Fleming & Wallace, Comm ACM 29(3), Mar 1986

Characterizing computer performance with a single number,

J E Smith, Comm ACM 31(10), Oct 1988

UFPR DInf BCC 32

Arquitetura II — desempenho 2007-1

Fatores Determinantes

tempo de CPU = núm de instr× CPI× ciclo de relógio

tempo de CPU desempenho do sistema

núm de instruções compilador & processador

CPI organização e arquitetura da CPU

freqüência de relógio tecnologia de CIs & arquitetura

UFPR DInf BCC 31

Arquitetura II — desempenho 2007-1

Medindo desempenho – SPEC

• primeiro conjunto em 1989
⋆ 10 programas produzem um só número: SPECmarks

• segundo conjunto em 1992
⋆ SPECint92 com 6 programas com inteiros

⋆ SPECfp92 com 14 programas com ponto flutuante

• terceiro conjunto em 1995
⋆ SPECint95 com 8 programas com inteiros

⋆ SPECfp95 com 10 programas com ponto flutuante

⋆ conjunto caduca em três anos

⋆ versão base com mesmas flags de compilação (todos programs)

• quarto conjunto em 2000
⋆ CINT2000 com 11 programas com inteiros (C e C++)

⋆ CFP2000 com 14 programas com ponto flutuante (fortran{77,90}, C)

UFPR DInf BCC 36

Arquitetura II — desempenho 2007-1

Medir desempenho com programas de teste

programas simples: quicksort, números primos

simples de implementar, fora da realidade

programas sintéticos: Dhrystone, Whetstone

simples de implementar, não são código usável

núcleos de programas: SPEC, Livermore Loops

fáceis de medir, não testam sistema de forma realista

programas de verdade: gcc, LaTeX, Spice

mistura deve refletir uso “normal” (browser?)

UFPR DInf BCC 35

Arquitetura II — desempenho 2007-1

Medidas de desempenho

MFLOPS = milhões de instr de ponto flutuante p/s

MFLOPS =
núm de instr de pto flutuante

tempo decorrido× 106

Problemas

• independente do conjunto de instruções (Cray/68882)

• varia para programas na mesma máquina (soma×div)

• média ponderada de custo de instruções:

soma(a,b) ∝ 1 seno(x) ∝ 8

UFPR DInf BCC 34

Arquitetura II — desempenho 2007-1

Lei de Amdahl (i)

Tempo de execução após melhoria =

(tempo de execução afetado / quanto melhorou)

+ tempo de execução não-afetado

esta também é importante

Exemplo:

programa executa em 100s, multiplicações consomem 80%

do tempo total. Quanto devo melhorar o circuito multiplicador

se quero tempo total em 20s ?

20 = 80/n + 20

Idem se quero tempo total em 40s ?

40 = 80/n + 20

UFPR DInf BCC 39

Arquitetura II — desempenho 2007-1

Resumindo desempenho com um só Número

• média aritmética (ponderada) segue tempo de execução:∑
Ti/n ou

∑
(pi · Ti)

• média harmônica (ponderada) de taxas (MIPS/MFLOPS) segue

tempo de execução:

n/
∑

(1/Ri) ou n/
∑

(pi ·Ri)

• tempo de execução normalizado é útil para comparações de

escalabilidade (máquina-A é X vezes mais rápida que modelo-base)

• para tempo de execução normalizado, deve usar média

geométrica:

(
∏

Ti/Ni)
1/n

UFPR DInf BCC 38

Arquitetura II — desempenho 2007-1

Comparação de resultados

máq A máq B
prog 1 [s] 1 10

prog 2 [s] 1000 100

total [s] 1001 110

com programa 1, A é 10 vezes mais rápido que B
com programa 2, B é 10 vezes mais rápido que A
erm...

Média Aritmética =
1

n

n∑

i=1

Tempoi

B é 1001/110 = 9.1 vezes mais rápido que A

UFPR DInf BCC 37

Arquitetura II — conj de instruções 2007-1

Resumo

Equação do Desempenho: o que vale é o tempo de execução!

tempo de CPU =
instruções

programa
× ciclos

instrução
× tempo

ciclo

Lei de Amdahl: o que interessa é o desempenho global!

Ganhototal =
1

(1− Fracmelhor) + (Fracmelhor / Ganhomelhor)

UFPR DInf BCC 42

Arquitetura II — desempenho 2007-1

Lei de Amdahl (iii)

Exemplo:

programa executa em 100s, multiplicações consomem 80%

do tempo total. Melhorando o circuito multiplicador em 50%,

qual é o ganho total de velocidade ?

Ganhototal =
1

(1− 0.80) + 0.80
1/0.50

=
1

0.20 + 0.80 ∗ 0.50

=
1

0.60
≈ 67%

UFPR DInf BCC 41

Arquitetura II — desempenho 2007-1

Lei de Amdahl (ii)

Ganhototal =
Tempoorig

Tempomelhor

=
1

(1− Fracmelhor) + (Fracmelhor / Ganhomelhor)

no limite

melhorado

melhoria infinita

melhoria de 100%

original

UFPR DInf BCC 40

Arquitetura II — conj de instruções 2007-1

Arquitetura ao longo das décadas

década arquiteto envolve-se com

1960 projetar circuitos aritméticos eficientes

1970 projeto de conjunto de instruções [1]

1980 RISC vs CISC, super-escalaridade, compiladores [2]

1990 espaço de endereçamento dobra (32→ 64 bits)

otimização de desvios através de execução condicional

suporte a multi-ḿıdia; operações de ponto flutuante

2000 instruções largas (VLIW)

maior suporte a especulação (execução condicional)

emulação de 80x86 (Transmeta)

[1] Maior complexidade para aumentar produtividade dos programadores
[2] If a compiler cannot generate it, desktop and server programs

generally won’t use it. H&P QA pg 91

UFPR DInf BCC 45

Arquitetura II — conj de instruções 2007-1

revisão: Equação do Desempenho

tempo de CPU = instruções
programa × ciclos

instrução ×
tempo
ciclo

|código| × CPI × |ciclo|

• tamanho do código – depende de algoritmo e compilador

• CPI – depende do Conj de Instruções e organização da CPU

• ciclo – depende da organização e implementação da CPU

• objetivo: minimizar tempo e não termos isolados

UFPR DInf BCC 44

Arquitetura II — conj de instruções 2007-1

revisão: Definição de Arquitetura

• Conjunto de Instruções: visão do programador, compilador

• Organização: visão do projetista do computador

• Implementação I: visão do projetista do processador

• Implementação II: visão do projetista dos circuitos integrados

UFPR DInf BCC 43

Arquitetura II — conj de instruções 2007-1

Conjunto de Instruções ≡ interface hw-sw

Interface bem projetada:

• sobrevive a muitas implementações (portabilidade,

compatibilidade)

• é usada de muitas maneiras (generalidade)

• provê funcionalidade conveniente aos ńıveis acima

• permite implementação eficiente nos ńıveis abaixo

UFPR DInf BCC 48

Arquitetura II — conj de instruções 2007-1

Conjunto de Instruções ≡ interface hw-sw

CDI especifica a funcionalidade do processador

• quais operações ele suporta

• quais mecanismos de armazenamento suporta e sua utilização

• como programador/compilador define programas a executar

Estudo de CDIs é a parte de arquitetura deste curso;

restante é micro-arquitetura

UFPR DInf BCC 47

Arquitetura II — conj de instruções 2007-1

Conjunto de Instruções

Recorte:

• operações

• operandos

• endereçamento de operandos

• codificação

• implementação

Instruction Set Architecture→ ISA

= parte viśıvel ao programador e ao compilador↔ interface

UFPR DInf BCC 46

Arquitetura II — conj de instruções 2007-1

ISA - operações

10 instruções do x86 mais populares em 5 programas SPECint95:

ord instrução % total

1 load 22

2 desv cond 20 1/5

3 compare 16

4 store 12 ld+st→ 1/3

5 add 8

6 and 6

7 sub 5

8 move reg-reg 4 por que?

9,10 call+ret 1+1

total 96

Amdahl legisla: estas devem ser otimizadas

UFPR DInf BCC 51

Arquitetura II — conj de instruções 2007-1

ISA - operações

tipo exemplo

aritmética e lógica add, sub, and, sll

transferência de dados move, load

controle branch, jump, call

sistema syscall, trap

ponto flutuante fadd, fmul, fdiv, sqrt

decimal addd, convert

string move, comp

multimidia 2D, 3D MMX/SSE

UFPR DInf BCC 50

Arquitetura II — conj de instruções 2007-1

Receita para um “bom” Conjunto de Instruções

implementabilidade

permite implementações numa faixa de preço/desempenho

DEVE permitir implementações de alto desempenho

programabilidade

deve facilitar expressão de programas pelo

programador/compilador

compatibilidade para o futuro e com o passado

implementabilidade e programabilidade através de gerações:

deve garantir que todo sw existente execute

x86: 8086,286,386,486,Pentium{,Pro,II,III,4}

Estas são as 3 “-idades” de um CdI

UFPR DInf BCC 49

Arquitetura II — conj de instruções 2007-1

ISA - operandos no processador

Operandos no processador: acesso rápido & identificação compacta

• Acumulador

∗ código compacto (endereço impĺıcito)

∗ hardware simples

∗ tráfego elevado de/para memória

• Pilha

∗ código compacto (endereço do topo da pilha impĺıcito)

• Registradores

∗ registradores devem ser identificados

∗ espaço de nomes adicional (variáveis em memória e

registradores)

∗ menos acessos à memória

∗ maior velocidade porque regs. são mais rápidos que memória

UFPR DInf BCC 54

Arquitetura II — conj de instruções 2007-1

ISA - operandos no processador

rr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrr rr
rrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrr

rr
rrrrrrrrrrrrrrrrr

rr
rrrrrrrrrrrrrrrrrrrr

p p

rr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrr rr
rrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrr

rrrrrrrrrrrrrrrrr rrr
rrrrrrrrrrrrrrrrr

rrr
rrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrr rr
rrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr

rrr
rrrrrrrrrrrrrrrrrrrrr

rrr
rrrrrrrrrrrrrrrrr rrr

rrrrrrrrrrrrrrrrr
rr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrr rr

rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrr
rrrrrrrrrrrrrrrrr rrr

rrrrrrrrrrrrrrrrr

rr
rrrrrrrrrrrrrrrrrrrr

reg-mem

TOS

pilha acumulador

processador

memoria

reg-reg
load-store

UFPR DInf BCC 53

Arquitetura II — conj de instruções 2007-1

ISA - operandos

• Localização dos operandos

∗ no processador

∗ em memória

• Quantos bits são necessários para identificar um operando?

∗ no processador

∗ em memória

• Quanto tempo é necessário para acessar um operando?

∗ no processador

∗ em memória

UFPR DInf BCC 52

Arquitetura II — conj de instruções 2007-1

ISA - de volta a Lilliput

Ordem dos bytes nas palavras

• big endian: byte com endereço xxxx002 na posição mais

significativa de uma palavra de 32 bits Motorola (powerPC), IBM

(r6000), SPARC

end byte MS ms

0 0 1 2 3

4 4 5 6 7

• little endian: byte com endereço xxxx002 na posição menos

significativa de uma palavra de 32 bits DEC (alpha),

Intel (x86)

end byte MS ms

0 3 2 1 0

4 7 6 5 4

• ambos – MIPS (e powerPC)
UFPR DInf BCC 57

Arquitetura II — conj de instruções 2007-1

ISA - operandos para operações de ULA

• Instruções da ULA combinam operandos

• número de operandos é impĺıcito:

∗ dois: r1 ← r1 OP r2

código denso

destrutivo porque sobre-escreve destino

assimétrico (A–B, A/B)

∗ três: r1 ← r2 OP r3

• operandos em registradores ou em memória

∗ registrador + memória (IBM, x86) NÃO ORTOGONAL

∗ reg + reg (RISCs, Cray) ortogonal com load/store

∗ qualquer combinação (VAX) ortogonal,

. instr com tamanho variável

UFPR DInf BCC 56

Arquitetura II — conj de instruções 2007-1

ISA - operandos no processador

código para computar C = A + B

pilha acumul reg-mem reg-reg

push A load A load R1,A load R1,A

push B add B add R3,R1,B load R2,B

add store C store R3,C add R3,R1,R2

pop C store R3,C

qq
qqqqqqqqqqqq qq

qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq

qqqqqqqq
qq
qq

qqqqqq

qq

.

qq
qqqqqqqqqqqq qq

qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq

qqqqqqqq
qq
qqqqqq qq

qqqqqq

qq

qq
qqqqqqqqqqqq qq

qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq

qqqqqqqq

qq

qq
qqqqqq qq

qqqqqq
qq

qqqqqqqqqqqq qq
qqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqq

qq
qqqqqq qq

qqqqqq

qq
reg-mem

TOS

pilha acumulador reg-reg

processador

memoria

UFPR DInf BCC 55

Arquitetura II — conj de instruções 2007-1

ISA - modos de endereçamento

modo ender efetivo exemplo

a registrador R add r4,r3

imediato imed add r4,#8

deslocamento M[R+imed] add r4,100(r1)

indireto a registrador M[R] add r4,(r1)

indexado M[Ri+Rj] add r3,(r1+r2)

absoluto M[imed] add r1,(1001)

indireto a memória M[M[R]] add r1,@(r3)

auto-incremento M[R]; R += d add r1,(r2)+

auto-decremento R –= d; M[R] add r1,–(r2)

escalado M[Ri + Rj*d] add r1,100(r2)[r3]

Apenas absoluto e indireto a registrador são fundamentais;

outros podem ser derivados destes
UFPR DInf BCC 60

Arquitetura II — conj de instruções 2007-1

ISA - alinhamento de operandos

• sem restrições
⋆ software mais simples

⋆ hardware deve detectar e fazer ≥ 2 referências à memória

⋆ lógica complexa; tempo extra em todas as instruções (pior caso)

⋆ dificulta adiantamento de loads no pipeline

• com restrições
⋆ software deve garantir alinhamento

⋆ hardware verifica e provoca excessão se for o caso

⋆ adiantamento de loads mais simples

• mais ou menos
⋆ mais de uma instrução para acessos desalinhados (load-half)

⋆ compilador ajuda no alinhamento

⋆ hardware verifica e provoca excessão se for o caso

UFPR DInf BCC 59

Arquitetura II — conj de instruções 2007-1

ISA - alinhamento de operandos

• Palavras tem “tamanho natural”:

byte, half-word, word, doubleword

float, double, quadword

• Operando alinhado pelo tamanho natural se

endereço mod tamanho = 0
⋆ palavra alinhada: ender mod 4 = 0 1024, 1028, 102c, 1030,...

mod 4 porque palavra tem tamanho de 4 bytes

⋆ palavra desalinhada ender mod 4 6= 0 1025 ou 1026 ou 1027

meia-palavrabyte meia-palavra

byte 3byte 2byte 1byte 0 byte 3byte 2byte 1byte 0

alinhados não-alinhado

UFPR DInf BCC 58

Arquitetura II — conj de instruções 2007-1

ISA - modos de endereçamento

Uso de imediatos: Alpha SPEC CINT2000 e CFP2000

1/5-1/4 das instr de ULA e de movim de dados usam constantes

p p

p p

p p

p p

p p

p p

ppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppp
pp

pppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppp

pp ppp
ppp

pp
ppp

pppppppppppppppppppppppppppppppppppppp

p p p p p p p p p p p

p p p
p p p

p p p
p p p p

p p p p
p p p p

p p p p p
p p p p p p

pp p p
p p p

p p p
p p p

p p p p
p p p p

p p p p
p p p

p p p
p p p

p p p p p
p p p p p p

pp p p p p p p p
p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p p p
p p p p p p p p

p p p p
p p p p

p p p p
p p p

p p p p
p p p

p p p
p p p

p p p

ppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppp

pp ppp

p p p p p p p p p p p

p p p p p
p p p p p

p p p p p p p p p p p p p p p p p p p p
pp
pp
pp
pp
pp
p p
pp
pp
pp
pp
pp
pp
pp
ppp p

p p p
p p p

p p p
pp p p p p

p p p p p
p p p p p p p p

p p p p p p p p p p p p p
p p p p p p

pp p
p p p p p p p p p p p

p p p p p p p p p p p p p p p p
p p p p

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%

bits para representar imediato

inteiros
cumulativo
p.flutuante
cumulativo

UFPR DInf BCC 63

Arquitetura II — conj de instruções 2007-1

ISA - modos de endereçamento

• Distância dos deslocamentos (LD e ST)

∗ 16 bits cobre 99% dos casos (dist ≤ ± 32K bytes/pals)

Alpha (SPEC CINT2000 e CFP2000)

• Uso de imediatos (tamanho das constantes)

∗ 1/5 a 1/4 das instruções de ULA e movimentação de dados

usam constantes

∗ ≈ 90% das constantes são representadas em ≤16 bits

instruções suportam constantes de 16bits

(como representa maiores?)

∗ 20 a 30% das constantes são negativas

UFPR DInf BCC 62

Arquitetura II — conj de instruções 2007-1

ISA - modos de endereçamento

55%
40%

32%TeX
spice
gcc

43%
17%

39%

TeX
spice
gcc

24%
3%

11%

TeX
spice
gcc

6%

0%
16%

TeX
spice
gcc

1%
6%

1%TeX
spice
gcc

deslocamento

imediato

indireto a registr

escalado

indireto a memória

VAX em 3 programas

Uso dos modos de
endereçamento:

do SPEC89

UFPR DInf BCC 61

Arquitetura II — conj de instruções 2007-1

ISA - controle de fluxo de execução

• Cada instrução é auto-contida (6= if-then-else, do-until)

• Seqüência de execução de instruções é determinada pelo PC

∗ execução seqüencial: PC++

∗ instruções mudam conteúdo do PC explicitamente:

PC← ENDER

• Aspectos importantes:

∗ desvios condicionais (toma desvio ou segue seqüencialmente)

∗ determinação do endereço de destino

∗ ligação para endereço de retorno de funções

∗ salvamento de estado

∗ interface com sistema operacional

UFPR DInf BCC 66

Arquitetura II — conj de instruções 2007-1

Administrativamente falando...

Todos devem ler o artigo sobre o Cray-1 para a próxima aula

The CRAY-1 Computer System, R M Russel, CACM 21(1), Jan 78

instruções vetoriais:

• addv v1,v2,v3 # for (i=0;i<64;i++)

v1[i]=v2[i]+v3[i];

• encadeamento (chaining):

for (i=0;i<64;i++) R[i] = N[i]+ 3.1415*M[i];

chain: ldv v1,endM

ldv v6,endN

muliv v1, 3.1415

addv v5,v1,v6

stv v5,endR

“sáıda” do ldv passa direto para muliv, para addv e para stv

UFPR DInf BCC 65

Arquitetura II — conj de instruções 2007-1

Administrativamente falando...

• Avaliação:

∗ BCC
⋆ 2 provas 35% + 35%

⋆ trabalho 20%

⋆ participação nas aulas de exerćıcios 10%

∗ Mestrado
⋆ 2 provas 30% + 30%

⋆ trabalho 20% (entrega na semana das finais)

⋆ participação nas aulas de exerćıcios 20%

• 5 aulas de exerćıcios
⋆ listas distribúıdas na aula

UFPR DInf BCC 64

Arquitetura II — conj de instruções 2007-1

ISA - controle de fluxo de execução

Tipos de desvios: Alpha SPEC CINT2000 e CFP2000

100%80%60%40%0%

freqüência de instruções de desvio

call+return

jump

desvio
condicional

20%

8%
19%

6%

10%

82%
75%

média pto flutuante

média inteiros

UFPR DInf BCC 69

Arquitetura II — conj de instruções 2007-1

ISA - controle de fluxo de execução

Tipos de instruções de controle:

• chamadas de sistema syscall, trap

∗ semelhante à chamada de função

∗ endereço de destino definido no opcode

∗ atravessa fronteira de proteção

• retorno de chamada de função reti

∗ semelhante ao retorno de função

∗ opcode diferente da chamada

∗ atravessa fronteira de proteção

UFPR DInf BCC 68

Arquitetura II — conj de instruções 2007-1

ISA - controle de fluxo de execução

Tipos de instruções de controle:

• desvios condicionais (desvia ou prossegue) branch

• saltos incondicionais jump

• chamada de função call

∗ geralmente incondicionais

∗ necessita ligação para endereço de retorno

∗ pode salvar estado (registradores)

• retorno de função ret

∗ geralmente incondicionais

∗ retorno indireto através do endereço de ligação

∗ pode salvar estado (registradores)

UFPR DInf BCC 67

Arquitetura II — conj de instruções 2007-1

ISA - controle de fluxo de execução

Mecanismos para especificar endereço de destino:

• endereço arbitrário como load/store

PC ⇐ PC + (R1+desloc)

versátil e ortogonal

mais demorado para decodificar

executa desvio e computa destino em estágios separados

do pipeline (muda PC na busca e computa ender em exec)

P

C

qq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
qq

computa destinoaltera PC

qq

qq
qq

qq

...
....
....
...
....
....
.....
...
....
...
....
....
...
....

...
....
....
...
....
....
...
.....
....
....
...
....
....
...

...
....
....
...
....
....
...
.....
....
....
...
....
....
...

...
....
....
...
....
....
.....
...
....
...
....
....
...
....

....
....
...
....
....
...
.....
....
...
....
....
...
....
...

....
....
...
....
....
...
.....
....
...
....
....
...
....
...

....
....
...
....
....
...
.....
....
...
....
....
...
....
...

....
....
....
...
....
....
....
....
....
...
....
...
....
...

...
....
....
...
....
....
.....
...
....
...
....
....
...
....

...
....
....
...
....
....
...
.....
....
....
...
....
....
...

....
....
...
....
....
...
.....
....
...
....
....
...
....
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
...
....
....
...
....
.....
....
...
....
...
....
....
...

....
....
...
....
....
...
.....
....
...
....
....
...
....
...

decodificaçãobusca execução memória resultado

UFPR DInf BCC 72

Arquitetura II — conj de instruções 2007-1

ISA - controle de fluxo de execução

• Mecanismos de decisão de desvios:

∗ registrador de status (condition code)

PC ⇐ (R1>R2 ? PC+desloc : PC)

operação de ALU no caminho cŕıtico da resolução do

desvio

∗ registrador de condição (CC = condition code register)

R1 ⇐ (R2 - R3) mudaCC

PC ⇐ (CC ? PC+desloc : PC)

necessita estado adicional (CC)

dificulta reordenação de código (pelo efeito colateral)

∗ registrador de uso geral

R1 ⇐ (R2 > R3)

PC ⇐ (R1>0 ? PC+desloc : PC)

pouco estado adicional

usa registrador inteiro para poucos bits
UFPR DInf BCC 71

Arquitetura II — conj de instruções 2007-1

ISA - controle de fluxo de execução

Tipos de mudança no fluxo:

• condicional ou incondicional

• salva conteúdo do PC

• o endereço de destino

endereço fixo (imediato ou PC+imediato)

definido em tempo de execução (registrador)

UFPR DInf BCC 70

Arquitetura II — conj de instruções 2007-1

ISA - controle de fluxo de execução

Mecanismos para especificar endereço de ligação/retorno:

• necessário para retorno de função e chamada de sistema

• registrador impĺıcito (R31 no MIPS)

registrador deve ser salvo antes da próxima chamada

• registrador expĺıcito

pouquinho mais de flexibilidade

• pilha de chamada de funções SE pilha é parte da arquitetura

complexidade adicional:

instruções tipo push e pop

hardware deve detectar over/under-flow na pilha

UFPR DInf BCC 75

Arquitetura II — conj de instruções 2007-1

ISA - controle de fluxo de execução

Mecanismos para especificar endereço de destino:

• indireto a registrador (endereço em registrador)

PC ⇐ R1

código compacto

destino a qualquer distância

destino pode ser computado dinamicamente (retorno de função)

instrução adicional para carregar registrador

muda PC e “calcula” destino em estágios diferentes

• endereço impĺıcito no opcode (vetor de syscalls)

necessário para interface com sistema operacional

UFPR DInf BCC 74

Arquitetura II — conj de instruções 2007-1

ISA - controle de fluxo de execução

Mecanismos para especificar endereço de destino:

• relativo ao PC (deslocamento em imediato)

PC ⇐ (PC+desloc)

código independente de posição facilita ligação

destino pode ser computado no estágio de busca/decodificação

imediato com 12 bits cobre 99% dos casos (MIPS)

. (dist ≤ ± 2K pals)

imediato com 16 bits cobre 99,5% dos casos (ALPHA)

. (dist ≤ ± 32K pals)

MAS endereço de destino não pode ser muito distante

UFPR DInf BCC 73

Arquitetura II — MIPS 2007-1

ISA - resumo

Instruction Set Architecture = ISA

= parte viśıvel ao programador e ao compilador

• operações popularidade vs implementação

• operandos popularidade vs implementação

• endereçamento de operandos código compacto vs flexibilidade

• codificação código compacto vs decodificação

facilidade de implementação em pipeline

UFPR DInf BCC 78

Arquitetura II — conj de instruções 2007-1

ISA - codificação das instruções

Tipos de codificação: comprimento variável, fixo e h́ıbrido

operaçao modo1 ender1

operaçao
modo1 modo2 ender

ender2ender1modo1

Hibrido: IBM 360/370, MIPS16, TI TMS5320c54x

ender3ender2ender1operaçao

Fixo: Alpha, ARM, MIPS, PowerPC, SPARC

operandos
· · ·modo1 modoN enderN

operaçao
ender1

Variavel: VAX, Intel x86

UFPR DInf BCC 77

Arquitetura II — conj de instruções 2007-1

ISA - controle de fluxo de execução

Salvar e recompor estado nos saltos/desvios

• que estado salvar

∗ chamadas de função =⇒ registradores (CISCs)

∗ chamadas de sistema =⇒ registradores, PC, flags, PSW

• ISA/hardware não necessita salvar registradores

∗ função que chama salva regs em uso caller save

∗ função chamada salva regs que vai usar callee save

• ISA/hardware pode salvar registradores

∗ VAX call

∗ pressupõe convenção de chamada/retorno pelo compilador

• processadores recentes não fazem salvamento

mas SPARC tem janelas de registradores

UFPR DInf BCC 76

Arquitetura II — MIPS 2007-1

Compiladores 0

Função do compilador:

• todos os programas corretos executam corretamente

• maioria dos programas compilados executa rapidamente

• compilação rápida

• suporte a depuração

bloco básico = trecho de código entre desvios

UFPR DInf BCC 81

Arquitetura II — MIPS 2007-1

revisão: Conjunto de Instruções

• Instruction Set Architecture = ISA

= parte viśıvel ao programador e ao compilador

• contrato entre hardware e software

• simplifica compilador se

∗ ortogonal

∗ regular

∗ facilitar composições

• codificação simples e regular simplifica hardware
⋆ operações popularidade vs implementação

⋆ operandos popularidade vs implementação

⋆ endereçamento de operandos código compacto vs flexibilidade

⋆ codificação código compacto vs decodificação
facilidade de implementação em pipeline

UFPR DInf BCC 80

Arquitetura II — MIPS 2007-1

revisão: Desempenho

Equação do desempenho: o que interessa é o tempo total!

tempo de CPU = instruções
programa × ciclos

instrução ×
tempo
ciclo

|código| × CPI × |ciclo|

Lei de Amdahl: o que interessa é o desempenho global!

Ganhototal =
1

(1− Fracmelhor) + (Fracmelhor / Ganhomelhor)

UFPR DInf BCC 79

Arquitetura II — MIPS 2007-1

Compiladores 0 - operações nos estágios

• tradução para representação intermediária

• expansão de funções inlining

• otimização de loops desenrolar; código invariante

• eliminação da variável de indução cálculo de ı́ndices

• eliminação de sub-expressões comuns cálculos repetidos

• otimizações de saltos

• propagação de constantes variável que é constante

• alocação de registradores

• strength reduction mult vs soma+desloca

• escalonamento do pipeline reordenação; branch delay slots

• tradução para linguagem de máquina

UFPR DInf BCC 84

Arquitetura II — MIPS 2007-1

Compiladores 0 - estilos de transformação

• otimização no alto ńıvel

∗ efetuada na linguagem de alto ńıvel

para uso pelos outros estágios

• otimização local

∗ otimização somente em blocos básicos

• otimização global

∗ otimização que atravessa blocos básicos

∗ transformação de loops

• alocação de registradores

∗ associa registradores com operandos

• otimização dependente do processador

∗ depende da arquitetura

UFPR DInf BCC 83

Arquitetura II — MIPS 2007-1

Compiladores 0

estágio depende de função

front end linguagem produz representação intermediária

otimizador de linguagem transformação de loops

alto ńıvel (pouco) integração de funções

otimizador máquina otimização local e global

global (pouco) alocação de registradores

gerador de máquina seleção de instruções

código (muito) otimização dependente de máquina

UFPR DInf BCC 82

Arquitetura II — MIPS 2007-1

MIPS64

• endereços alinhados de 32 bits

• modo de endereçamento é deslocamento load/store

• tipos de dados simples: byte half word doubleword, single double

• registradores

∗ 32 regs de uso geral, de 64 bits (R0 = 0) regs

∗ 32 regs de ponto flutuante de 64 bits regsPF

∗ registrador de status para ponto flutuante

∗ sem registrador de status para inteiros (6 ∃CondCodeReg)

• três formatos de instrução com mesmo tamanho

UFPR DInf BCC 87

Arquitetura II — MIPS 2007-1

Conjunto de Instruções do MIPS

Projeto de RISCs na década de 80 para obter

implementação de pipelines num único CI

Reduced Instruction Set Computers

reduced == simples, e não pequeno

• ênfase em

∗ decodificação rápida

∗ instruções com tamanho fixo

∗ codificação regular

• compilador poderia escalonar instruções para execução

• código grande/esparso

UFPR DInf BCC 86

Arquitetura II — MIPS 2007-1

Compiladores 0 - do que eles gostam?

• quem escreve um compilador deseja

∗ regularidade simplifica análise de casos

∗ ortogonalidade suporta todas as combinações

∗ composabilidade primitivas ao invés de soluções

∗ as três permitem operações simples combinadas em operações complexas

• compiladores efetuam análise de casos gigantesca

∗ opções demais dificultam escolhas

• conjuntos de instruções ortogonais quanto a

∗ operações tipos de dados modos de endereçamento

∗ completude

uma, ou condições de desvio→ eq lt

todas as soluções, cond de desvio→ eq ne lt gt le ge

mas não só algumas escolhas idiossincráticas

UFPR DInf BCC 85

Arquitetura II — MIPS 2007-1

MIPS

• ponto flutuante

∗ add/sub/mult/div single/double

∗ conversões de-para inteiros

∗ desvios (liga/desliga bits para desvios)

• controle

∗ desvios condicionais: =0 6=0 bits PF

∗ jump/jr jump-register

∗ jal jump-and-link-register

∗ trap/rte return from exception

UFPR DInf BCC 90

Arquitetura II — MIPS 2007-1

MIPS

• transferência de dados

∗ load/store byte/half/word/doubleword

∗ load/store PF single/double

∗ move de-para regs e regsPF

• ULA

∗ add/sub/mult/div

∗ and/or/xor

∗ sll/srl (lógicos), sra (aritmético) deslocamentos

∗ loadHigh (usado para constantes de 32 bits)

UFPR DInf BCC 89

Arquitetura II — MIPS 2007-1

MIPS - modos de endereçamento

modo ender efetivo exemplo

a registrador R add r4,r3,r2

imediato imed add r4,#8

deslocamento M[R+imed] add r4,100(r1)

indireto a registrador [R] jr r4

absoluto ender j ender

UFPR DInf BCC 88

Arquitetura II — MIPS 2007-1

MIPS

• instruções regulares facilitam decodificação→ hw rápido

• instruções simples facilitam construção do compilador e

geração de código→ sw rápido

pp pp pp pp pp pp pp pp pp pp pp

pp pp pp pp

pp pp pp pp pp pp pp

r1r3r2registrador

add r1,r2,r3

6 5 5 5 5 6jr $31

6 26

enderjump

j ender

jal ender

oper

6 bits 5 5 16

addi r1,r2,cnst

lw $8,desl($15)

r2 r1imediato imed-16

UFPR DInf BCC 93

Arquitetura II — MIPS 2007-1

MIPS

Formatos das instruções

• formato-R

∗ instruções de ALU com três operandos

• formato-J

∗ saltos incondicionais

pp pp pp pp pp pp pp pp pp pp pp

pp pp pp pp

r1r3r2registrador

add r1,r2,r3

6 5 5 5 5 6jr $31

6 26

enderjump

j ender

jal ender

oper

UFPR DInf BCC 92

Arquitetura II — MIPS 2007-1

MIPS

Formatos das instruções

• formato-I

∗ instruções de ALU com imediatos

∗ load e store

∗ desvios condicionais

∗ jump-register

pp pp pp pp pp pp pp pp

6 bits 5 5

addi r1,r2,const
r1 imed-16

16lw $8,desl($15)

imediato r2

UFPR DInf BCC 91

Arquitetura II — MIPS 2007-1

MIPS – circuitos combinacionais

r
r
r

r
r
r

r
r
r

rr

rr

pp
rr

rr

pp
rr

rr

pppppppppppppppppppppppppppp

rrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrr rr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

O

A0

A1

An−1

S

lg(n)

A

O0

O1

On−1

S

lg(n)

demultiplexadormultiplexador

O0

O1

On−1

lg(n)

A

decodificador

A B

Resstat

oper ULA

UFPR DInf BCC 96

Arquitetura II — MIPS 2007-1

MIPS - microarquitetura

Microarquitetura = implementação do conjunto de instruções

qqq
qqqqqqqqqqqqqqq qqq

qqqqqqqqqqqqqqq

ppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppppppppppppppppppppppppp

pppppppppppppppppppppppppp
pppppppp pp

qqqqqqqqqqqqqqqqqqq
qqq

qqq
qqqqqqqqqqqqqqq

qqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq

qqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq

qqq
qqqqqqqqqqqqqqq

linhas de controle

barramento

circuito

controlador

unidade
funcional

unidade
funcional

unidade
funcional de

dados

de status
linhas

Estrutura↔como componentes são interligados

Seqüenciamento↔movimento de dados entre componentes

estrutura = datapath estática

seqüenciador = controle dinâmico
UFPR DInf BCC 95

Arquitetura II — MIPS 2007-1

Administrativamente falando...

ou

filmes imperd́ıveis para computeiros:

Enigma→ ponto de vista dos europeus que quebraram o código

U571→marinheiros/cowboys capturam máquina de codificação

assistam aos dois

Quem conseguir, leia The enigma of inteligence que é a biografia de

Alan Turing, tido como o pai da IA além de muitas outras coisas

UFPR DInf BCC 94

Arquitetura II — MIPS 2007-1

MIPS – memória idealizada

pp
pppppppppppppppppppp
pppppppppppppppp

clk
writeEnable

endereço

dadosEscrita
dadosLeituraMemória

Mágica

Modelo simplificado da memória

• leituras e escritas completam em 1 ciclo

∗ leitura pode ocorrer a qualquer instante (combinacional)

∗ escrita efetuada na borda ascendente do relógio

escrita habilitada

→ dados e endereços estáveis na borda do relógio

• modelo mais realista será discutido adiante

UFPR DInf BCC 99

Arquitetura II — MIPS 2007-1

MIPS – bloco de registradores

t

t

t
q
q
q

q
q
q

q
q
q

q
q
q

..

..

..qqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqqq

..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
.

.....................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....................

qq
qq

qqqqqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Q

D

D

D

en

en

en

registrador0

Q

Q

registrador1

registrador31

ws

wEn

0

31

5
clk

wd

32

rs2

5

32

32

rs1

5

32
rd1

32
rd2

32

1

wrEnable
clk

readSel2

writeSel
writeData

readSel1
rs2

ws

wEn

wd

rs1

readData1

readData2

rd1

rd2

UFPR DInf BCC 98

Arquitetura II — MIPS 2007-1

MIPS – circuitos seqüenciais

ppppppppppppppppppppppppppp
pp

pppppppppppppppppppppppppp
ppp

r rr

r rr

r rr

ppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
pppppppppp ppp

ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
pppppppppp ppp

ppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppp

pp

pp

ppp
ppppppppppppppppppppppp

pp
pppppppppppppppp

ppp
ppppppppppppppppp

pp

p p p p p p p p pppppppppppppppp
pp
pppppppppppppppp

ppppp p p p p p
pp

pppppppppppppppp

pp

ppp
ppppppppppppppppp

pp

ppp
ppppppppppppppppp

pp

ppp
ppppppppppppppppp

clk

en

D

Q

D

Q

flip
flop

en

clk

ff

Q1

D1

ff

Q0

D0

en
clk

ff

Qn−1

Dn−1

registrador

UFPR DInf BCC 97

Arquitetura II — MIPS 2007-1

MIPS - instruções de ALU (ii)

qq

qq

rr
rrrrrr

rrr
rrrrrrr

...
....
...
....
....
...
....
....
....
....
....
...
....
....
...
.

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq qq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
....
...
....
....
...
....
....
....
....
....
...
....
....
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ulaBextS
regC

qq

qq
qq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qq

qq
qqqqqqqqqqqqqqqqqqqqqqqq

rrr
rrrrrrr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

..........

..........

..........

..........

....
...
....
...
....
....
...
.....
....
...
....
....
...
....
....

....
...
....
....
...
....
....
....
....
....
...
....
....
...
....

....
....
...
....
....
...
....
.....
...
....
....
....
...
....
...

..........

....
...
....
....
...
....
....
....
....
....
...
....
....
...
....

ULA

registradores

leRegA

escRegC

dadRegC

A zero

regA

regB

regD

oper

$2

$3

$1
B

add $1, $2, $3 # $1 <- $2 + $3

leRegB

escRes operULA

opcode

UFPR DInf BCC 102

Arquitetura II — MIPS 2007-1

MIPS - instruções de ALU (i)

qq

qq

....
...
....
....
...
....
....
....
....
....
...
....
....
....
...

....
...
....
...
....
....
...
.....
....
...
....
....
...
....
....

...
....
...
....
....
...
....
....
....
....
....
...
....
....
...
.

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq qq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
....
...
....
....
...
....
....
....
....
....
...
....
....
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ulaBextS
regC

qq

qq
qq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qq

qq
qqqqqqqqqqqqqqqqqqqqqqqq

...
....
....
...
....
....
...
.....
....
...
....
....
...
....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

..........

..........

..........

..........

....
...
....
...
....
....
...
.....
....
...
....
....
...
....
....

....
...
....
....
...
....
....
....
....
....
...
....
....
...
....

....
....
...
....
....
...
....
.....
...
....
....
....
...
....
...

..........

....
...
....
....
...
....
....
....
....
....
...
....
....
...
....

ULA

registradores

leRegA

escRegC

dadRegC

A zero

opcode

regA

regB

regD

oper

$2

$3

$1
B

add $1, $2, $3 # $1 <- $2 + $3

leRegB

escRes operULA

UFPR DInf BCC 101

Arquitetura II — MIPS 2007-1

MIPS - busca de instruções

registrador de
instrução

x

qq

pp
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqq

qq
qq

qq

sss
sssssssssss

sss
ss

sssssssssss endLer
instr

P
C

4

memInstr

• conteúdo do PC indexa memória

• ao final do ciclo

∗ nova instrução no Registrador de Instrução

∗ PC é incrementado

UFPR DInf BCC 100

Arquitetura II — MIPS 2007-1

MIPS - acesso à memória (ii)

rrr
rrr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqq qq

...
....
....
...
....
...
....
.....
...
....
....
....
...
....

..

..

rr

rr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

qq
...
....
....
...
....
....
...
.....
...
....
....
...
....
....

regC

ulaB

y

yy

y

rrr
rrr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

..........

..........

...
....
...
....
....
...
....
.....
...
....
....
...
....
....

....
....
...
....
....
....
....
....
....
...
....
....
...
...

...
....
....
...
....
....
...
.....
...
....
....
...
....
....

rrr
rrr

qq

qq
qq

qq
qq

qq
qqqqqqq

qq
qq

qq
qq

qq
qqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

rrr
rrr

....
....
...
....
...
....
.....
...
....
....
....
...
....
...

....
...
....
....
...
....
...
.....
....
...
....
....
...
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

registradores

leRegA

leRegB

escRegC

dadRegC

A

opcode

regA

regB

desloc

32

ULA

endLer

endEsc

escDados

B

escReg operULA

16

extSinal

lw $8, desloc($15) # $8 <- M[desloc + $15]

leDados

memDados

escMem

UFPR DInf BCC 105

Arquitetura II — MIPS 2007-1

MIPS - acesso à memória (i)

....
...
....
....
...
....
....
....
....
....
...
....
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqq qq

....
...
....
....
...
....
....
....
....
....
...
....
...

..

..

qq

qq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
....
...
....
...
....
.....
...
....
....
...
....
....

...
....
....
...
....
...
.....
....
...
....
....
...
....

regC

ulaB

x
xx

x

...
....
...
....
...
....
.....
...
....
....
...
....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

..........

..........

....
...
....
....
...
....
.....
...
....
....
...
....
...

...
....
...
....
....
....
....
....
....
...
....
....
...

...
....
....
...
....
...
.....
....
...
....
....
...
....

....
...
....
....
...
....
.....
...
....
....
...
....
...

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
....
....
...
....
....
....
....
....
...
....
....
...

...
....
...
....
...
....
.....
...
....
....
...
....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
....
...
....
....
...
.....
....
...
....
...
....
....

registradores

leRegA

leRegB

escRegC

dadRegC

A

opcode

regA

regB

desloc

32

ULA

endLer

endEsc

escDados

memDados

B

escReg

lw $8, desloc($15) # $8 <- M[desloc + $15]

sw $8, desloc($15) # M[desloc + $15] <- $8

operULA escMem

16
extSinal

leDados

UFPR DInf BCC 104

Arquitetura II — MIPS 2007-1

MIPS - instruções de ALU (iii)

qq

qq

qq
qq

...
....
...
....
....
...
....
....
....
....
....
...
....
....
...
.

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq qq

rr
rrrrrrrrrr

rrr
rrrrrrr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ulaBextS
regC

qq

qq
qq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qq

qq
qqqqqqqqqqqqqqqqqqqqqqqq

qq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

..........

..........

..........

..........

....
...
....
...
....
....
...
.....
....
...
....
....
...
....
....

....
...
....
....
...
....
....
....
....
....
...
....
....
...
....

....
....
...
....
....
...
....
.....
...
....
....
....
...
....
...

..........

....
...
....
....
...
....
....
....
....
....
...
....
....
...
....

ULA

registradores

leRegA

escRegC

dadRegC

A zero

opcode

regA

regB

regD

oper

$2

$3

$1
B

add $1, $2, $3 # $1 <- $2 + $3

leRegB

escRes operULA

UFPR DInf BCC 103

Arquitetura II — MIPS 2007-1

MIPS - desvios (i)

...
....
....
...
....
...
.....
....
...
....
....
....
...

....
...
....
....
...
....
.....
...
....
...
....
....
...

qq

qq

...
....
...
....
....
...
.....
....
...
....
....
...
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ulaB

x

x

x

...
....
....
...
....
....
....
....
....
...
....
....
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

..........

..........

...
....
...
....
....
...
.....
...
....
....
....
...
....

....
...
....
....
...
....
.....
...
....
...
....
....
...

....
....
...
....
....
...
.....
...
....
....
...
....
...

....
...
....
...
....
....
....
....
....
...
....
....
...

....
....
...
....
....
...
.....
....
...
....
....
...
...

....
....
...
....
....
...
.....
....
...
....
...
....
...

....
...
....
....
...
....
.....
...
....
...
....
....
...

....
...
....
....
...
....
.....
...
....
...
....
....
...

...
....
....
...
....
....
....
....
....
...
....
....
...qqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
....
...
....
....
...
.....
...
....
....
...
....
...

..

..

qq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqq

..........

...
....
...
....
....
...
.....
...
....
....
....
...
....

...
....
...
....
...
....
.....
...
....
....
...
....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

registradores

leRegB

escRegC

A
regA

regB

desloc

16 32

instr

memInstr

P
C

4

1 0

$2

leRegA
$1

B

if ($1==$2) PC <- PC+4 + (desloc<<2)

zero

beq $1, $2, desloc

endInstr

extSinal

opcode

proxPC

dadRegC

escReg

ULA

sll2

oper=sub

UFPR DInf BCC 108

Arquitetura II — MIPS 2007-1

MIPS - acesso à memória (iv)

rrr
rrr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqq qq

....
...
....
...
....
....
...
.....
....
...
....
....
....
...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

qq
....
...
....
....
...
....
...
.....
....
...
....
....
...
....

qq

qq

regC

ulaB

y

yy

y

rrr
rrr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

..........

..........

...
....
....
...
....
....
...
.....
....
...
....
....
...
....

...
....
...
....
....
....
...
.....
....
...
....
....
...
....

....
...
....
....
...
....
...
.....
....
...
....
....
...
....

rrr
rrr

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qq
qq

qq
qqqqqqqq

qq
qq

qq
qq

qq
qqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
....
...
....
....
...
....
....
....
....
....
...
....
....

rrr
rrr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

rrr
rrr

registradores

leRegA

leRegB

escRegC

dadRegC

A

opcode

regA

regB

desloc

32

ULA

endLer

endEsc

escDados

B

escReg

sw $8, desloc($15) # M[desloc + $15] <- $8

operULA

16

extSinal

leDados

memDados

escMem

UFPR DInf BCC 107

Arquitetura II — MIPS 2007-1

MIPS - acesso à memória (iii)

rr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. rr
rrrrrr

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqq qq

rr

..

..

rr

rr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
....
....
...
....
....
...
.....
...
....
....
...
....
...

regC

ulaB

x
xx

x

rr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

..........

..........

...
....
....
...
....
...
.....
....
...
....
....
...
....

....
...
....
....
....
...
.....
....
...
....
....
...
...

....
....
...
....
....
...
.....
...
....
....
...
....
...

rr

qq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

rr

....
...
....
...
....
....
....
....
....
...
....
....
...

....
....
...
....
...
....
.....
...
....
....
...
....
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

registradores

leRegA

leRegB

escRegC

dadRegC

A

opcode

regA

regB

desloc

32

ULA

endLer

endEsc

escDados

B

escReg operULA

16
extSinal

lw $8, desloc($15) # $8 <- M[desloc + $15]

leDados

memDados

escMem

UFPR DInf BCC 106

Arquitetura II — MIPS 2007-1

MIPS - CPU completa

v v

v

v

v

v

....
...
....
....
...
....
....
....
....
....
...
....
...

...
....
....
...
....
...
.....
....
...
....
....
...
....

...
....
...
....
...
....
.....
...
....
....
...
....
...
.

...
....
....
...
....
...
.....
....
...
....
....
...
....

....
....
...
....
....
...
.....
....
...
....
...
....
...

....
....
...
....
....
...
.....
....
...
....
...
....
...

....
...
....
....
...
....
.....
...
....
....
...
....
...

qq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

..
...
...
...
..
..
...
....
...
..
..
...
...
...

....
....
...
....
....
...
.....
....
...
....
....
...
...

....
....
...
....
....
...
.....
...
....
....
...
....
...

qqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
...
..
..
....
...
...
...
..
..
...
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

...
...
...
..
...
...
....
...
...
...
...
...
..

....
....
...
....
...
....
.....
...
....
....
...
....
...

...
....
...
....
....
...
.....
...
....
....
...
....
....

....
...
....
....
...
....
.....
...
....
....
...
....
...

...
....
...
....
....
....
....
....
...
....
....
...
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
....
...
....
....
...
.....
...
....
....
...
....
....

....
....
...
....
...
....
.....
...
....
....
...
....
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

..........

...
....
...
....
...
....
.....
...
....
....
...
....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

qqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqq

qq

qq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqq

...
....
....
...
....
....
....
....
....
...
....
...
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
...
....
...
....
....
....
....
....
...
....
....
...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

registradores

leRegA

leRegB

escRegC

dadRegC

A

ULA

operULA

B

escDados

endEsc

endLer

memDados

leDados

C

4

1 0

instr
endinst

regC

P

sinc memInstr

extSinal

escReg

aluB

zero

sll2

escMem

proxPC

16 32

UFPR DInf BCC 111

Arquitetura II — MIPS 2007-1

MIPS - desvios (iii)

qq
rr

qq

qq

...
....
....
....
...
....
.....
...
....
...
....
....
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ulaB

x

x

x

rr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

..........

..........

....
...
....
...
....
....
....
....
....
...
....
....
...

...
....
...
....
....
...
.....
...
....
....
...
....
....

rr

....
....
...
....
...
....
.....
...
....
....
...
....
...

...
....
....
...
....
....
....
....
....
...
....
...
....

...
....
...
....
....
....
....
....
...
....
....
...
....

rr rr

rrqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

rr

..

..

qq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqq

rr

rr
rrrrrr

qq

registradores

leRegB

escRegC

A
regA

regB

desloc

16 32

instr

memInstr

P
C

4

1 0

$2

leRegA
$1

B

if ($1==$2) PC <- PC+4 + (desloc<<2)

oper=sub

beq $1, $2, desloc

endInstr

extSinal

opcode

proxPC

dadRegC

escReg

ULA

sll2

zero

UFPR DInf BCC 110

Arquitetura II — MIPS 2007-1

MIPS - desvios (ii)

qq
rr

qq

qq

...
....
...
....
....
...
.....
....
...
....
....
...
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ulaB

x

x

x

rr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

..........

..........

...
....
...
....
....
...
.....
...
....
....
....
...
....

....
...
....
....
...
....
.....
...
....
...
....
....
...

....
....
...
....
....
...
.....
...
....
....
...
....
...

....
...
....
...
....
....
....
....
....
...
....
....
...

....
....
...
....
....
...
.....
....
...
....
....
...
...

....
....
...
....
....
...
.....
....
...
....
...
....
...

....
...
....
....
...
....
.....
...
....
...
....
....
...

....
...
....
....
...
....
.....
...
....
...
....
....
...

...
....
....
...
....
....
....
....
....
...
....
....
...qqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
....
...
....
....
...
.....
...
....
....
...
....
...

..

..

qq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqq

...
....
...
....
...
....
.....
...
....
....
...
....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

qq

registradores

leRegB

escRegC

A
regA

regB

desloc

16 32

instr

memInstr

P
C

4

1 0

$2

leRegA
$1

B

if ($1==$2) PC <- PC+4 + (desloc<<2)

oper=sub

beq $1, $2, desloc

endInstr

extSinal

opcode

proxPC

dadRegC

escReg

ULA

sll2

zero

UFPR DInf BCC 109

Arquitetura II — segmentação 2007-1

Modelo seqüencial

Conjunto de instruções de processadores “comuns” define um

modelo seqüencial de execução:

cada instrução é completamente executada

e altera o estado do processador

antes do ińıcio da próxima instrução

Este modelo facilita muito a vida do programador!

UFPR DInf BCC 114

Arquitetura II — segmentação 2007-1

revisão: compiladores

• quem escreve um compilador deseja

∗ regularidade

∗ ortogonalidade

∗ composabilidade

• conjuntos de instruções ortogonais quanto a

∗ operações

∗ tipos de dados

∗ modos de endereçamento

∗ completude

uma, ou condições de desvio =⇒ eq lt

todas as soluções, condições de desvio =⇒ eq ne lt gt le ge

mas não algumas

UFPR DInf BCC 113

Arquitetura II — segmentação 2007-1

MIPS - exerćıcios

Desenhe os diagramas completos do processador para executar

as instruções:

• jump

• jump-and-link

• jump-register

• addi (add imediato)

UFPR DInf BCC 112

Arquitetura II — segmentação 2007-1

Implementação multi-ciclo

instr ciclo 1 2 3 4 5 6 7 8 9 10 11 12 13

ld r1,200(r8) B D E M R

add r2,r1,r6 B D E R

st r2,100(r9) B D E M

CPI =
∑n

j=0 CPIj × Fj

instr freq[%] ciclos

ALU 40 4

load 25 5

store 10 4

desvios 25 4

CPI 4.25

UFPR DInf BCC 117

Arquitetura II — segmentação 2007-1

Implementação multi-ciclo

u

u

u

u
u

rr

rr
rr

rrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqq

qqq
qqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqq

qqq
qqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qq
qqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqq

4

mem
instr

mem
dados

C
P

regs

B

A
regs

busca decod exec mem result
2,5 55 5 2,5

Instrução completa em alguns ciclos de relógio: CPI>1

Tciclo ≥ max(Tbusca , Tdecod , Tex , Tmem , Tres)

≥ 5 unidades de tempo

UFPR DInf BCC 116

Arquitetura II — segmentação 2007-1

Implementação mono-ciclo

t

t

t

t
t

rr

rr
rr

rrrrrrrrrrrrrrrr

rr
rr

rrrrrrrrrrrrrrrr

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qq
qqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqq qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqq

4

mem
instr

mem
dados

C
P

regs

B

A
regs

busca decod exec mem result

2,5 55 5 2,5

⋆ busca – busca instrução que será executada

⋆ decodificação – decodifica instrução e acessa conteúdo dos registradores

⋆ execução – executa operação de ULA ou cálculo de endereço

⋆ memória – acesso à memória de dados

⋆ resultado – armazena resultado no bloco de registradores

UFPR DInf BCC 115

Arquitetura II — segmentação 2007-1

Implementação com segmentos - controle

reg de
instrução

rr

rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrrrrr

rr
rrrrrrrrrrr rr

rrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rrr
rrr

rr
rr

rr
rr
rr

rr rrr

rrr
rrrrrrrrrrrrrrrrr

rr

rr
rrrrrrrrrrrrrrrr

rr

rr
rrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rr

rr rr

rr rr

rr rr

rr rr
rr rr

rrr
rrr
rrrrrrrrrrrrrrr

res

res

res

mem

ex

controle

busca/decod decod/exec exec/mem mem/res

mem

UFPR DInf BCC 120

Arquitetura II — segmentação 2007-1

Implementação com segmentos

v

v

v

v
v

ss

ss
ss

ss

ss
ss

ss

qq

qq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

qq

qq

qqq

qq
qqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

qq

qq

qqq

qq
qqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqq

qq
qqqqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

q

qq

qq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

4

mem mem
dados

C
P

B

A
regs regs

exec res

instr

decod membusca

UFPR DInf BCC 119

Arquitetura II — segmentação 2007-1

Segmentação

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq qqqqqqqqqqqqqqqqqqq

qqq qqqqqqqqqqqqqqqqqqq
qqq

qqqqqqqqqqqqqqqqqqq
qq

qqq

qqqqqqqqqqqqqqqqqqq
qqq

Tp = n/2 Tp = n/2

Tp = n/3 Tp = n/3

Tprop = n

Tp = n/3

lógica combinacional

latência = n

vazão≈ 1/n

vazão≈ 2/n

vazão≈ 3/n

latência > n

latência > n

• Segmentação: adicionar registradores entre unidades funcionais

• vazão é proporcional ao número de estágios

• latência aumenta por causa dos registradores

UFPR DInf BCC 118

Arquitetura II — segmentação 2007-1

Desempenho da segmentação (cont.)

tempo de CPU = núm instr x CPI x peŕıodo do relógio

ganho =
tempo méd/instr sem pipeline
tempo méd/instr com pipeline

=
CPI sem pipeline
CPI com pipeline

× ciclo sem pipeline
ciclo com pipeline

= 1
1 + ciclos perdidos/instr

× profundidade

UFPR DInf BCC 123

Arquitetura II — segmentação 2007-1

Desempenho da segmentação

ganho =
CPI sem pipeline
CPI com pipeline

× ciclo sem pipeline
ciclo com pipeline

instr ciclo 1 2 3 4 5 6 7 8 9 10 11 12 13

ld r1,200(r8) B D E M R

add r3,r4,r6 B D E R

st r2,100(r9) B D E M

ld r1,200(r8) B D E M R

add r3,r4,r6 B D E B R

st r2,100(r9) B D E M R

UFPR DInf BCC 122

Arquitetura II — segmentação 2007-1

Segmentação

• Circuito de dados

∗ componentes diversos com tempos de propagação distintos

∗ instruções usam mais componentes que os dispońıveis

=⇒ riscos estruturais structural hazards

• dependências de dados entre instruções nos diversos estágios

∗ ∃ dependências entre instruções nos estágios

=⇒ dependências de dados data dependencies

• o escalonamento de instruções pode ser afetado

por instruções nos outros estágios

∗ ∃ relacionamento entre instruções nos estágios

=⇒ dependências de controle control dependencies

UFPR DInf BCC 121

Arquitetura II — segmentação 2007-1

Riscos com segmentação

Riscos são condições que levam a comportamento incorreto

se medidas apropriadas não forem tomadas

• Riscos estruturais structural hazards

∗ quando duas instruções diferentes necessitam do

mesmo recurso no mesmo ciclo

• riscos com dados data hazards

∗ quando duas instruções diferentes usam

mesmo local de armazenamento;

∗ resolução do risco deve garantir aparência de que instruções

executaram na ordem seqüencial correta

• riscos de controle control hazards

∗ quando uma instrução determina quais instruções serão

executadas a seguir (desvios, saltos, funções)

UFPR DInf BCC 126

Arquitetura II — segmentação 2007-1

Pipeline não-linear

Instruções completam

fora-de-ordem por causa

das 6=s latências das

unidades funcionais

Tmult=4

Talu=2

Tmem=4

rrr
rrrrrrrrrrr

rrr
rrrrrrrrrrr

rrr
rrrrrrrrrrr

rrrrrrrrrrrrrrrrrr
rr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
r rr

rrrrrrrrrr
rrr
rrrrrrrrrrr

rr
rrrrrrrrrr

rrr
rrrrrrrrrrr

rrr
rrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr rrr

rrrrrrrrrrr

rrr
rrrrrrrrrrr rr

emissão

regs

resultado

alu

mult

execução

busca

mem

Barramento de resultado deve ser reservado quando

instrução é emitida para execução (reg de deslocamento)

→ se barramento estará ocupado, segura execução

UFPR DInf BCC 125

Arquitetura II — segmentação 2007-1

Tipos de processadores segmentados

linear

ppppppppppppppppppp
ppp ppppppppppppppppppp

pp
ppp ppppppppppppppppppp

ppp ppppppppppppppppppp
ppp

ppclock

busca decod exec mem res

não-linear

rrr
rrrrrrrrrrr

rrr
rrrrrrrrrrr

rrr
rrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
r rrr

rrrrrrrrrrr
rrr
rrrrrrrrrrr

rrr
rrrrrrrrrrr

rr
rrrrrrrrrr

rr
rrrrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr rr

rrrrrrrrrr

rrr
rrrrrrrrrrr rr

emissão

regs

resultado

alu

mult

execução

busca

mem

UFPR DInf BCC 124

Arquitetura II — segmentação 2007-1

Resolução de riscos estruturais

Riscos estruturais podem ser reduzidos se:

• cada instrução usa recurso somente uma vez,

• sempre no mesmo estágio, e

• durante um ciclo.

• RISCs são projetados para satisfazer estes requisitos:

⊲ 6 ∃ riscos estruturais além dos acessos à memória

porque conj de instruções é simples, E se pipeline é linear

⊲ por causa do pipeline, memória deve ser capaz de

atender ≥ 1 requisição/ciclo 1 instr/ciclo + 1/4 ld-st/ciclo

UFPR DInf BCC 129

Arquitetura II — segmentação 2007-1

Riscos estruturais

• Duas instruções diferentes necessitam do

mesmo recurso no mesmo ciclo

∗ exemplo: processador em que loads e stores usam

mesma porta de memória que busca de instruções

rrrrrrrrrrrrrrrrrrrrr
rrr
rrrrr

qq

qq

B D M REx

B D REx

B D M REx

B D M REx

B D M REx**

i+1

i+3

i+4

i+2

instrução LOAD

busca deve esperar

M

i

∗ nenhuma instrução completa no oitavo ciclo (bolha)

∗ Arquitetura Harvard versus Arquitetura Princeton

UFPR DInf BCC 128

Arquitetura II — segmentação 2007-1

Riscos com segmentação

• Riscos

∗ potenciais violações de dependências no programa

∗ implementação deve garantir que dependências não são violadas

• Resolução de riscos

∗ estática: compilador/programador garante corretude

∗ dinâmica: hardware verifica conflitos em tempo de execução

• Inter-travamentos no pipeline interlocks

∗ mecanismo para resolução dinâmica de riscos

∗ deve detectar e resolver dependências em tempo de execução

UFPR DInf BCC 127

Arquitetura II — segmentação 2007-1

Riscos com dados - WAR

• Write-After-Read (WAR)

instr j escreve operando em r2 antes que instr i leia-o

i: r4 ← r2 + r3

j: r2 ← r1 - r9

• Risco decorre de uma anti-dependência

dependência artificial causada pelo re-uso do nome r2

• anti-dependências não ocorrem num pipeline linear de 5 estágios:

⊲ leituras ocorrem sempre no estágio 2 (decod)

⊲ escritas ocorrem sempre no estágio 5 (result)

⊲ MAS anti-dependências ocorrem em pipelines não-lineares

p.ex CRAY e super-escalares

UFPR DInf BCC 132

Arquitetura II — segmentação 2007-1

Riscos com dados - RAW

• Read-After-Write (RAW)

instr j tenta ler operando r1 antes que instr i escreva resultado

i: r1 ← r4 + r3

j: r2 ← r1 - r9

• Risco decorre de uma dependência de dados, causada pela

comunicação entre as duas instruções add e sub através de r1

rrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrr
rrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrr
rrrrrrrr

rrr
rrr
rrrrrrrrr

exec membusca

r1← r4+r3

r2← r1-r9

r1 é lido aqui por instr j r1 será atualizado aqui por instr i

decod res

UFPR DInf BCC 131

Arquitetura II — segmentação 2007-1

Riscos com dados

Data Hazards:

Quando duas instruções diferentes usam

mesmo local de armazenamento

Deve parecer que instruções executam na ordem seqüencial correta

i: r1 ← r4 + r5

j: r2 ← r1 - r9 r1 foi produzido por i

k: r1 ← r6 ⊕ r3 valor de r1 em i é sobre-escrito

resultado de i;j;k é o mesmo que i;k;j ?

Convenção: nome do risco é a ordem do programa que

deve ser preservada pela implementação (segment, superescalar)

UFPR DInf BCC 130

Arquitetura II — segmentação 2007-1

Solução simples para RAW (parcial)

• Circuito detecta risco, e então insere bolha:

atrasa instrução j até ocorrer escrita do resultado de i

∗ solução simples – segura instrução dependente na busca stall

∗ desempenho ruim por causa dos ciclos desperdiçados

rr
rrrrrrrr

Bj: r2← r1-r9 ** ** M RExD

B D M RExi: r1← r2+r3

• solução pressupõe que, em cada ciclo,

registradores são atualizados e então são lidos

ppp

ppp

pp

escreve r1
instr i: result

leit de r1
instr j: decod

UFPR DInf BCC 135

Arquitetura II — segmentação 2007-1

Dependências e riscos

dependências são caracteŕısticas do programa

o programador escreveu o código numa certa ordem

riscos decorrem de caracteŕısticas da implementação

o projetista do processador escolheu truques “perigosos”

UFPR DInf BCC 134

Arquitetura II — segmentação 2007-1

Riscos com dados - WAW

• Write-After-Write (WAW)

instr j escreve operando em r3 antes que instr i escreva-o

i: r3 ← r4 + r5

j: r3 ← r8 - r9

• Risco decorre de uma dependência de sáıda

dependência artificial causada pelo re-uso do nome r3

• dependências de sáıda não ocorrem num pipeline linear de 5

estágios

⊲ escritas em regs ocorrem somente no estágio 5 (result)

⊲ MAS dependências de sáıda ocorrem em pipelines não-lineares

• Read-After-Read (RAR) não é risco

UFPR DInf BCC 133

Arquitetura II — segmentação 2007-1

Adiantamento

Adiantamento para o estágio de memória

load seguido de store

rr

rrr

rrr

busca decod res

r1

exec

M(r6+200)← r1
r1←M(r5+100)

j: M(r6+200)← r1
i: r1←M(r5+100)

UFPR DInf BCC 138

Arquitetura II — segmentação 2007-1

Adiantamento

Ao invés de atrasar, adianta resultado para entradas da ULA:

usa controle de atrasos para decidir se deve adiantar, e

usa multiplexadores para escolher fonte do resultado.

rrr

rrr

rrr

rrr

rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrr

rr

decod mem res

r2

r1

r2← r2+100
r3← r2+r1

r1← r5-r6

j: r2← r2+100
k: r3← r2+r1

i: r1← r5-r6

busca

Adiantamento = forwarding, bypassing, short-circuiting

UFPR DInf BCC 137

Arquitetura II — segmentação 2007-1

Controle de atrasos (stalls)

• Compara com estágios posteriores
⋆ if (rs1(decod)==rd(exec) || rs1(decod)==rd(mem)) { bolha }

⋆ mesmo para rs2

⋆ nem todos conflitos são riscos: st não escreve reg, addi não lê reg...

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq

regs exec
cache
mem

rs1
rd

controle
de

atrasosatrase

memexecdecod

unid

rd

UFPR DInf BCC 136

Arquitetura II — segmentação 2007-1

Pergunta:

Quem fornece r1 para instrução k?

rrr

rrr

rrr

rrr

rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrr

rr

busca decod mem res

r1?

r1← r1+100

r1← r5-r6
r4← r3+r1

j: r1← r1+100
k: r4← r3+r1

i: r1← r5-r6

r1?

(a) instr i

(b) instr j

(c) instr k

(d) qualquer dentre j,k

UFPR DInf BCC 141

Arquitetura II — segmentação 2007-1

Adiantamento - circuito completo

v

v

vv

v

ss

ss

sssssssssssssssssssssss
sssssssssssssssssssssss
sssssssssssssssssssssss
sssssssssssssssssssssssss
sssssssssssssssssssssssss

sssssssssssssssssssssssss
sssssssssssssssssssssssss

s
qqq

qqq

qq

qq

qq

qq

qq

qq

qqq

qqq

qq

qq

qq
qq

qq

qq

qq qq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqq qq

qqq

qqq

qq

qqq

qqq

qq

qq

qq

qq

0

E/M M/R

D

E L

A
rs

rt

D/E

B

0

1

2
0

1

1

2

fwdA

fwdB

ext

UFPR DInf BCC 140

Arquitetura II — segmentação 2007-1

Adiantamento

Adiantamento para o estágio de memória: load seguido por add

rrr

rrr

rrr

rrr

rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrr

rr

busca decod mem res

r1

r3← r2+r1
r1←M(r6+100)

nop
k: r3← r2+r1
j: nop
i: r1←M(r6+100)

• Risco deve ser detectado por hardware e bolha inserida (nop)
⋆ desempenho cai por causa da bolha

• Compilador deve tentar preencher bolha com instrução “boa”
⋆ load delay slot usado no CdI MIPS-I e eliminado em MIPS-II por que?

UFPR DInf BCC 139

Arquitetura II — segmentação 2007-1

Riscos de Controle

1 2 3 4 5 6 7 8 9

i: beq r1,r0,8 B D E M R

i+1: sub r2,r8,r9 B D E * * anulada

i+2: lw rx,C(ry) B D * * * anulada

i+3: sw ri,D(rj) B * * * * anulada

i+8: add r3,r4,r5 B D E M R

i+9: add r6,r7,r8 B D E B R

Se CPI=1, 30% das instruções são desvios, penalidade de 3 ciclos

=⇒CPInovo=1.9

• Desempenho pode ser melhorado:

∗ descobre direção antes: compara com zero em decod

∗ computa endereço de destino: adiciona somador em decod

→ penalidade de UM ciclo ao invés de três

UFPR DInf BCC 144

Arquitetura II — segmentação 2007-1

Riscos de Controle

Quando uma instrução determina quais instruções

serão executadas a seguir (desvios, saltos, funções)

v

v

v

v
v

ss

ss
ss

ss

ss
ss

ss

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

qqq

qqq
qqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

qq

qq

qqq

qqq
qqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qqq
qqqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
q

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

qq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
q

qq

qq

4

mem
instr

C
P

B

A
regs

regs mem
dados

E

D

Desvio é efetuado em mem, após comparação na ULA

=⇒ as instruções no caminho não-tomado devem ser anuladas
UFPR DInf BCC 143

Arquitetura II — segmentação 2007-1

Resposta:

Quem fornece r1 para instrução k?

rrr

rrr

rrr

rrr

rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrr

rr

busca decod mem res

r1?

r1← r1+100

r1← r5-r6
r4← r3+r1

j: r1← r1+100
k: r4← r3+r1

i: r1← r5-r6

r1?

(a) instr i

(b) instr j é a que mantém a ordem seqüencial

(c) instr k

(d) qualquer dentre j,k

UFPR DInf BCC 142

Arquitetura II — segmentação 2007-1

Previsão de desvios

• Previsão Estática

⊲ prevê sempre não-tomado MIPS, SPEC95, ≈ 40%

⊲ prevê sempre tomado MIPS, SPEC95, ≈ 60%

⊲ prevê que para-trás é tomado

⊲ previsão associada a opcodes

⊲ desvios atrasados delayed branches

• Previsão dinâmica

⊲ será visto mais tarde

UFPR DInf BCC 147

Arquitetura II — segmentação 2007-1

Tratamento de Riscos de Controle

• Tratamento de riscos de controle é MUITO importante

pelo impacto no desempenho

∗ de 1/3 a 1/6 de todas instruções são desvios

∗ penalidade de um, dois ou três ciclos

∗ pipelines com mais estágios =⇒ desempenho pior

• Atrasa instruções até decidir se desvia

• Previsão de desvios→ prever direção do desvio

∗ reduz/elimina penalidade se previsão correta

∗ pode aumentar penalidade quando erra

∗ Técnicas:

previsão estática – segue sempre mesmo caminho

previsão dinâmica – depende do comportamento do programa

UFPR DInf BCC 146

Arquitetura II — segmentação 2007-1

Riscos de Controle

Desvio é efetuado em decod, após comparação com ZERO

v v

v
v

v

v

sss

ss
ss

ss
ssss

ss
ss

ss
ssss

qq

qqq

qqq
qqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

qq

qq

qqq
qqqqqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

q

qq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

qq

qq

qq
qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

qq

qq

qq

qq qqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

4

mem
instr

C
P

B

A
regs

mem
dados

E

D

regs

zero

Se CPI=1, 30% das instruções são desvios, penalidade de 1 ciclo

=⇒CPInovo=1.3

UFPR DInf BCC 145

Arquitetura II — desvios e excessões 2007-1

resumo – Riscos de Controle

• Riscos de controle tem efeito devastador no desempenho

• Mecanismos simples de previsão de desvios:
⋆ segura fluxo até decidir direção do desvio

(penalidade 1-2 ciclos)

⋆ prediz que desvio é sempre não-tomado
(penalidade 1 ciclo, ≈40% das vezes)

⋆ prediz que desvio é sempre tomado
(penalidade 1 ciclo, ≈60% das vezes)

• desvio atrasado “esconde” penalidade quando desvio não-tomado
⋆ ocupar o espaço pode ser dif́ıcil

⋆ mistura arquitetura com implementação

UFPR DInf BCC 150

Arquitetura II — segmentação 2007-1

Desvios Atrasados, Loads Atrasados

Arquiteturas que expõem riscos do pipeline ao software,

como nos casos de delayed loads e branch delay slots

resultam em programas com número significativo de nops

inseridos pelo compilador.

Estas soluções misturam arquitetura (ISA)

com implementação (pipeline linear)

Isso é uma má idéia c©

UFPR DInf BCC 149

Arquitetura II — segmentação 2007-1

Desvios Atrasados

• Sempre executa a próxima instrução OK com pipelines simples

i: PC← PC+8 if r1 == 0

i+1: r2← r8 - r9 sempre é executada

...

i+8: r3← r4 + r5

• É necessário que branch delay slot seja preenchido

⊲ preenche com instrução antes do desvio (i-1)

⊲ preenche com instrução de destino

∗ SE é seguro executar instrução de destino

∗ ajuda somente no caso do desvio tomado

⊲ preenche com instrução após o desvio (i+2)

∗ SE é seguro executar instrução após o desvio

∗ ajuda somente no caso do desvio não-tomado

UFPR DInf BCC 148

Arquitetura II — desvios e excessões 2007-1

Dependências de Controle

• Desempenho dos processadores é limitado pelos desvios

• Maioria das dependências de dados podem ser eliminadas

pelo compilador + adiantamento;

• Dependências de controle não podem ser eliminadas

por causa do comportamento dinâmico dos programas...

• Regra dos 85/60: medições indicam que aproximadamente

∗ 85% dos desvios “para trás” são tomados

∗ 60% dos desvios “para frente” são tomados

• solução: adivinhar destino do desvio para

antecipar a busca da próxima instrução

porque fazer alguma coisa é melhor que não fazer nada

UFPR DInf BCC 153

Arquitetura II — desvios e excessões 2007-1

mais revisão – Riscos

• Risco estrutural structural hazards

⊲ duas instruções diferentes necessitam do

mesmo recurso no mesmo ciclo

• Risco de dados data hazards

⊲ duas instruções diferentes usam mesmo local de

armazenamento

aparência de execução na ordem seqüencial correta

• Risco de controle control (flow) hazards

⊲ uma instrução determina quais instruções

serão executadas a seguir (desvios, saltos, funções)

pior impacto no desempenho

UFPR DInf BCC 152

Arquitetura II — desvios e excessões 2007-1

revisão – Riscos

• modelo seqüencial de execução:

cada instrução é completamente executada

e altera o estado do processador

antes do ińıcio da próxima instrução

• Riscos são potenciais violações de dependências no programa

• implementação deve garantir que dependências não são violadas

• Resolução de riscos:

∗ estática: compilador/programador garante corretude

∗ dinâmica: hardware verifica conflitos em tempo de execução

• Inter-travamento no pipeline interlocks

∗ mecanismo para resolução dinâmica de riscos

∗ deve detectar e resolver dependências em tempo de execução

UFPR DInf BCC 151

Arquitetura II — desvios e excessões 2007-1

Previsão Dinâmica de Desvios

Exemplo: loop executa três voltas e então prossegue:

Na previsão com um bit, ocorrem duas previsões erradas

a cada mudança c.r.a história recente

resultado t t t n t t t n t t t n t

previsão t t t T N t t T N t t T N

acerto? E E E E E E

Com este método são duas as previsões erradas

a cada vez que seqüência muda...

UFPR DInf BCC 156

Arquitetura II — desvios e excessões 2007-1

Previsão Dinâmica de Desvios

Tabela com 2m bits no estágio de busca

• acessa tabela com m bits do PC

∗ tabela contém 1 se desvio foi tomado na última execução

∗ tabela contém 0 se desvio não foi tomado na última execução

• prevê que nesta execução tomará mesmo caminho que na anterior

• atualiza o bit quando errar a previsão

rr rr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr rrm bits

2m elementos

PC

0
0
1
...
1
0

desvio não-tomado - 0
desvio tomado - 1

UFPR DInf BCC 155

Arquitetura II — desvios e excessões 2007-1

Riscos de controle e previsão de desvios

Previsão Dinâmica de Desvios

• Passado recente pode auxiliar a prever futuro próximo:

usar a história dinâmica dos desvios para prever sua direção

∗ se desvio será tomado ou não-tomado

∗ qual o endereço de destino

• porque é dinâmico, previsor pode se ajustar a

∗ fases distintas da execução do programa

∗ comportamento de desvios espećıficos

UFPR DInf BCC 154

Arquitetura II — desvios e excessões 2007-1

Previsores melhores: correlação de previsões

rr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrr

rr

pp pp

pp

rr
rrr

rr

pppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppppp
pppp

pppppppppppppppppppppp
pp

pp
pp

00
01
11
...
10
01

m bits
PC

BHR

BHT

2m elementos

história de
cada desvio

história dos últimos N desvios

Apontador para tabela de previsão é uma combinação dos conteúdos

do PC e do Branch History Register soma, sobreposição, ou concatenação

Gshare: um BHR de m-bits, ou-exclusivo do BHR com PC

UFPR DInf BCC 159

Arquitetura II — desvios e excessões 2007-1

Previsores melhores: correlação de previsões

Desvios em instruções distintas podem ser relacionados:

if (a < 0) a = 0;

if (b > 0) b = 0;

if (a != b) { ...}

Se as duas primeiras condições são verdadeiras, a terceira será falsa;

portanto a idéia é:

• manter história de todos os desvios recentes

=⇒ história aproxima caminho seguido pelo programa

• Branch History Register (BHR) é um registrador de deslocamento

que mantém resultado dos últimos N desvios

• PC e BHR são combinados para acessar tabela de previsão

• taxas de acerto ficam entre 80% e 90%

UFPR DInf BCC 158

Arquitetura II — desvios e excessões 2007-1

Previsores melhores: contadores de 2 bits

Contador de dois bits implementa histerese e melhora previsão:

resultado t t t n t t t n t t t n t

estado wt st st st wt st st st wt st st st wt

previsão t t t t t t t t t t t t t

acerto? E E E

Previsões erradas caem para a metade.

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr

rr
rr

rr
rrrrrrrrrrrrrrrrrrrr rr

rr
rr

rrrrrrrrrrrrrrrrrrrr rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr

rr
rr

rr
rrrrrrrrrrrrrrrrrrrr rr

rrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrr

rr
rr
rrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrr

rr
rrrr

11
strong
taken

10
weak
taken

não-tomado

tomado

não-tomado não-tomado

tomado tomado

01
weak

notTkn

00
strong
notTkn

não-tomadotomado

UFPR DInf BCC 157

Arquitetura II — desvios e excessões 2007-1

Tabela de endereços de destino

A tabela de endereços de destino é uma cache especial:

• ı́ndice e etiqueta são comparados com

endereço da instrução de desvio

• conteúdo do BTB é o endereço de destino (cache de destinos)

• bits de previsão mantidos junto com endereço de destino

• geralmente associado à cache de instruções

Branch Target Cache:

∗ armazena instrução de destino junto com endereço

∗ permite eliminar o desvio do fluxo de instruções

branch folding

UFPR DInf BCC 162

Arquitetura II — desvios e excessões 2007-1

Previsão de endereço de destino

Tabela de endereços de destino (Branch Target Buffer [BTB])

permite prever endereço de destino

se acerta previsão, evita inserção de bolha no pipeline

rr rr

prevê
desvio

acesso
à cache

computa
destino

PC

altera PC

bolha! PC
prevê

à cache
acesso

desvio

destino
prevê

altera PC

destino
computa

UFPR DInf BCC 161

Arquitetura II — desvios e excessões 2007-1

Previsores ainda melhores: mais de um previsor

Desvios tem comportamentos distintos

→ usar previsores diferentes em desvios diferentes.

escolha:

se previsor escolhido errou

e outro acertou

inverte escolha

previsores h́ıbridos,

competitivos (tournament)

Gshare + contador de 2 bits

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrrrrrrrrrrrrrrr
rrr rr

rr
rrrrrrrrrrrrrrrrrr
rrrrrrrr

rr

rr
rrrrrrrrrrrrrrrrrr
rrrrrrrr

rr

rr
rrrrrrrrrrrrrrrrrr
rrrrrrrr

rr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr

rr

endereço do desvio

previsor 1

prev 2

BHT

BHR

previsão

escolhe

UFPR DInf BCC 160

Arquitetura II — desvios e excessões 2007-1

Previsão de chamada e retorno de funções

• Destino de saltos indiretos para retorno de função (jr)

é muito dif́ıcil de prever

∗ uma função pode ter vários endereços de retorno

estáticos e/ou dinâmicos

• Solução: implementar uma pilha de retorno de funções

no estágio de busca do processador

∗ salva endereço de retorno na pilha instrução jal

∗ desempilha ao retornar e prevê destino instrução jr r31

• O quê fazer com saltos indiretos que 6∈ à funções? instrução jr

UFPR DInf BCC 165

Arquitetura II — desvios e excessões 2007-1

Tabela de endereços de destino

Administração da tabela:

• armazena desvios não-tomados?

• o que fazer quando inicia execução (tabela vazia)?

• o que fazer com conflitos na tabela (tabela cheia)?

• o que fazer quando errar a previsão?

• quanto custa (CPI) errar uma previsão?

UFPR DInf BCC 164

Arquitetura II — desvios e excessões 2007-1

Tabela de endereços de destino

qq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq qq

PC

PC

qq

506c

destino hist

01

0x4000 beq r1, r2, 0x1068

0x506c add r3, r4, r5

0x5074 bne r0, r8, -0x1078

...

0x5070 slti r8, r10, 100

4000

desvio

4000 115074

UFPR DInf BCC 163

Arquitetura II — desvios e excessões 2007-1

Resposta:

Estados: 11-St 10-wt 01-wn 00-Sn

BHR com 8 bits, insere resultado na posição menos-significativa

BHT com 256 posições, indexada com 8 bits do PC

PC = 0x200 (para simplificar), operação do PC com BHR é XOR

Estruturas inicializadas com 0 em todas as posições

1 for(i=0; i<100; i++)

2 if (i%2 == 0)

3 ...

4 else

5 ...

quantos erros de previsão na linha 2?

OU

quantas voltas do laço para treinar

o previsor?

UFPR DInf BCC 168

Arquitetura II — desvios e excessões 2007-1

Pergunta:

1 for (i=0; i<100; i++)

2 if (i%2 == 0)

3 ...

4 else

5 ...

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqq
qqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqq

qq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

.................................. ..
...
...
...
..
..
....
..
...
...
...
..
..

..
..
...
..
..
...
..
...
...
..
...
...
...
.

qq
qq

00
01
11
...
10
01

2m elementos

m bits
PC

BHR

BHT

Quantos erros de previsão na linha 2 para previsor BHR+BHT?

BHT iniciaizado com 00 (não-tomado)

(a) 49

(b) 50

(c) 51

(d) n.d.a.

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqq

qq
qq

qqqqqqqqqqqqqqqq qq
qq

qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqq

qq
qq

qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

11
strong
taken

10
weak
taken

não-tomado

tomado

não-tomado não-tomado

tomado tomado

01
weak

notTkn

00
strong
notTkn

tomado não-tomado

UFPR DInf BCC 167

Arquitetura II — desvios e excessões 2007-1

Resumo de Previsão de Desvios

• Previsão é útil em pipelines simples

• é imprescind́ıvel em processadores super-escalares

• processadores modernos usam

∗ previsores sofisticados

∗ tabela de endereço de destino

∗ pilha de retorno de funções

UFPR DInf BCC 166

Arquitetura II — desvios e excessões 2007-1

Interrupções e Excessões

• Interrupções

∗ geralmente com causa externa ao processador (asśıncrona)

∗ não são relacionadas a uma instrução espećıfica

∗ Exemplos: interrupção de dispositivo; falta de energia

• Excessões

∗ relacionadas à execução de uma instrução espećıfica (śıncrona)

∗ Exemplos: overflow, falta de página

• Traps

∗ relacionadas à execução de uma instrução espećıfica

∗ rotina (hw+sw) de tratamento de excessões

UFPR DInf BCC 171

Arquitetura II — desvios e excessões 2007-1

Interrompemos a nossa programação...

UFPR DInf BCC 170

Arquitetura II — desvios e excessões 2007-1

Resposta: (cont)

i dsv BHR pos BHT nova novoBHR acerto?

0 nt 0000.0000 0 00 -> 00 0000.0000 0 sim

1 t 0000.0000 0 00 -> 01 0000.0001 1 n~ao

2 nt 0000.0001 1 00 -> 00 0000.0010 2 sim

3 t 0000.0010 2 00 -> 01 0000.0101 5 n~ao

4 nt 0000.0101 5 00 -> 00 0000.1010 a sim

5 t 0000.1010 a 00 -> 01 0001.0101 15 n~ao

6 nt 0001.0101 15 00 -> 00 0010.1010 2a sim

7 t 0010.1010 2a 00 -> 01 0101.0101 55 n~ao

8 nt 0101.0101 55 00 -> 00 1010.1010 aa sim

9 t 1010.1010 aa 00 -> 01 0101.0101 55 n~ao - 5 erros

10 nt 0101.0101 55 00 -> 00 1010.1010 aa sim

11 t 1010.1010 aa 01 -> 10 0101.0101 55 sim <--acerto

UFPR DInf BCC 169

Arquitetura II — desvios e excessões 2007-1

Interrupções/Excessões Precisas

Uma interrupção ou excessão é considerada precisa se existe

uma única instrução (ou ponto de interrupção) tal que

todas as instruções anteriores àquela tenham alterado o estado,

e nenhuma instrução após (e incluindo) aquela

tenham modificado o estado.

Isso significa que a execução pode ser re-iniciada a partir do

ponto de interrupção e resultados corretos serão produzidos.

Ver artigo de Smith & Pleszkun para soluções.

IEEE-TC 37:5 1988

UFPR DInf BCC 174

Arquitetura II — desvios e excessões 2007-1

Interrupções e Excessões – arquitetura

• Registrador de Interrupção

∗ vetor de bits indicando quais interrupções/excessões ocorreram

• Registrador de máscara

∗ vetor de bits indica quais inters/excessões estão desabilitadas

∗ escrever no registrador de máscara é instrução privilegiada

∗ alguns bits podem ser atualizados em modo usuário (overflow)

∗ algumas interrupções/excessões não são mascaráveis

UFPR DInf BCC 173

Arquitetura II — desvios e excessões 2007-1

Eventos Śıncronos vs Asśıncronos

• Śıncrono evento relacionado com a seqüência de instruções

ocorre durante a execução de uma instrução
⋆ deve parar instrução que está executando correntemente

⋆ falta de página durante instrução load ou store

⋆ excessões aritméticas

⋆ chamadas de sistema (instruções trap ou syscall)

• Asśıncrono evento sem relação com seqüência de instruções

causada por um evento externo
⋆ desnecessário interromper instruções que estão executando

⋆ interrupções por dispositivos de E/S

⋆ interrupções por eventos catastróficos (erro na memória)

• Semi-śıncrono
⋆ evento externo que pode interromper seqüência de instruções para garantir

serviços (alta disponibilidade)

UFPR DInf BCC 172

Arquitetura II — desvios e excessões 2007-1

Implementação de interrupções/traps

• Precisão é importante

• Interrupções e excessões simultâneas

⊲ interrupções de E/S

⊲ busca – falta de página, referência desalinhada, protection fault

⊲ decod – instrução ilegal ou privilegiada

⊲ exec – excessões de aritmética (overflow, divisão por zero)

⊲ mem – falta de página, referência desalinhada, protection fault

⊲ res – nenhuma

UFPR DInf BCC 177

Arquitetura II — desvios e excessões 2007-1

Tratamento de interrupções/traps

Quando ocorre interrupção/trap:

• efetua salto para rotina do SO

∗ vetor de tratadores, em geral amarrado no cj de instruções

• computa endereço de retorno

• salva informação de estado essencial

∗ PC

∗ CCs (condition codes)

∗ PSW (processor status word)

• troca modo de execução: usuário =⇒ sistema

UFPR DInf BCC 176

Arquitetura II — desvios e excessões 2007-1

Interrupções Precisas

• Interrupções Precisas facilitam MUITO o trabalho do SO

na continuação do programa, ou na depuração

• Excessão/trap

⊲ todas instruções antes da causadora completam

⊲ nenhuma das instruções após a causadora completam

⊲ instrução causadora ou completou ou não iniciou

⊲ PC aponta instrução causadora

• Interrupção

⊲ Mesmo que excessão, mas 6 ∃ instrução causadora

⊲ Deve parecer que ocorreu entre duas instruções

⊲ PC aponta para instrução que seria executada

UFPR DInf BCC 175

Arquitetura II — desvios e excessões 2007-1

Excessões Múltiplas

busca exec resultmemdecod

busca exec resultmemdecodoverflow

busca exec resultmemdecodfalta de página

busca exec resultmemdecodinstrução ilegal

falta de página

• Pipeline pode resolver

∗ estado c.r.a excessões passa pelos estágios junto com instrução

∗ mantém valor do PC junto a cada instrução

∗ não trata excessão até instrução chegar a result

• Interrupção é detectada na busca e instrução NOP é inserida

• Quando instrução chega a result

∗ salva PC→ EPC; endereço do vetor de interrupções→ PC

∗ transforma instruções nos outros estágios em NOPs

UFPR DInf BCC 180

Arquitetura II — desvios e excessões 2007-1

Excessão de Aritmética

rr

rr

rr

rr

B D M REx

B D MEx

B D M REx

B D M REx

anulada

excessão (exec)

B D M REx

B D M REx

salta para tratador

ińıcio do tratador

anulada

R

• Instruções anteriores podem completar

• anula todas instruções subseqüentes

UFPR DInf BCC 179

Arquitetura II — desvios e excessões 2007-1

Falta de Página

rr

rr

rr

rr

rr

rr

D M REx

B D M REx

B D M REx falta de página (mem)

falta de página (busca)

B D M REx

B D M REx

salta para tratador

ińıcio do tratador B D M REx

B

anulada

anulada

anulada

• Instrução anterior completou res//mem

• anula todas instruções subseqüentes

• impede que instrução causadora altere estado (se for load)
UFPR DInf BCC 178

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Revisão – previsão de desvios e excessões

• Previsão de desvios é imprescind́ıvel pelo efeito no desempenho

∗ contador de 2 bits com histerese para prever cada desvio

∗ tabela(s) com 2m previsores + registrador de deslocamento

∗ registrador de história dos desvios branch history register

∗ tabela com endereços de destino branch target buffer

∗ pilha de retorno de funções

• Interrupções e excessões complicam muito projeto de pipelines

∗ precisão é importante mas implementação é cara (hardware)

∗ drenar os segmentos custa caro...

∗ detecta evento cedo e trata-o tarde em result

UFPR DInf BCC 183

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Resumo – previsão de desvios e excessões

• Previsão de desvios é imprescind́ıvel

∗ contador de 2 bits com histerese para prever cada desvio

∗ tabela(s) com 2m previsores + registrador de deslocamento

∗ registrador de história dos desvios branch history register

∗ tabela com endereços de destino branch target buffer

∗ pilha de retorno de funções

• Interrupções e excessões complicam muito projeto de pipelines

∗ precisão é importante mas implementação é cara (hardware)

∗ drenar o pipeline custa caro...

∗ detecta evento cedo e trata-o tarde em result

UFPR DInf BCC 182

Arquitetura II — desvios e excessões 2007-1

Complicações no Conjunto de Instruções

• Estado espalhado em vários recursos (CCs)

• Atualização antes de mem/res (auto-incremento)

• Instruções que completam fora de ordem

∗ outros mecanismos serão estudados adiante

• Interrupções ocorrem a qualquer momento

• O caso freqüente não é o único/mais importante

∗ Desempenho não é o parâmetro mais cŕıtico

∗ Os casos raros devem funcionar corretamente

UFPR DInf BCC 181

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Superpipelining

Ganhos:

freqüência do relógio mais alta moda até há pouco

permite ligar CPU rápida à memória lenta interf c/ mem segmentada

Perdas:

CPI mais alto

penalidade maior nos desvios

penalidade maior nas faltas nas caches (mais ciclos)

penalidade maior no uso do valor de load

penalidade maior nas excessões

maior complexidade:

circuitos de adiantamento, bloqueios...

UFPR DInf BCC 186

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Superpipelining – MIPS R4000

qq

qqq
qq

qqq
qq

pppppppppppppppppppppppppppp

pppppppppppppppppppppppppppp

pppppppppppppppppppppppppppp

pppppppppppppppppppppppppppp

pppppppppppppppppppppppppppp

pppppppppppppppppppppppppppp

pppppppppppppppppppppppppppp

MD1REG MD2MI1 MI2

le-regs
tag-check

MD3

result

RES

tag-checkdado-2dado-1

busca-2busca-1

execdecod

busca dura 2 ciclos – verifica acerto na L1-I enquanto decodifica

desvios tomados causam três bolhas

mem dura 3 ciclos por causa da verificação de acerto

→ não pode escrever valor até estar certo do acerto na L1-D

só pode usar valor de load depois de dois ciclos

usa valor do load antes de verificar etiqueta?

UFPR DInf BCC 185

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Superpipelining

tempo de CPU = núm instr x CPI x peŕıodo do relógio

Se aumentar velocidade do relógio (e reduzir peŕıodo),

pode haver ganho de desempenho

→ implementar estágios com menor latência e em maior número

→ reduz peŕıodo mas aumenta CPI

Com um pouco de sorte (uh?) relógio compensa CPI

Exemplos:

MIPS 4000 usa dois estágios na busca e três em MEM/cache

Pentium III tem pipeline com 10 estágios e

Pentium IV tem pipeline com 20 estágios,

com dois ciclos só para transmitir bits através da CPU

UFPR DInf BCC 184

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Lei de Amdahl

Ganho = 1
(1−f)+f/g

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqq

qq

.................................... ..
...
...
...
...
..
...
...
...
...
..
..
...
.

.................................... ..
..
...
...
...
..
..
....
...
...
..
..
...
..

.................................... ..
...
...
...
...
...
...
..
...
..
..
...
..
..

.................................... ..
..
...
...
...
..
..
....
...
...
..
..
...
..

1

N

proc
núm de

h 1-f
f1-h

tempo

• h fração de tempo em código serial

• 1− h fração de tempo que pode ser paralelizada (N

processadores)

• f fração que pode ser vetorizada

• g ganho durante f

UFPR DInf BCC 189

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Desempenho de Pipelines

ganho =
CPI sem pipeline
CPI com pipeline

× ciclo sem pipeline
ciclo com pipeline

Desempenho ótimo ignorando latches

ganho = número de estágios

Causa das Perdas:

• dependências estruturais escalonamento de instruções resolve

• dependências de dados escalonamento e adiantamento resolvem

• dependências de controle previsão resolve ≈ 85% dos casos

• Lei de Amdahl: ganho é limitado pelo pior componente

UFPR DInf BCC 188

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Superpipelining

v

v

v

v

v

v
v

ppp

p p

p p

p p

p p

p p

p p

p p

p p

p p

1990 1992 1994

10

20

30

40

50

60

70

80

2002200019981996

em sete gerações de processadores Intel

Número de portas lógicas com FO4
90

Hrishkesh et al, ISCA 29, 2002

FO4 = porta que alimenta até
4 inversores (fan out = 4)

(eixo X é o ano de introdução)

UFPR DInf BCC 187

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Desempenho de Pipelines II

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr

pp pp

pp pp

pppppppppppppp
pppppppppppppp
pppppppppppppp
pppppppppppppp
pppppppppppppppppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppppppppppppppppp

pppppppppppppp
pppppppppppppp
pppppppppppppp
pppppppppppppppppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppppppppppppppppp

pppppppppppppp
pppppppppppppp
pppppppppppppp
pppppppppppppppppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp

1

N

tempoc

estágios

1-c

• c fração de tempo com pipeline cheia

• 1− c fração de tempo em que ocorrem bolhas

• quando c é um pouquinho abaixo de 100%,

a queda no desempenho é enorme!

→ a fração 1− c deve ser minimizada

UFPR DInf BCC 192

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Desempenho de Pipelines I

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr

pppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppp

4

1

estágios

inicializa

stall tempo

CPI=1

drena inicializa

CPI=1

UFPR DInf BCC 191

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Lei de Amdahl

lim
g→∞

1

(1− f) + f/g
=

1

(1− f)

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqq

qq

.................................... ..
..
...
..
..
...
...
....
..
..
...
...
...
..

.................................... ...
...
..
..
...
...
....
..
..
...
...
...
..
.

.................................... ..
..
...
..
..
...
...
....
..
..
...
..
..
...
.

.................................... ...
...
..
..
...
...
....
..
..
...
...
...
..
.

1

proc
núm de

1-h
h

1-f
f

tempo

N

Desempenho é limitado pela parte que

não pode ser paralelizada (h) ou vetorizada (f)

UFPR DInf BCC 190

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Processadores Escalares e Vetoriais

• Processador escalar opera em uma palavra de memória: escalar

∗ processadores escalares são todos aqueles vistos até agora

• processador vetorial opera em um grupo de palavras: vetor

∗ The CRAY-1 Computer System, R M Russel, CACM 21:1, jan78

∗ certas instruções usam vetores como operandos

∗ registradores contém vetores (64 elementos/registrador)

∗ acessos à memória para carregar ou escrever vetores inteiros

∗ unidades funcionais são pipelines para elementos de vetores

∗ ver Apêndice G em www.mkp.com/CA3

UFPR DInf BCC 195

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Pipeline para obter CPI ≈ 1

• Gargalo de Flynn

∗ emissão de uma instrução por ciclo limita CPI=IPC=1

∗ riscos + overhead→ CPI≥ 1 IPC≤ 1

∗ ganhos cada vez menores com superpipelining

• solução: emitir mais de uma instrução por ciclo

1 2 3 4 5 6 7 8 9

inst0 B D E M R

inst1 B D E M R

inst2 B D E M R

inst3 B D E M R

∗ paralelismo no ńıvel de instrução (PNI)

instruction-level paralelism (ILP) Fischer81

∗ primeiro super-escalar: IBM América→ RS/6000→ POWER1

UFPR DInf BCC 194

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Desempenho de Pipelines III

Se executar mais de uma instrução por ciclo,

a fração 1− c pode ser reduzida pelo fator de escalaridade S

Ganho =
1

(1−c)
S

+ c
g

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr

pp pp

pp pp

pppppppppppppp
pppppppppppppp
pppppppppppppp
pppppppppppppp
pppppppppppppppppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppppppppppppppppp

pppppppppppppp
pppppppppppppp
pppppppppppppp
pppppppppppppppppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppppppppppppppppp

pppppppppppppp
pppppppppppppp
pppppppppppppp
pppppppppppppppppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp

1

N

tempoc

estágios

1-c

UFPR DInf BCC 193

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Pipelines não-lineares

Quatro fases:

busca ;

decod+emissão ;

execução ;

resultado

rrr
rrrrrrrrrrr

rrr
rrrrrrrrrrr

rrr
rrrrrrrrrrr

rrrrrrrrrrrrrrrrrr
rr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
r rr

rrrrrrrrrr
rrr
rrrrrrrrrrr

rr
rrrrrrrrrr

rrr
rrrrrrrrrrr

rrr
rrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr rrr

rrrrrrrrrrr

rrr
rrrrrrrrrrr rr

emissão

regs

resultado

alu

mult

execução

busca

mem

Estágio(s) de emissão envia(m) instruções para unidade funcional

latência da execução depende da unidade funcional

Tmult > Tmem > Talu

UFPR DInf BCC 198

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Paralelismo no ńıvel de instrução (PNI)

PNI é uma propriedade do software (e não do hardware)

quanto paralelismo existe entre as instruções de um programa?

depende do software hw pode ou não explorá-lo

Inúmeras maneiras de explorar PNI:

⊲ pipelining (Apêndice A)

⊲ superescalar (Cap 3)

⊲ execução fora de ordem (escalonamento dinâmico – Cap 3)

⊲ escalonamento pelo compilador (escalonamento estático – Cap 4)

UFPR DInf BCC 197

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Paralelismo no ńıvel de instrução

Qual a diferença entre dependência e risco?

UFPR DInf BCC 196

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Busca com largura N

• O que é necessário na busca de N instruções em um ciclo?

• se as instruções são seqüenciais

∗ e no mesmo bloco (k) da cache→ nada

∗ e em blocos diferentes→ cache intercalada + rede de

combinação

0 1 2 3 4 5 6 7

bloco k x y z w → xyzw

bloco i x y rede combina

bloco j z w → xyzw os 2 blocos

• se as instruções não são seqüenciais

∗ dois acessos em série: acesso1→ prevê destino→ acesso2

• desvios no meio de um bloco: fácil se desvios não-tomados (NT)

∗ acesso serial + previsão em paralelo

∗ se previsão é tomado (T)→ descarta instrs após desvio
UFPR DInf BCC 201

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Pipeline de 5 estágios com emissão dupla

qq
qq

qq

qq

ss

ss
sssssssssssssssssssssssss

sss
ssssssssssssssssssssssss

ss

ss
sssssssssssssssssssssss

sss
ssssssssssssssssssssssss

qq

qq

qq

qq
qq

qq
qq

qq

qq
qq

qq
qq

pp

qq
qq

qq
qq

qq

qq

qq

qq

qq

qq

qq

qq

D/XB/D

CD

Res
Mem

M/RPC

Busc

PrDsv

CIns

regs

eXec
Dec

X/M

• O que é necessário para

∗ buscar duas instruções por ciclo?

∗ decodificar duas instruções por ciclo?

∗ executar duas instruções de ALU no mesmo ciclo?

∗ acessar a cache de dados duas vezes no mesmo ciclo?

∗ escrever dois registradores no mesmo ciclo?

• e se forem 4 ou 8 instruções num ciclo?

UFPR DInf BCC 200

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Superescalar: implementação base

• superescalar com escalonamento estático, em-ordem

⊲ executa programas seqüenciais sem modificação

⊲ descobre sozinho o que pode ser executado em paralelo

⊲ exemplos: MIPS 8000, Sun UltraSPARC, Alpha 21264

UFPR DInf BCC 199

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Execução com largura N

• O que é necessário para executar N instruções em um ciclo?

• múltiplas unidades funcionais. N de cada tipo?
⋆ N ULAs? Pode ser, ULAs são pequenas

⋆ N divisores de ponto flutuante? Não, circuito é enorme e divPF é infreqüente

• tipicamente, usa combinação proporcional ao uso
⋆ RS/6000: 1 ULA/endereços/desvios + 1 PF

⋆ Pentium: 1 ULA complexa + 1 ULA simples

⋆ PentiumII: 1 ULA/PF + 1 ULA + 1 load + 1 store + 1 desvios

⋆ Alpha 21164: 1 ULA/PF/desvios + 2 ULA + 1 load/store

• circuito de adiantamento ∝ N2

∗ lógica de controle é pequena porque variáveis tem 5 bits (regs)

∗ circuitos de dados é gigantesco (32 ou 64 bits por caminho)

∗ layout da fiação é infernal, MUXes são enormes e lentos

∗ menos horŕıvel se agrupar unidades funcionais em clusters

UFPR DInf BCC 204

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Decodificação com largura N

• lógica de controle de atrasos num pipeline simples:

∗ rs1(D)==rd(D/X) || rs1(D)==rd(X/M) ||

rs1(D)==rd(M/R)

∗ mesmo para rs2

∗ com adiant completo: rs1(D)==rd(D/X) && opc(D/X)==load

• dobrando a largura de emissão, quadruplica lógica de atrasos
⋆ não são só 2 instruções em Decod, mas 2 instr em todos estágios

⋆ rs1(D1)==rd(D/X1) && opc(D/X1)==load

⋆ rs1(D1)==rd(D/X2) && opc(D/X2)==load

⋆ repetir para rs1(D2), rs2(D1), rs2(D2)

⋆ testar dependência da segunda instr na primeira: rs1(D2)==rd(D1)

• num pipeline de largura N , circuito de atrasos cresce com N2

mesmo vale para adiantamento, só que pior...

• |lógica de controle de atrasos| ∝ N2

UFPR DInf BCC 203

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Decodificação com largura N

• O que é necessário para decodificar N instruções em um ciclo?

• decodificar as instruções

∗ fácil se instruções de tamanho fixo (múltiplos decodificadores ‖s)
∗ dif́ıcil, porém posśıvel, se tamanho variável→ x86

• ler operandos dos registradores

∗ 2N portas de leitura no bloco de registradores

∗ na verdade, menos que 2N porque muitos valores são adiantados

• como fica a lógica de controle dos atrasos (stalls)?

UFPR DInf BCC 202

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Modelo de pipeline

Quatro fases:

busca ;

decod+emissão ;

execução ;

resultado

cada fase pode ser

um pipeline com

mais de um estágio

nos interessa a

emissão (issue)

rrr
rrrrrrrrrrr

rrr
rrrrrrrrrrr

rrr
rrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
r rrr

rrrrrrrrrrr
rrr
rrrrrrrrrrr

rrr
rrrrrrrrrrr

rr
rrrrrrrrrr

rr
rrrrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr rr

rrrrrrrrrr

rrr
rrrrrrrrrrr rr

emissão

regs

resultado

alu

mult

execução

busca

mem

UFPR DInf BCC 207

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Gravação de resultados com largura N

• O que é necessário para escrever 2 registradores no mesmo ciclo?

• apenas mais uma porta de escrita no bloco de registradores

⊲ tudo o que deveria já foi feito nos estágios anteriores...

• MAS o tratamento de excessões é ainda mais complicado

deve-se usar buffer de re-ordenação à lá Smith&Plezkun

UFPR DInf BCC 206

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Interface de memória com largura N

• O que é necessário para acessar memória 2 vezes no mesmo ciclo?

• cache de dados com múltiplos bancos (detalhes mais tarde)

⊲ necessita lógica de detecção de conflitos (2 refs ao mesmo banco)

⊲ necessita lógica de detecção de riscos RAW

• aproximadamente 20% das instruções são loads e 15% stores

⊲ para largura N, são necessárias

0,2N portas de leitura e

0,15N portas de escrita na memória

UFPR DInf BCC 205

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Ordem de emisão

• Emissão em ordem o que vimos até agora

emissão pára se ∃ qualquer tipo de dependência ou risco

. risco estrutural, de dados, ou de controle

• emissão fora-de-ordem

processador examina várias instruções para decidir quais

podem seguir para execução lookahead

∗ se instrução bloqueia por causa de conflito por recurso

processador segue buscando até encontrar instrução independente

∗ devem ∃r recursos para executar instruções independentes

∗ ordem seqüencial de execução deve ser obedecida

mesmo se instruções executam e completam fora-de-ordem

UFPR DInf BCC 210

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Ordem

• Emissão de instruções para execução

∗ emissão em ordem o que vimos até agora

∗ emissão fora-de-ordem

processador examina várias instruções para decidir quais

podem seguir para execução

• ordem de execução

∗ execução em ordem o que vimos até agora

∗ execução fora-de-ordem

se operandos e unidade funcional dispońıveis então executa

• ordem de escrever resultado (writeback)

∗ resultados gravados em ordem o que vimos até agora

∗ resultados gravados fora-de-ordem

grava resultado quando não viola nenhuma dependência

UFPR DInf BCC 209

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Ordem de execução dos programas

• modelo seqüencial de execução:

cada instrução é completamente executada

e altera o estado do processador

antes do ińıcio da próxima instrução

→modelo habitual de raciocinar sobre execução de programas

• modelos com paralelismo:

paralelismo expĺıcito→multiprocessadores, threads, vetores

paralelismo impĺıcito→ hardware esconde execução paralela

UFPR DInf BCC 208

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Emissão em-ordem + resultado em-ordem

ppp

ppp

1
2
3
4
5
6
7
8

resultadoexecuçãodecodif

i2i1

i4

i3

i5

i6

i6

i3

i4

i1

i1

i2

i3

i4

i5

i6

i1 i2

i3 i4

i5 i6

ciclo

i4

decodifica 2/ciclo

executa 2/ciclo

escreve 2/ciclo

pipeline
i3 e i4 competem por UF

i5 depende de result de i4

i5 e i6 competem por UF

i1 executa em 2 ciclos

UFPR DInf BCC 213

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Ordem de gravar resultado

• Resultados gravados em ordem o que vimos até agora

∗ instrução lenta segura outras que não dependem do seu resultado

∗ facilita recuperação de excessões e implementação do SO

mas desempenho é ruim

• resultados gravados fora-de-ordem

∗ grava resultado quando não viola nenhuma dependência

∗ o que acontece se instrução mais-nova grava resultado antes que

excessão seja detectada em instrução mais-velha?

. Smith & Plezkun IEEE-TC 37:5 1988

UFPR DInf BCC 212

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Ordem de execução

• Execução em ordem o que vimos até agora

∗ conflitos por recursos seguram execução de instruções + novas

∗ idem para dependências de dados ou de controle

• execução fora-de-ordem explora paralelismo entre instruções

∗ se operandos e unidade funcional dispońıveis então executa

∗ dependências de dados devem ser respeitadas

∗ como descobre e resolve riscos RAW, WAR, WAW?

algoritmo do placar scoreboarding, Thornton CDC6600 1961

algoritmo de Tomasulo IBM 360/91 1967

Register Update Unit Sohi IEEE-TC 39:3 1990

UFPR DInf BCC 211

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Processador Super-escalar

Processador possui dois ou mais Circuitos de Dados paralelos

Estágio de decodificação escolhe tuplas de instruções

e as despacha de acordo com disponibilidade de unidades funcionais

Inter-travamento entre estágios e unidades funcionais

resolve dependências de dados e de controle

Algoritmo do Placar ou Algoritmo de Tomasulo: detalhes adiante

resolvem “problema dos gladiadores”

=⇒ que gladiador luta contra qual, e quando

Unidade de reordenamento enfilera resultados de acordo com

dependências entre resultados e operandos

UFPR DInf BCC 216

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Emissão fora-de-ordem + resultado fora-de-ordem

pppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppp

p p

p p

p p

p p

p p

1
2
3
4
5
6

decodif

i2i1

i3

ciclo

i4

decodifica 2/ciclo

executa 3/ciclo

escreve 2/ciclo

pipeline
i3 e i4 competem por UF

i5 depende de result de i4

i5 e i6 competem por UF

i1 executa em 2 ciclos

execução

i1

i1

i2

resultado

i1

janela

i3,i4

i1,i2

i5 i6

i4,i5,i6

i5

i3

i4

i5

i6

i2

i3

i4 i6

i5

UFPR DInf BCC 215

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Emissão em-ordem + resultado fora-de-ordem

ppppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppp

1
2
3
4
5
6
7

resultadoexecuçãodecodif

i2i1

i3 i1

i1

i2

i1

ciclo

i4

decodifica 2/ciclo

executa 3/ciclo

escreve 2/ciclo

pipeline
i3 e i4 competem por UF

i5 depende de result de i4

i5 e i6 competem por UF

i1 executa em 2 ciclos

i4

i5

i6

i6

i3

i4

i5

i6

i2

i3

i4

i5

i6

UFPR DInf BCC 214

Arquitetura II — algor de Tomasulo 2007-1

Revisão

• Superpipelining

∗ aumenta freqüência do relógio & reduz lógica em cada estágio

∗ ganho: desempenho ∝ freqüência do relógio

∗ perda: CPI aumenta por causa das penalidades (desvios, depend)

• Processadores superescalares

∗ recursos replicados para usar paralelismo no ńıvel de instrução

∗ algoritmo para garantir dependências de dados e controle

algoritmo do placar ou de Tomasulo

∗ PNI é caracteŕıstica do SW HW pode ou não suportar PNI>1

• Ordem modelo seqüencial deve ser respeitado pelo HW

∗ emissão em-ordem VS fora-de-ordem

∗ execução em-ordem VS fora de ordem

∗ gravar resultados em-ordem VS fora-de-ordem

UFPR DInf BCC 219

Arquitetura II — algor de Tomasulo 2007-1

Resumo

• Superpipelining

∗ aumenta freqüência do relógio & reduz lógica em cada estágio

∗ ganho: desempenho ∝ freqüência do relógio

∗ perda: CPI aumenta por causa das penalidades (desvios, depend)

• Processadores superescalares

∗ recursos replicados para usar paralelismo no ńıvel de instrução

∗ algoritmo para garantir dependências de dados e controle

algoritmo do placar ou de Tomasulo

∗ PNI é caracteŕıstica do SW HW pode ou não suportar PNI>1

• Ordem modelo seqüencial deve ser respeitado pelo HW

∗ emissão em-ordem VS fora-de-ordem

∗ execução em-ordem VS fora de ordem

∗ gravar resultados em-ordem VS fora-de-ordem

UFPR DInf BCC 218

Arquitetura II — paralelismo no ńıvel de instrução 2007-1

Processador Superescalar

Dependências de controle são resolvidas com

execução especulativa

Instruções nos dois lados do desvio são

executadas especulativamente;

→ quando decide, anula efeito das instruções do caminho errado

Registradores fantasma mantém valores da execução especulativa;

quando resolve desvio copia de regs fantasma para regs viśıveis

UFPR DInf BCC 217

Arquitetura II — algor de Tomasulo 2007-1

Ordem de execução – soluções

• Escalonamento estático (sw)

∗ compilador re-ordena as instruções

∗ compilador pode usar algoritmos poderosos

∗ hardware pode ser simples

∗ escalonamento não se adapta à execução: faltas nas caches

• Escalonamento dinâmico (hw)

∗ hardware re-ordena instruções

∗ hw trata eventos desconhecidos em tempo de compilação

∗ software é mais portável

∗ hardware é (muito) mais complexo

∗ é usado em muitos processadores super-escalares

UFPR DInf BCC 222

Arquitetura II — algor de Tomasulo 2007-1

Ordem de execução

...

lw r3, 0(r4+r2) # carrega B[i]

lw r7, 0(r5+r2) # carrega C[i]

mul r7,r7,r3 # r7 ←r7*r3

addi r1,r1,-1 # decr contador

...

• Problema:

∗ dois LWs emitidos para unidade de memória

∗ MUL é bloqueado por causa do risco RAW em r3 e r7

∗ ADDI pára porque MUL parou

ADDI pára por causa da execução em-ordem

UFPR DInf BCC 221

Arquitetura II — algor de Tomasulo 2007-1

Trecho de código comum

for (i=0; i<TAM; i++) // Multiplica elmtos de

A[i] = B[i] * C[i]; // B e C, armazena em A

addi r1,r0,TAM # tamanho dos vetores

or r2,r0,r0 # indice nos vetores

la r4, endB # ender vetor B

la r5, endC # ender vetor C

la r6, endA # ender vetor A

loop: lw r3, 0(r4+r2) # carrega B[i]

lw r7, 0(r5+r2) # carrega C[i]

mul r7,r7,r3 # r7 ←r7*r3

addi r1,r1,-1 # decr contador

sw r7, 0(r6+r2) # guarda A[i]

addi r2,r2,8 # acerta indice

bne r1,r0,loop # terminou?
UFPR DInf BCC 220

Arquitetura II — algor de Tomasulo 2007-1

Re-nomeação de registradores em harwdare

• Considere registradores do CdI como nomes para valores

não como locais de armazenagem

• hardware pode re-nomear registradores para evitar

riscos WAR e WAW

de:

lw r2, 8(r4)

mul r2,r2,r5

add r5,r6,r9

para:

lw t1, 8(r4)

mul t2,t1,r5

add t3,r6,r9

Compilador deve garantir que usos subsequentes de r2 e r5

usem t1 e t3 →mesmo através de desvios

UFPR DInf BCC 225

Arquitetura II — algor de Tomasulo 2007-1

Riscos em registradores

• Compiladores podem evitar alguns riscos WAR e WAW

mas não todos eles

add r2, r8, r4

bne r1,r0, else

add r2, r9, r4

else: add r6, r2, r5

∗ não há risco WAW se desviar

há risco WAW se seguir (em r2)

∗ instrução pode ter risco consigo mesma

no escalonamento dinâmico de loops

UFPR DInf BCC 224

Arquitetura II — algor de Tomasulo 2007-1

Riscos em registradores

• Emissão fora-de-ordem não pode violar riscos RAW

que são as únicas dependências verdadeiras

• riscos WAR e WAW podem inibir reordenação desnecessariamente

dependências falsas:

lw r2, 8(r4)

mul r2,r2,r5

add r5,r6,r9

se r5 é modificado fora-de-ordem, MUL pode ler operando

incorreto

UFPR DInf BCC 223

Arquitetura II — algor de Tomasulo 2007-1

Algoritmo de Tomasulo Generalizado

pp

pp

pp

rr

pp

pp

pp

pp pp

rr

rr

pp

pp

pp

rr

rr

rr

rr

pp pp
pppppppppppppppppppppppp

pp

ALUint

mult1 m4m3m2

common
data
bus

CDB

ER LS

ER M

regs

ER A

resultado

busca decod

dC2dC1

ldQ

stQ

ender
soma

despacho emissão

UFPR DInf BCC 228

Arquitetura II — algor de Tomasulo 2007-1

Algoritmo de Tomasulo Generalizado

• Melhora paralelismo em processador segmentado

• aplica-se algoritmo em todas as unidades segmentadas

→ trata instruções de memória como as demais

• Usa etiquetas (tags) para identificar valores

valores podem ser nomeados por tags e nomes de registradores

• estações de reserva (ER) implementam controle distribúıdo

∗ uma ER por unidade funcional

∗ tag identifica resultado da instrução na ER

• Common Data Bus (CDB) difunde todos resultados

etiqueta da unidade funcional é transmitida junto com valor

UFPR DInf BCC 227

Arquitetura II — algor de Tomasulo 2007-1

Algoritmo de Tomasulo

• usado no IBM 360/91, em 1967

∗ modelo rápido para aplicações cient́ıficas

∗ unidades de PF segmentadas

somador e multiplicador (divisão efetuada no multiplicador)

• escalonamento dinâmico nas unidades de ponto flutuante

UFPR DInf BCC 226

Arquitetura II — algor de Tomasulo 2007-1

Algoritmo de Tomasulo – finalização

Finalização:

se CDB está livre,

então transmite

resultado no CDB

senão, bloqueia

enquanto espera

para transmitir

adiantamento:

CDB adianta valor

para ins dependentes

1 ciclo entre res→ uso

...
...
...
...
...
....
....
...
...
...
...
.

...
...
...
...
...
....
....
...
...
...
...
.

...
...
...
...
...
....
....
...
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
....
...
...
....
...
...
...
...
...
.

...
...
...
...
...
....
....
...
...
...
...
.

...
...
...
...
...
....
....
...
...
...
...
.

...
...
...
...
...
.....
...
...
...
...
...
.

...
...
...
...
...
....
....
...
...
...
...
.

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

...
...
...
...
...
....
....
...
...
...
...
.

...
...
...
...
...
.....
...
...
...
...
...
.

...
...
...
...
...
....
....
...
...
...
...
.

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

...
...
...
...
...
....
....
...
...
...
...
.

...
...
...
...
...
....
....
...
...
...
...
.

...
...
...
...
...
....
....
...
...
...
...
.

...
...
...
...
...
....
....
...
...
...
...
.

...
...
...
...
...
.....
...
...
...
...
...
.

rr

dC2dC1

ldQ

stQ

ALUint

mult1

emissãodespacho

ER LS

ER M

regs

ER A

resultado common
data
bus

CDB

todas estações de reserva com tags iguais à

tag no CDB (resultado) recebem valor

UFPR DInf BCC 231

Arquitetura II — algor de Tomasulo 2007-1

Algoritmo de Tomasulo – emissão

Emissão:

se operandos estão prontos

emite operação para Unid Func

senão, espera operando ser

transmitido no CDB

(tag, valor)

desvios:

nenhuma instrução executa

até que desvios anteriores

sejam resolvidos

→ excessões precisas

rr

rr

pp

pp

pp

rr

rr

pp

pp

rr

rr

pp

rr

pp

pp

pp

pp

despacho

ER LS

ER M

ER A

emissão

ALU

stQ

ldQ

mul

CDB

UFPR DInf BCC 230

Arquitetura II — algor de Tomasulo 2007-1

Algoritmo de Tomasulo – despacho

Despacho:

recebe próx instr de busca/decod

há estação de reserva livre?

não – bloqueia emissão

sim – despacha para emissão:

copia regs prontos para ER

copia tags dos regs

não-prontos para ER

rr

rr

pp

pp

pp

rr

rr

pp

pp

rr

rr

pp

rr

pp

despacho

ER LS

ER M

regs

ER A

decod

resultado

busca

UFPR DInf BCC 229

Arquitetura II — algor de Tomasulo 2007-1

Loads e Stores

• Loads e Stores tratados como demais instruções

∗ usam unidade de memória

∗ endereços passam através de uma load queue

• stores: cálculo do ender efetivo é separado do acesso à memória

∗ cálculo do ender efetivo despachado para ER

∗ acesso à memória despachado para fila de escrita

∗ unidade de memória envia endereços para fila de escrita

∗ valor é associado ao endereço pela tag na fila de escrita

• resolução de riscos de memória

∗ emissão de loads e stores ocorre em-ordem

∗ compara ender dos loads com ender anteriores na fila de escrita

bloqueia se há endereços repetidos RAW?

loads podem ultrapassar stores se endereços diferem

UFPR DInf BCC 234

Arquitetura II — algor de Tomasulo 2007-1

Algoritmo de Tomasulo – Estações de Reserva

• Premissa: tag=0→ dado/valor dispońıvel

• campos das estações de reserva

Op opcode (operação)

Qj, Qk etiquetas das fontes

Qj |Qk=0→ Vj |Vk contém valor pronto

Vj, Vk valores dos operandos (fontes)

B (busy) em uso

A campo de endereço nas EdR da unidade de memória

• campos do bloco de registradores

Qi etiqueta da unidade funcional que produzirá valor

Qi=0→ registrador contém valor pronto

Vi valor/conteúdo do registrador

UFPR DInf BCC 233

Arquitetura II — algor de Tomasulo 2007-1

Algoritmo de Tomasulo – EdR

• Estações de Reserva

∗ controlam a execução das instruções

∗ detecção de riscos distribúıda

∗ tag de 4 bits identifica cada elemento das estações de reserva

• todos os receptores de valor usam tag para identificar dado que

passa pelo CDB

• no despacho

∗ ocorre mapeamento entre valores (resultados) e tags

∗ isso feito, “nomes” de registradores são desnecessários

UFPR DInf BCC 232

Arquitetura II — algor de Tomasulo 2007-1

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
...
....
...
...
...
...
..

pppppppppppppppppppppppppppppp

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp
...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

dC2dC1

regs

ldQ

resultado

ER LS

mult1 m4m3m2

emissãodespacho

ER M

decod
busca

CDB

ER A
ALUint

stQ

ciclo 1

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A=? Q=? V=?

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1
1 100 A2 2
2 0 A3 3
3 6 M1 4
4 1000 M2 5
5 2000 LS1 6 1 ld 1000,0 0 0
6 3000 LS2 7
7 LS3 8

UFPR DInf BCC 237

Arquitetura II — algor de Tomasulo 2007-1

Exemplo

addi r1,r0,TAM # tamanho dos vetores

or r2,r0,r0 # indice nos vetores

la r4,endB # ender vetor B 1000

la r5,endC # ender vetor C 2000

la r6,endA # ender vetor A 3000

loop: lw r3, 0(r4+r2) # carrega B[i]

lw r7, 0(r5+r2) # carrega C[i]

mul r7,r7,r3 # r7 ←r7*r3

addi r1,r1,-1 # decr contador

sw r7, 0(r6+r2) # guarda A[i]

addi r2,r2,8 # acerta indice

bne r1,r0,loop # terminou?

UFPR DInf BCC 236

Arquitetura II — algor de Tomasulo 2007-1

Loads e Stores

store queue: stQ

A endereço

Qi etiqueta de dados

Vi valor do operando

load queue: ldQ

A endereço

pp

pppppppppppppppppp
pppppppppppppppppppppppp

pppppppppppppppppp
pppppppppppppppppppppppp

pp

pp

ppppppppppppppppppppppppppppppppppppppp
ppp

pp

pppppppppppppppppp
pp

pp
pppppppppppppppppppppppp

pp

comparador
ender

st Queue

valor ST

ender ST

controle
de riscos

calcula

ender

efetivo

ender LD

ld Queue
p/

mem

emissão

UFPR DInf BCC 235

Arquitetura II — algor de Tomasulo 2007-1

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
...
....
...
...
...
...
..

pppppppppppppppppppppppppppppp

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp
...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

dC2dC1

regs

ldQ

resultado

ER LS

mult1 m4m3m2

emissãodespacho

ER M

decod
busca

CDB

ER A
ALUint

stQ

ciclo 4

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A=? Q=? V=?

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1 1 sub 100 1 0 0
1 1 100 A2 2
2 0 A3 3
3 6 M1 4 1 mul 6 7
4 1000 M2 5
5 2000 LS1 6 1 ld 1000+0 0 0
6 3000 LS2 7 1 ld 2000+0 0 0
7 4 LS3 8

UFPR DInf BCC 240

Arquitetura II — algor de Tomasulo 2007-1

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
...
....
...
...
...
...
..

pppppppppppppppppppppppppppppp

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp
...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

dC2dC1

regs

ldQ

resultado

ER LS

mult1 m4m3m2

emissãodespacho

ER M

decod
busca

CDB

ER A
ALUint

stQ

ciclo 3

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A=? Q=? V=?

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1
1 100 A2 2
2 0 A3 3
3 6 M1 4 1 mul 6 7
4 1000 M2 5
5 2000 LS1 6 1 ld 1000+0 0 0
6 3000 LS2 7 1 ld 2000,0 0 0
7 4 LS3 8

UFPR DInf BCC 239

Arquitetura II — algor de Tomasulo 2007-1

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
...
....
...
...
...
...
..

pppppppppppppppppppppppppppppp

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp
...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

dC2dC1

regs

ldQ

resultado

ER LS

mult1 m4m3m2

emissãodespacho

ER M

decod
busca

CDB

ER A
ALUint

stQ

ciclo 2

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A=? Q=? V=?

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1
1 100 A2 2
2 0 A3 3
3 6 M1 4
4 1000 M2 5
5 2000 LS1 6 1 ld 1000,0 0 0
6 3000 LS2 7 1 ld 2000,0 0 0
7 7 LS3 8

UFPR DInf BCC 238

Arquitetura II — algor de Tomasulo 2007-1

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
...
....
...
...
...
...
..

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

pppppppppppppppppppppppppppppp
...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

dC2dC1

regs

ldQ

resultado

ER LS

mult1 m4m3m2

emissãodespacho

ER M

decod
busca

CDB

ER A
ALUint

stQ

ciclo 7

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A=3000 Q=4 V=?

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1 0
1 0 99 A2 2 1 add 0 8 0 0
2 2 0 A3 3 1 bne 99 0 0 0
3 0 13 M1 4 1 mul 13 11 0 0
4 1000 M2 5
5 2000 LS1 6 0
6 3000 LS2 7 0
7 4 LS3 8 1 st 3000+0 0 4

UFPR DInf BCC 243

Arquitetura II — algor de Tomasulo 2007-1

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
...
....
...
...
...
...
..

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

pppppppppppppppppppppppppppppp
...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

dC2dC1

regs

ldQ

resultado

ER LS

mult1 m4m3m2

emissãodespacho

ER M

decod
busca

CDB

ER A
ALUint

stQ

ciclo 6

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A=3000 Q=4 V=?

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1 1 sub 100 1 0 0
1 1 100 A2 2 1 add 0 8 0 0
2 2 0 A3 3
3 0 13 M1 4 1 mul 13 11 0 0
4 1000 M2 5
5 2000 LS1 6 0
6 3000 LS2 7 0
7 4 LS3 8 1 st 3000,0 0 4

UFPR DInf BCC 242

Arquitetura II — algor de Tomasulo 2007-1

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
...
....
...
...
...
...
..

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

pppppppppppppppppppppppppppppp
...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

dC2dC1

regs

ldQ

resultado

ER LS

mult1 m4m3m2

emissãodespacho

ER M

decod
busca

CDB

ER A
ALUint

stQ

ciclo 5

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A=? Q=4 V=?

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1 1 sub 100 1 0 0
1 1 100 A2 2
2 0 A3 3
3 0 13 M1 4 1 mul 13 0 7
4 1000 M2 5
5 2000 LS1 6 0
6 3000 LS2 7 1 ld 2000+0 0 0
7 4 LS3 8 1 st 3000,0 0 4

UFPR DInf BCC 241

Arquitetura II — algor de Tomasulo 2007-1

...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
....
...
....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

dC2dC1

regs

ldQ

resultado

mult1 m4m3m2

emissãodespacho

decod
busca

CDB

ALUint

stQ

ciclo 10

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3 2x

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A=3000 Q=4 V=?

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1 0
1 0 99 A2 2 0
2 0 8 A3 3 0
3 6 13 M1 4 1 mul 13 11 0 0
4 1000 M2 5 1 mul 7 6
5 2000 LS1 6 1 ld 1000+8 0 0
6 3000 LS2 7 1 ld 2000,8 0 0
7 5 LS3 8 1 st 3000+0 0 4

UFPR DInf BCC 246

Arquitetura II — algor de Tomasulo 2007-1

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
...
....
...
...
...
...
..

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

pppppppppppppppppppppppppppppp
...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

pppppppppppppppppppppppppppppp

...
...
...
...
....
....
...
...
...
.

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrr

dC2dC1

regs

ldQ

mult1 m4m3m2

emissãodespacho

decod
busca

CDB

ALUint

stQ

result

ciclo 9

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A=3000 Q=4 V=?

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1 0
1 0 99 A2 2 0
2 0 8 A3 3 0
3 6 13 M1 4 1 mul 13 11 0 0
4 1000 M2 5
5 2000 LS1 6 1 ld 1000,8 0 0
6 3000 LS2 7 1 ld 2000,8 0 0
7 7 LS3 8 1 st 3000+0 0 4

UFPR DInf BCC 245

Arquitetura II — algor de Tomasulo 2007-1

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
....
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
...
....
...
...
...
...
..

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

pppppppppppppppppppppppppppppp
...
...
...
...
....
....
...
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
...
....
...
...
.

...
...
...
...
....
....
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

...
...
...
...
....
....
...
...
...
.

dC2dC1

regs

ldQ

resultado

ER LS

mult1 m4m3m2

emissãodespacho

ER M

decod
busca

CDB

ER A
ALUint

stQ

ciclo 8

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A=3000 Q=4 V=?

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1 0
1 0 99 A2 2 0
2 0 8 A3 3 1 bne 99 0 0 0
3 6 13 M1 4 1 mul 13 11 0 0
4 1000 M2 5
5 2000 LS1 6 1 ld 1000,8 0 0
6 3000 LS2 7 0
7 4 LS3 8 1 st 3000+0 0 4

UFPR DInf BCC 244

Arquitetura II — algor de Tomasulo 2007-1

...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
....
...
....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

pppppppppppppppppppppppppppppp

dC2dC1

regs

ldQ

resultado

mult1 m4m3m2

emissãodespacho

decod
busca

CDB

ALUint

stQ

ciclo 13

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A=? Q=? V=?

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1 1 sub 99 1 0 0
1 1 99 A2 2 1 add 8 8 0 0
2 2 8 A3 3 0
3 0 12 M1 4 0
4 1000 M2 5 1 mul 12 0 7
5 2000 LS1 6 1 st 3000,8 0 5
6 3000 LS2 7 1 ld 2000+8 0 0
7 5 143 LS3 8 0

UFPR DInf BCC 249

Arquitetura II — algor de Tomasulo 2007-1

...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
....
...
....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

...
...
....
...
....
...
...
...
...
.

dC2dC1

regs

ldQ

resultado

mult1 m4m3m2

emissãodespacho

decod
busca

CDB

ALUint

stQ

ciclo 12

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A=3000 Q=4 V=143

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1 1 sub 99 1 0 0
1 1 99 A2 2 0
2 0 8 A3 3 0
3 0 12 M1 4 0
4 1000 M2 5 1 mul 12 0 7
5 2000 LS1 6 1 st 3000,8 0 5
6 3000 LS2 7 1 ld 2000+8 0 0
7 5 143 LS3 8 1 st 3000+0 143 0 0

UFPR DInf BCC 248

Arquitetura II — algor de Tomasulo 2007-1

...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
....
...
....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

...
...
....
...
....
...
...
...
...
.

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

dC2dC1

regs

ldQ

resultado

mult1 m4m3m2

emissãodespacho

decod
busca

CDB

ALUint

stQ

ciclo 11

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A=3000 Q=4 V=143

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1 1 sub 99 1 0 0
1 1 99 A2 2 0
2 0 8 A3 3 0
3 6 13 M1 4 0
4 1000 M2 5 1 mul 7 6
5 2000 LS1 6 1 ld 1000+8 0 0
6 3000 LS2 7 1 ld 2000+8 0 0
7 5 143 LS3 8 1 st 3000+0 143 0 0

UFPR DInf BCC 247

Arquitetura II — algor de Tomasulo 2007-1

Algoritmo de Tomasulo – tratamento de riscos

problema solução

risco estr: Estação de Reserva bloqueia no despacho

risco estr: unidade funcional bloqueia na ER

RAW resolve com as etiquetas

WAR copia oper para ER no despacho

WAW renomeação de registradores

UFPR DInf BCC 252

Arquitetura II — algor de Tomasulo 2007-1

Algoritmo de Tomasulo – resumo

• Estações de Reserva

∗ emissão fora-de-ordem quando operandos dispońıveis

• Re-nomeação de registradores

∗ elimina riscos WAW e WAR importante com poucos regs

∗ permite desenrolar laços dinamicamente

∗ lógica é relativamente complexa

• Common Data Bus

∗ transmite resultados para múltiplos destinos

∗ gargalo central pode ser duplicado, com mais hw

• excessões precisas – não implementadas

∗ poderia usar buffer de re-ordenação para atualizar registradores

UFPR DInf BCC 251

Arquitetura II — algor de Tomasulo 2007-1

...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
....
...
....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

dC2dC1

regs

ldQ

resultado

mult1 m4m3m2

emissãodespacho

decod
busca

CDB

ALUint

stQ

ciclo 14

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A=? Q=? V=?

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1 1 sub 99 1 0 0
1 1 99 A2 2 1 add 8 8 0 0
2 2 8 A3 3 1 bne 0 1 0
3 0 12 M1 4 0
4 1000 M2 5 1 mul 12 10 0 0
5 2000 LS1 6 1 st 3000,8 0 5
6 3000 LS2 7 0
7 5 143 LS3 8 0

UFPR DInf BCC 250

Arquitetura II — Buffer de reordenação 2007-1

revisão – Algoritmo de Tomasulo

• Estações de Reserva

∗ emissão fora-de-ordem quando operandos dispońıveis

∗ emissão continua adiante dos desvios/jumps

• Re-nomeação de registradores elimina riscos WAW e WAR

∗ permite desenrolar laços dinamicamente

múltiplas iterações usam lugares 6=s para valores/regs

• Common Data Bus transmite resultados para múltiplos destinos

• Lógica de detecção de riscos é distribúıda pelas ER e CDB

∗ se múltiplas instruções esperam por um mesmo resultado, com

outro já dispońıvel, então valor no CDB libera todas p/ execução

• escalonamento é dinâmico porque grafo de dependências

é constrúıdo durante execução

UFPR DInf BCC 255

Arquitetura II — Buffer de reordenação 2007-1

...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
....
...
....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
...
...
.....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

pppppppppppppppppppppppppppppp
...
...
....
...
....
...
...
...
...
.

...
...
....
...
....
...
...
...
...
.pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp

...
...
....
...
....
...
...
...
...
.

dC2dC1

regs

ldQ

resultado

mult1 m4m3m2

emissãodespacho

decod
busca

CDB

ALUint

stQ

efet
end

ciclo

loop: r3 ←mem(r4+r2)

r7 ←mem(r5+r2)

r7 ←r7 * r3

r1 ←r1 - 1

mem(r6+r2) ←r7

r2 ←r2 + 8

(r1!=0)?PC←loop

stQ: A= Q= V=

reg Q V RS tag bsy Op Vj Vk Qj Qk
0 A1 1
1 A2 2
2 A3 3
3 M1 4
4 1000 M2 5
5 2000 LS1 6
6 3000 LS2 7
7 LS3 8

UFPR DInf BCC 254

Arquitetura II — algor de Tomasulo 2007-1

Exerćıcios

1. Re-escreva o código do laço para minimizar as bolhas.

2. Desenrole o loop para minimizar as bolhas. Qual o ganho com

relação ao exerćıcio 1?

3. Considerando a latência da multiplicação (4 ciclos), quantas vezes

o loop deve ser desenrolado para minimizar as bolhas?

4. Complete a seqüência de diagramas após o ciclo 9, em que o

destino do desvio é decidido (veja diagrama do ciclo 10). Simule

mais uma volta do loop.

UFPR DInf BCC 253

Arquitetura II — Buffer de reordenação 2007-1

Especulação e excessões precisas

• Excessões tem semântica seqüencial von Neumann

∗ todas instruções antes da excessão completam

∗ todas instrs após excessão devem parecer nunca ter iniciado

∗ mesmas condições que para um desvio previsto erradamente

• qual a dificuldade com excessões/interrupções precisas?

∗ completar fora-de-ordem ; deve desfazer escritas anteriores

∗ em-ordem ; nenhuma escrita posterior à instr de desvio,

é confirmada até que desvio complete

∗ fora-de-ordem pode ocorrer

• fora-de-ordem:

excessões precisas e recuperação de especulação errada

são o mesmo problema→mesma solução

UFPR DInf BCC 258

Arquitetura II — Buffer de reordenação 2007-1

Excessões precisas e especulação

• Especulação – adivinha futuro e executa tentativamente

• importante na previsão de desvios:

prevê destino e inicia execução naquele caminho

• se especulação foi errada,

deve voltar e re-iniciar execução de onde previu erradamente

mesmo comportamento que em excessões precisas

• mesma técnica para excessão precisa e especulação:

completar em-ordem in-order commit

UFPR DInf BCC 257

Arquitetura II — Buffer de reordenação 2007-1

Superescalar + Fora-de-Ordem + Especulação

• Superescalar + Fora-de-Ordem + Especulação

conceitos que funcionam bem (melhor) quando combinados

• CPI ≥1

consegue com superescalar

• superescalar sofre mais riscos? por que?

resolve com escalonamento dinâmico (exec/reslt fora-de-ordem)

• dependências RAW causam problemas?

resolve com janela de instruções grande

• desvios impedem que janela fique cheia?

resolve com especulação

UFPR DInf BCC 256

Arquitetura II — Buffer de reordenação 2007-1

Buffer de Re-ordenação (BdR)

rr

rr

pp

pp pp

pppppppppppppppppp
pppppppppppppppppppppppppp

pp

pp pp

rr
pp

pp

pp

exec

mem

CdI

busca desp emiss retiracompleta

PC regs

BdR

buffer de instruções ≡ Buffer de Reordenação

• mantém resultados prontos a caminho dos regs e da cache de

dados

pode ser combinado com as ERs (como na figura) ou separado

• divide estágio de RESULTADO em COMPLETA e RETIRA

UFPR DInf BCC 261

Arquitetura II — Buffer de reordenação 2007-1

Qual o problema com estado preciso?

• problema no estágio de escrita/resultado writeback

mistura o que deveria estar separado:

∗ difunde valores para Estações de Reserva, e

adianta valores para instruções → pode ser fora-de-ordem

∗ escreve valores nos registradores →melhor se é em-ordem

• P: qual a solução para todo problema de funcionalidade?

R: adicionar um ńıvel de indireção

∗ como é feito para execução fora-de-ordem

separa DECOD em

(1) DESPACHO em-ordem e (2) EMISSÃO fora-de-ordem

∗ usa um buffer de instruções para separar os dois estágios

placar ou estações de reserva

UFPR DInf BCC 260

Arquitetura II — Buffer de reordenação 2007-1

Algoritmo de Tomasulo e excessões precisas

• Algoritmo de Tomasulo faz:

∗ emissão em-ordem

∗ execução fora-de-ordem

∗ resultados fora-de-ordem

• necessário resolver ordenação dos resultados para que excessões

sejam precisas

∗ “ponto de quebra” definido:

instruções mais velhas completaram (escreverem resultado)

instruções mais novas não alteram estado

• habilidade de abortar e re-iniciar cada instrução

→ estado preciso

UFPR DInf BCC 259

Arquitetura II — Buffer de reordenação 2007-1

BdR + BOM

rr

rr

pp

pp pp

ppppppppppppppppppp
ppppppppppppppppppppppppp

pp

pp pp

pp

pp pp

pp
pppp pp

pppp

ppppppppppppppppppp
ppppppppppppppppppppppppp

pp

pp

pp

rr

exec

mem

CdI

busca desp emiss retiracompleta

PC
regs

BdR

loads
stores CDstores

stores loads

BOM

Esta é uma versão simplificada, porém realista, do PentiumPro (P6)

UFPR DInf BCC 264

Arquitetura II — Buffer de reordenação 2007-1

Buffer de Ordenação de Memória

BdR escreve nos regs em-ordem – como fica escrever em memória?

• mesmo que antes→ escreve na cache no estágio de memória

∗ ruim!!! memória imprecisa é pior que regs imprecisos

• Buffer de ordenação de memória (BOM)

∗ fila de escrita, store buffer, load/store queue

∗ stores em COMP (mas não retirados) escrevem no BOM

∗ em RET, store na cabeça do BOM é escrito em memória

∗ loads procuram no BOM e na cache em paralelo

adiantamento do BOM se referencia mesmo endereço

UFPR DInf BCC 263

Arquitetura II — Buffer de reordenação 2007-1

Completa e Retira

rr

rr

pp

pp pp

pppppppppppppppppp
pppppppppppppppppppppppppp

pp

pp pp

rr
pp

pp

pp

exec

mem

CdI

busca desp emiss retiracompleta

PC regs

BdR

• completa (CM) commit
⋆ valores prontos são gravados no BdR fora-de-ordem

⋆ estágio fora-de-ordem→ riscos resultam em espera (wait)

• retira (RT) retire, graduate
⋆ BdR escreve no bloco de registradores em-ordem

⋆ estágio em-ordem→ riscos resultam em bloqueios (stalls)

UFPR DInf BCC 262

Arquitetura II — Buffer de reordenação 2007-1

Estruturas de dados

• Estações como em Tomasulo simples

• Buffer de Reordenação (BdR)

∗ cabeça, fim – mantém ordem seqüencial

∗ R – registrador destino da instr

∗ V – valor produzido pela instrução

• etiqueta

∗ #BdR (elmto do BdR) (Tomasulo usava #ER)

• status dos registradores

∗ T+ – bit + indica “pronto no BdR”

∗ tag = 0→ resultado pronto em registrador (preciso)

∗ tag 6= 0→ resultado não está pronto

∗ tag = N+→ resultado pronto no BdR #N

UFPR DInf BCC 267

Arquitetura II — Buffer de reordenação 2007-1

Organização no Estilo P6

pp

ppppppppppppppppppp
ppppppppppppppppppppppppp

rr
rrrrrrrr

pp pp

pp pp pp

pp

pp

pp

pp

pp pp

pp

pp

rr
rrrrrrrr rr

rrrrrrrr

rr
rrrrrrrr rr

rrrrrrrr rr
rr

rrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrr

rr
rrrrrrrr rr

rrrrrrrrpp
pp

pppp

pppppppppppppppppp
pppppppppppppppppppppppppp

pp

pp

pp

pp

rr

rr

T

==

valor

V2V1

Unid Func

valorR

T T1 T2

T+

BdR

DES

RET

cab

fim

DES

regsregs-status

Est Res

CDB.t

campos das instr e bits de pronto
etiquetas (tags) valores

CDB.v

UFPR DInf BCC 266

Arquitetura II — Buffer de reordenação 2007-1

Tomasulo + BdR

• adicionar BdR ao algoritmo de Tomasulo

∗ combinação de BdR e ER é chamada de Register Update Unit

(RUU) ou “método de Sohi”

∗ BdR e ER separadas são chamados de estilo P6

• Exemplo: P6-simples

∗ BdR e ER separados

∗ organização: 1 ALU, 1 load, 1 store, 2 PF (latência de 3 ciclos)

loop: ldf f0,X(r1) for (i=0; i<r2; i++)

mulf f4,f0,f2 Z[i] = X[i] * f2

stf f4,Z(r1)

add r1,r1,#8

bne r1,r2,loop (ignorar desvio)

UFPR DInf BCC 265

Arquitetura II — Buffer de reordenação 2007-1

Segmentos do P6

Estrutura do processador: BUS, DES, EMI, EXE, COM, RET

• COM (completa)

(CDB ocupado) ? (espera) : wait

{ escreve valor no elmto do BdR indicado pela etiqueta na ER,

marca elmto do BdR como pronto,

liga bit + (pronto-no-BdR) no status do reg destino

}

• RET (retira)

(cabeça do BdR não está pronto) ? (bloqueia) : stall

{ escreve valor da cabeça do BdR no bloco de regs,

se store escreve cabeça do BOM na cache,

trata quaisquer excessões,

libera elementos do BdR e BOM

}

UFPR DInf BCC 270

Arquitetura II — Buffer de reordenação 2007-1

Segmentos do P6

Estrutura do processador: BUS, DES, EMI, EXE, COM, RET

Busca, Despacho, Emissão, Exec, Completa, Retira

• DES (despacho)

(ER, BdR, BOM, cheios) ? (bloqueia) :

{ aloca elementos em ER, BdR, BOM,

atribui #BdR à etiqueta da ER

atribui #BdR ao status do reg destino, bit + desligado

copia regs/valores prontos para ER

}

• EXE (execução)

libera elemento da ER

(em Tomasulo fazia na finalização,

pode fazer em EXE porque #ER não é mais etiqueta)

UFPR DInf BCC 269

Arquitetura II — Buffer de reordenação 2007-1

Estruturas de dados

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+

1 ldf f0,X(r1) f0
2 mulf f4,f0,f2 f2
3 stf f4,Z(r1) f4
4 add r1,r1,8 r1
5 ldf f0,X(r1) CDB
6 mulf f4,f0,f2 T V
7 stf f4,Z(r1)

Est Resv
UF bsy T Vj Vk Qj Qk
1 ALU
2 load
3 store
4 FP1
5 FP2

...

UFPR DInf BCC 268

Arquitetura II — Buffer de reordenação 2007-1

P6 COMpleta

pp

pp

pp pp

pp

pp

rr
rrrrrrrr rr

rrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrpp

pp
pppp

pppppppppppppppppp
pppppppppppppppppppppppppp

pp

pp

pp

rr

rr

rr
rrrrrrrr

rr
rrrrrrrr

pp

pppppppppppppppppp
pppppppppppppppppppppppppp

rr rr

pp pp

rr

rr
rrrrrrrr rr

rrrrrrrr

rr
rr

rrrrrrrr rr
rrrrrrrr

rr
rrrrrrrr

rr

pp

valor valorRT+

BdR

DES

RET

cab

fim

regsregStatus

T

==

T T1 T2

Est Res

CDB.t

V2V1

Unid Func
CDB.v

difunde <valor,tag> no CDB
escreve result no BdR, liga bit + em regStatus
‘casa’ tags, grava CDB.v nas ER das instr dependentes

DES

UFPR DInf BCC 273

Arquitetura II — Buffer de reordenação 2007-1

P6 DESpacha (ii)

pp

pppppppppppppppppp
pppppppppppppppppppppppppp

rr
rrrrrrrr

pp pp

pp pp pp

pp

pp

pp

pp

pp pp

pp

pp

rr
rrrrrrrr rr

rrrrrrrr

rr
rrrrrrrr rr

rrrrrrrr rr
rr

rrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrrpp

pp
pppp

pppppppppppppppppp
pppppppppppppppppppppppppp

rr

pp

pp

pp

rr

rr

rr
rrrrrrrr

rr
rrrrrrrr

T

==

valor

V2V1

Unid Func

valorR

T T1 T2

T+

BdR

DES

RET

cab

fim

DES

regsregStatus

Est Res

CDB.t

CDB.v

tag !=0: copia tag p/ ER
verifica tags de operandos do regStatus (tag==0: copia dos regs)

tag ==n+: copia tag do BdR[n]

UFPR DInf BCC 272

Arquitetura II — Buffer de reordenação 2007-1

P6 DESpacha (i)

pp

pppppppppppppppppp
pppppppppppppppppppppppppp

rr
rrrrrrrr

pp pp

pp pp pp

pp

pp

pp

pp

pp pp

pp

pp

rr
rrrrrrrr rr

rrrrrrrr

rr
rrrrrrrr rr

rrrrrrrr rr
rr

rrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrr

rr
rrrrrrrr rr

rrrrrrrrpp
pp

pppp

pppppppppppppppppp
pppppppppppppppppppppppppp

rr

pp

pp

pp

rr

rr

ppppppppppp ppppppppppp ppppppp
pppp ppppppppppp ppppppppppp

ppppppppppp ppp

T

==

valor

V2V1

Unid Func

valorR

T T1 T2

T+

BdR

DES

RET

cab

fim

DES

regsregStatus

Est Res

CDB.t

CDB.v

aloca elmtos no BdR e ER (etiqueta dest da ER = #BdR)
regStatus aponta para #BdR, bit pronto-no-BdR=0 (+)

fim,0

UFPR DInf BCC 271

Arquitetura II — Buffer de reordenação 2007-1

Exemplo P6 – ciclo 2

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+
h 1 ldf f0,X(r1) f0 &X[0] c2 f0 B-1
t 2 mulf f4,f0,f2 f4 f2

3 stf f4,Z(r1) f4 B-2
4 add r1,r1,8 r1
5 ldf f0,X(r1) CDB
6 mulf f4,f0,f2 T V
7 stf f4,Z(r1)

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU
2 load 1 ldf B-1 [r1]
3 store
4 FP1 1 mulf B-2 R[f2] B-1
5 FP2

aloca BdR[2]

aloca EstRes[4]

ajusta regStat[f4]

UFPR DInf BCC 276

Arquitetura II — Buffer de reordenação 2007-1

Exemplo P6 – ciclo 1

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+
h,t 1 ldf f0,X(r1) f0 &X[0] f0 B-1

2 mulf f4,f0,f2 f2
3 stf f4,Z(r1) f4
4 add r1,r1,8 r1
5 ldf f0,X(r1) CDB
6 mulf f4,f0,f2 T V
7 stf f4,Z(r1)

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU
2 load 1 ldf B-1 [r1]
3 store
4 FP1
5 FP2

aloca BdR[1]

aloca EstRes[2]

ajusta regStat[f0]

UFPR DInf BCC 275

Arquitetura II — Buffer de reordenação 2007-1

P6 RETira

pp

pp

pp pp

pp

pp

rr
rrrrrrrr rr

rrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrpp

pp
pppp

pppppppppppppppppp
pppppppppppppppppppppppppp

pp

pp

pp

rr

rr

rr
rrrrrrrr

pp

pppppppppppppppppp
pppppppppppppppppppppppppp

rr rr

pp pp

rr

rr
rrrrrrrr rr

rrrrrrrr

rr
rr

rrrrrrrr rr
rrrrrrrr

rr
rrrrrrrr

rr

pp

rr
rrrrrrrr

valor valorRT+

BdR

DES

RET

cab

fim

regsregStatus

T

==

T T1 T2

DES

Est Res

CDB.t

V2V1

Unid Func
CDB.v

bloqueia até que instr na cabeça do BdR tenha completado

libera elmto do BdRlimpa elmto de regStatus
escreve valor da cabeça do BdR nos regs (na cache se store),

UFPR DInf BCC 274

Arquitetura II — Buffer de reordenação 2007-1

Exemplo P6 – ciclo 5

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+

1 ldf f0,X(r1) f0 [f0] &X[0] c2 c3 c4 f0 B-5
h 2 mulf f4,f0,f2 f4 c4 c5,1 f2

3 stf f4,Z(r1) &Z[0] f4 B-2
4 add r1,r1,8 r1 c5 r1 B-4

t 5 ldf f0,X(r1) f0 CDB
6 mulf f4,f0,f2 T V
7 stf f4,Z(r1)

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU 1 add B-4 R[r1] 8
2 load 1 ldf b-5 B-4
3 store 1 stf B-3 R[r1] B-2
4 FP1 0 — — mulf em EXEC
5 FP2

aloca BdR[5]
aloca ER[2]

libera ER[4]

ldf retira,
grava [f0] em regs

UFPR DInf BCC 279

Arquitetura II — Buffer de reordenação 2007-1

Exemplo P6 – ciclo 4

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+
h 1 ldf f0,X(r1) f0 [f0] &X[0] c2 c3 c4 f0 B-1+

2 mulf f4,f0,f2 f4 c4 f2
3 stf f4,Z(r1) &Z[0] f4 B-2

t 4 add r1,r1,8 r1 r1 B-4
5 ldf f0,X(r1) CDB
6 mulf f4,f0,f2 T V
7 stf f4,Z(r1) B-1 [f0]

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU 1 add B-4 R[r1] 8
2 load 0
3 store 1 stf B-3 R[r1] B-2
4 FP1 1 mulf B-2 CDB.V R[f2] b-1

5 FP2

aloca BdR[4]
aloca ER[1]

ldf completa,
[f0] passa no CdB,
marca f0 pronto no
BdR: B-1+

UFPR DInf BCC 278

Arquitetura II — Buffer de reordenação 2007-1

Exemplo P6 – ciclo 3

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+
h 1 ldf f0,X(r1) f0 &X[0] c2 c3 f0 B-1

2 mulf f4,f0,f2 f4 f2
t 3 stf f4,Z(r1) &Z[0] f4 B-2

4 add r1,r1,8 r1
5 ldf f0,X(r1) CDB
6 mulf f4,f0,f2 T V
7 stf f4,Z(r1)

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU
2 load 0 — — ldf em EXEC
3 store 1 stf B-3 R[r1] B-2
4 FP1 1 mulf B-2 R[f2] B-1
5 FP2

aloca BdR[3]

aloca ER[3]

libera EstRes[2]

UFPR DInf BCC 277

Arquitetura II — Buffer de reordenação 2007-1

Exemplo P6 – ciclo 8

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+

1 ldf f0,X(r1) f0 [f0] &X[0] c2 c3 c4 f0 B-5
h 2 mulf f4,f0,f2 f4 [f4] c4 c5 c8 f2

3 stf f4,Z(r1) &Z[0] c8 f4 B-6
4 add r1,r1,8 r1 [r1] c5 c6 c7 r1 B-4+
5 ldf f0,X(r1) f0 &X[1] c7 c8 CDB

t 6 mulf f4,f0,f2 f4 T V
7 stf f4,Z(r1) 6 ∃ ER livre B-2 [f4]

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU 0
2 load 0 — — ldf em EXEC
3 store 1 stf B-3 CDB.V R[r1] b-2

4 FP1 0
5 FP2 1 mulf B-6 R[f2] B-5

mulf completa
[f4] passa no CDB

bloqueia DESP: 6 ∃
ER livre para stf

bloqueia add em
RETira: retira em-
ordem

UFPR DInf BCC 282

Arquitetura II — Buffer de reordenação 2007-1

Exemplo P6 – ciclo 7

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+

1 ldf f0,X(r1) f0 [f0] &X[0] c2 c3 c4 f0 B-5
h 2 mulf f4,f0,f2 f4 c4 c5,3 f2

3 stf f4,Z(r1) &Z[0] f4 B-6
4 add r1,r1,8 r1 [r1] c5 c6 c7 r1 B-4+
5 ldf f0,X(r1) f0 &X[1] c7 CDB

t 6 mulf f4,f0,f2 f4 T V
7 stf f4,Z(r1) 6 ∃ ER livre B-4 [r1]

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU 0
2 load 1 ldf B-5 CDB.V b-4

3 store 1 stf B-3 R[r1] B-2
4 FP1 0
5 FP2 1 mulf B-6 R[f2] B-5

add completa
[r1] passa no CDB
marca r1 pronto no
BdR: B-4+

bloqueia DESPacho
porque 6 ∃ ER livre
para stf

UFPR DInf BCC 281

Arquitetura II — Buffer de reordenação 2007-1

Exemplo P6 – ciclo 6

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+

1 ldf f0,X(r1) f0 [f0] &X[0] c2 c3 c4 f0 B-5
h 2 mulf f4,f0,f2 f4 c4 c5,2 f2

3 stf f4,Z(r1) &Z[0] f4 B-6
4 add r1,r1,8 r1 c5 c6 r1 B-4
5 ldf f0,X(r1) f0 CDB

t 6 mulf f4,f0,f2 f4 T V
7 stf f4,Z(r1)

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU 0 — — add em EXEC
2 load 1 ldf B-5 B-4
3 store 1 stf B-3 R[r1] B-2
4 FP1 0
5 FP2 1 mulf B-6 R[f2] B-5

aloca BdR[6]

aloca ER[5]

libera ER[1]

UFPR DInf BCC 280

Arquitetura II — Buffer de reordenação 2007-1

Exemplo P6 – ciclo 11

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+

1 ldf f0,X(r1) f0 [f0] &X[0] c2 c3 c4 f0 B-5+
2 mulf f4,f0,f2 f4 [f4] c4 c5 c8 f2
3 stf f4,Z(r1) &Z[0] c8 c9 c10 f4 B-6

h 4 add r1,r1,8 r1 [r1] c5 c6 c7 r1 B-4+
5 ldf f0,X(r1) f0 [f0] &X[1] c7 c8 c9 CDB
6 mulf f4,f0,f2 f4 c9 c10,2 T V

t 7 stf f4,Z(r1) &Z[1]

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU 0
2 load 0
3 store 1 stf B-7 B-4.v B-6
4 FP1 0
5 FP2 0

retira stf
e libera BdR[3]

bloqueia add
bloqueia ldf
RETira em-ordem

UFPR DInf BCC 285

Arquitetura II — Buffer de reordenação 2007-1

Exemplo P6 – ciclo 10

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+

1 ldf f0,X(r1) f0 [f0] &X[0] c2 c3 c4 f0 B-5+
2 mulf f4,f0,f2 f4 [f4] c4 c5 c8 f2

h 3 stf f4,Z(r1) &Z[0] c8 c9 c10 f4 B-6
4 add r1,r1,8 r1 [r1] c5 c6 c7 r1 B-4+
5 ldf f0,X(r1) f0 [f0] &X[1] c7 c8 c9 CDB
6 mulf f4,f0,f2 f4 c9 c10,1 T V

t 7 stf f4,Z(r1) &Z[1]

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU 0
2 load 0
3 store 1 stf B-7 B-4.v B-6
4 FP1 0
5 FP2 0 — — mulf em EXEC

libera ER[5]

bloqueia add
bloqueia ldf
RETira em-ordem

UFPR DInf BCC 284

Arquitetura II — Buffer de reordenação 2007-1

Exemplo P6 – ciclo 9

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+

1 ldf f0,X(r1) f0 [f0] &X[0] c2 c3 c4 f0 B-5+
2 mulf f4,f0,f2 f4 [f4] c4 c5 c8 f2

h 3 stf f4,Z(r1) &Z[0] c8 c9 f4 B-6
4 add r1,r1,8 r1 [r1] c5 c6 c7 r1 B-4+
5 ldf f0,X(r1) f0 [f0] &X[1] c7 c8 c9 CDB
6 mulf f4,f0,f2 f4 c9 T V

t 7 stf f4,Z(r1) &Z[1] B-5 [f0]

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU 0
2 load 0
3 store 1 stf B-7 B-4.v B-6
4 FP1 0
5 FP2 1 mulf B-6 CDB.V R[f2] b-5

ldf completa
[f0] passa no CDB

libera BdR[3]
. (stf em EX)
e aloca BdR[7]

bloqueia add:
RETira em-ordem

UFPR DInf BCC 283

Arquitetura II — Buffer de reordenação 2007-1

Exemplo de Estado Preciso no P6 – ciclo 9

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+

1 ldf f0,X(r1) f0 [f0] &X[0] c2 c3 c4 f0 B-5+
2 mulf f4,f0,f2 f4 [f4] c4 c5 c8 f2

h 3 stf f4,Z(r1) &Z[0] c8 c9 f4 B-6
4 add r1,r1,8 r1 [r1] c5 c6 c7 r1 B-4+
5 ldf f0,X(r1) f0 [f0] &X[1] c7 c8 c9 CDB
6 mulf f4,f0,f2 f4 c9 T V

t 7 stf f4,Z(r1) &Z[1] B-5 [f0]

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU 0
2 load 0
3 store 1 stf B-7 B-4.v B-6
4 FP1 0
5 FP2 1 mulf B-6 CDB.V R[f2] b-5

FALTA de PÁGINA
em stf em c9

UFPR DInf BCC 288

Arquitetura II — Buffer de reordenação 2007-1

Estado preciso com BdR

• Razão de ser do BdR é manter estado preciso

• como?

1. espera até que condição precisa chegue ao estágio onde RETira

2. limpa conteúdo do BdR, ER, e regStatus enche de zeros

3. re-inicia

• funciona porque zeros são o estado correto para re-iniciar

∗ 0 em BdR/ER→ elementos estão vazios

∗ tag=0 na tabela de status dos regs→ registrador atualizado

• e porque escritas nos registradores e na cache ocorrem em RETira

• exemplo: falta de página em store

UFPR DInf BCC 287

Arquitetura II — Buffer de reordenação 2007-1

Exemplo P6 – ciclo 12

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+

1 ldf f0,X(r1) f0 [f0] &X[0] c2 c3 c4 f0 B-5+
2 mulf f4,f0,f2 f4 [f4] c4 c5 c8 f2
3 stf f4,Z(r1) &Z[0] c8 c9 c10 f4 B-6

h 4 add r1,r1,8 r1 [r1] c5 c6 c7 r1 B-4+
5 ldf f0,X(r1) f0 [f0] &X[1] c7 c8 c9 CDB
6 mulf f4,f0,f2 f4 c9 c10,3 T V

t 7 stf f4,Z(r1) &Z[1]

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU 0
2 load 0
3 store 1 stf B-7 B-4.v B-6
4 FP1 0
5 FP2 0

retira add
EM-ORDEM
(bloq desde c7)

e libera BdR[4]

bloqueia ldf
RETira em-ordem

UFPR DInf BCC 286

Arquitetura II — Buffer de reordenação 2007-1

Desempenho do Estilo P6

Qual é o custo de excessões precisas?

• em geral, mesmo desempenho que Algoritmo de Tomasulo

∗ pouco melhor porque libera ER antes (EXEC)

e portanto incorre em menos riscos estruturais

• se BdR não for suficientemente grande, desempenho ruim

∗ BdR causa riscos estruturais

• regras de projeto para BdR N=largura

⊲ |BdR| ≥ (N × núm de estágios entre DESP e RET)

⊲ |BdR| ≥ (N × T acerto na L2)

⊲ qual o porquê destas regras?

UFPR DInf BCC 291

Arquitetura II — Buffer de reordenação 2007-1

Exemplo de Estado Preciso no P6 – ciclo 11

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+

1 ldf f0,X(r1) f0 [f0] &X[0] c2 c3 c4 f0
2 mulf f4,f0,f2 f4 [f4] c4 c5 c8 f2

h,t 3 stf f4,Z(r1) &Z[0] f4
4 add r1,r1,8 r1
5 ldf f0,X(r1) CDB
6 mulf f4,f0,f2 T V
7 stf f4,Z(r1)

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU 0
2 load 0
3 store 1 stf B-3 R[f4] R[r1]
4 FP1 0
5 FP2 0

re-inicia de onde parou

UFPR DInf BCC 290

Arquitetura II — Buffer de reordenação 2007-1

Exemplo de Estado Preciso no P6 – ciclo 10

hd BdReord + BOrdMem rStat
tl # instr R V ender EM EX CM reg T+

1 ldf f0,X(r1) f0 [f0] &X[0] c2 c3 c4 f0
2 mulf f4,f0,f2 f4 [f4] c4 c5 c8 f2

h,t 3 stf f4,Z(r1) &Z[0] c8 c9 c10 f4
4 add r1,r1,8 r1
5 ldf f0,X(r1) CDB
6 mulf f4,f0,f2 T V
7 stf f4,Z(r1)

Est Res
UF bsy oper T Vj Vk Qj Qk
1 ALU 0
2 load 0
3 store 0
4 FP1 0
5 FP2 0

instrução com excessão
(stf) chega à cabeça do
BdR
LIMPA TUDO!

UFPR DInf BCC 289

Arquitetura II — escalonamento estático 2007-1

resumo – Especulação e Excessões Precisas

• Excessões tem semântica seqüencial von Neumann

∗ todas instruções antes da excessão completam

∗ todas instrs após excessão devem parecer nunca ter iniciado

∗ mesmas condições que para um desvio previsto erradamente

• qual a dificuldade com excessões/interrupções precisas?

∗ completar fora-de-ordem ; deve desfazer escritas anteriores

• implementação: Tomasulo com Buffer de Reordenação Estilo P6

⊲ instruções completam mas só escrevem resultado nos

registradores

se 6 ∃ excessão

⊲ se há excessão (ou previsão de desvio errada)

zera ER, BdR, e tabela de status dos regs, e

re-inicia de onde parou

UFPR DInf BCC 294

Arquitetura II — Buffer de reordenação 2007-1

Solução: implementação do MIPS R10K

• Separa controle (BdR/ER) dos dados (regs/Unid Funcionais)

⊲ um bloco de regs grande mantém todos os dados→ sem cópias

⊲ BdR e ER usados somente para controle e etiquetas→ pequenos

⊲ bloco de registradores próximo das UFs, todo o resto fica ao lado

Detalhes em K C Yeager, The MIPS R10000 Superscalar

Microprocessor, IEEE Micro 16:2, Abr1996.

UFPR DInf BCC 293

Arquitetura II — Buffer de reordenação 2007-1

Problemas com P6

• Organização foi popular (ińıcio 90s)

∗ relativamente fácil de implementar corretamente

∗ para recuperar estado, zera tudo

∗ exemplos: PentiumPro, AMD K6, PowerPC

• Problemas com implementação de alto desempenho

⊲ excessiva movimentação de valores:

regs/BdR→ ER→BdR→ regs

⊲ muitos barramentos e muxes (valores de/para muitos lugares)

⊲ ER misturam valores com etiquetas (controle)

caminhos ficam longos e isso baixa freqüência do relógio

UFPR DInf BCC 292

Arquitetura II — escalonamento estático 2007-1

Very Long Instruction Word – VLIW

Problemas com implementação super-escalar

⊲ largura de busca + previsão de desvios

⊲ adiantamento ∝ N2

⊲ avaliação de dependências ∝ N2

Alternativa: Very Long instruction Word – VLIW

→ pipeline com emissão simples de grupo com N instruções (VLIW)

⊲ compilador garante independência das instrns numa VLIW

⊲ processador não testa dependências “dentro” de uma VLIW

⊲ VLIW atravessa segmentos como pacote indiviśıvel

⊲ alocação ± fixa: 1a é ULA, 2a é load, etc

ULA ld beq ULA

UFPR DInf BCC 297

Arquitetura II — escalonamento estático 2007-1

Trilha do desempenho

• segmentação simples: emissão em-ordem, largura=1

• primeira extensão: super-escalar, emissão múltipla, largura>1

• segunda extensão: escalonamento de instruções para > PNI

∗ 1a opção: escalonamento dinâmico

∗ 2a opção: escalonamento estático

UFPR DInf BCC 296

Arquitetura II — escalonamento estático 2007-1

revisão – Especulação e Excessões Precisas

• Excessões tem semântica seqüencial von Neumann

∗ todas instruções antes da excessão completam

∗ todas instrs após excessão devem parecer nunca ter iniciado

∗ mesmas condições que para um desvio previsto erradamente

• qual a dificuldade com excessões/interrupções precisas?

∗ completar fora-de-ordem ; desfazer escritas anteriores

• implementação I: Tomasulo + Buffer de Reordenação Estilo P6

⊲ instruções completam mas só escrevem resultado nos

registradores

se 6 ∃ excessão

⊲ se (∃ excessão || previsão desvio errada)

zera ER, BdR, e tabela statusRegs; re-inicia de onde parou

• implementação II: MIPS R10K

separa controle (BdR/ER) dos dados (regs/Unid Funcionais)
UFPR DInf BCC 295

Arquitetura II — escalonamento estático 2007-1

VLIW viável

Explicitly Parallel Instruction Computing (EPIC) ISA-64, Itanium

• menos ŕıgido que VLIW talvez nem é VLIW...

• palavras de instruções com tamanho variável

⊲ implementadas como “amontoados” com bits de dependência

⊲ torna código compat́ıvel com máquinas de larguras 6=
• pressupõe que hw implementa lógica de bloqueio

inter-amontoados

⊲ torna código compat́ıvel com 6=s núm segmentos, latências

⊲ permite bloqueios por faltas na cache, e execução fora-de-ordem

• explora toda informação sobre paralelismo que compilador

descobre

• compat́ıvel com 6=s implementações da mesma arquitetura

UFPR DInf BCC 300

Arquitetura II — escalonamento estático 2007-1

VLIW per se

• VLIW puro: nenhum teste de dependência em hw

nem mesmo entre grupos de VLIWs

• compilador responsável por escalonar todos os segmentos

⊲ inclusive os ciclos com bloqueios/stalls

⊲ é posśıvel se conhece exatamente a estrutura da CPU e latências

• 1o problema: estrutura e latências diferem entre implementações

⊲ deve re-compilar para novas implementações

⊲ TransMeta faz re-compilação em tempo de execução

• 2o problema: latências não são fixas numa implementação

⊲ não usar caches? uh?

⊲ escalonar prevendo uma falta na cache?

para que a cache então?

UFPR DInf BCC 299

Arquitetura II — escalonamento estático 2007-1

História

• iniciou com microcódigo “horizontal”

• projetos na academia

⊲ ELI-512 [Fischer 85]

⊲ IMPACT [Hwu 91]

• produtos comerciais

⊲ Multiflow [Colwell, Fischer 85] ; falhou

⊲ Cydrome [Rau 85] ; falhou

⊲ EPIC, IA-64, Itanium [Colwell, Fischer, Rau 97] ; ??

⊲ Transmeta [Ditzel 99] ; ?? traduz x86→ VLIW

⊲ vários controladores embutidos (TI, Motorola) ; sucesso

UFPR DInf BCC 298

Arquitetura II — escalonamento estático 2007-1

Desempenho e Utilização – SAXPY escalar

Processador segmentado, escalar

mulf 5 ciclos, addf 2 ciclos, ambos segmentados

adiantamento completo, desvios previstos como tomados

ldf f0, X(r1)

mulf f4,f0,f2

ldf f6, Y(r1)

addf f8,f6,f4

stf f8,Z(r1)

add r1,r1,8

ble r1,r2,loop

.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
B D X M R

B D d* E E E E E R
B p* D X M R

B D d* d* d* E E R
B p* p* p* D X M R

B D X M R
B D X M R

d*=dep dados; p*=dep segm, bolha

uma iteração com 7 instruções — latência de 15 ciclos

desempenho: 7 instr/15 ciclos→ IPC = 0,47

utilização: 0,47 IPCreal / 1,0 IPCideal→ 47%

UFPR DInf BCC 303

Arquitetura II — escalonamento estático 2007-1

Exemplo: SAXPY

Single Precision A∗X+Y

rotina de álgebra linear para resolver sistemas de equações

parte dos “Livermore Loops”

for (i=0; i<N ; i++)

Z[i] = A*X[i] + Y[i];

ldf f0, X(r1) // loop:

mulf f4,f0,f2 // A em f2

ldf f6, Y(r1)

addf f8,f6,f4

stf f8,Z(r1)

add r1,r1,8 // i em r1

ble r1,r2,loop // N*4 em r2

UFPR DInf BCC 302

Arquitetura II — escalonamento estático 2007-1

Escalonamento e Paralelismo no Ńıvel de Instrução

Não faz sentido implementar um pipeline com largura N se,

na média,

muito menos que N instruções independentes executam num ciclo

desempenho é importante

mas utilização também é (sustentada/pico)

UFPR DInf BCC 301

Arquitetura II — escalonamento estático 2007-1

Escalonamento de Instruções

• idéia: instruções independentes entre operações lentas e uso raw

∗ evita bloqueio enquanto espera resolução do risco RAW

∗ ≈ mesmo que escalonamento dinâmico (Tomasulo)

• para isso, necessita de instruções independentes

• escopo de escalonamento: região de código sob exame

∗ quanto maior melhor – maior # instr independentes para escolher

∗ com escopo definido, escalonar é simples

∗ o problema é expandir o escopo ; cruzar desvios?

• escalonamento pelo compilador

⊲ desenrolar loops laços

⊲ software pipelining laços

⊲ escalonamento de traçados trace scheduling resto

UFPR DInf BCC 306

Arquitetura II — escalonamento estático 2007-1

Escalonamento e Emissão

Escalonamento de instruções

→ escolhe ordem de execução das instr

• importante para melhorar utilização e desempenho

• relacionado à emissão de instr→ quando é que instr executam

⊲ VLIW puro: escalonamento estático com emissão estática

⊲ superescalar em-ordem, EPIC:

escalonamento estático com emissão dinâmica (ou quase)

• escalar em-ordem depende de bom escalonamento pelo

compilador

UFPR DInf BCC 305

Arquitetura II — escalonamento estático 2007-1

Desempenho e Utilização – SAXPY superescalar

Processador segmentado, superescalar, largura N=2

mulf 5 ciclos, addf 2 ciclos, ambos segmentados

ldf f0, X(r1)

mulf f4,f0,f2

ldf f6, Y(r1)

addf f8,f6,f4

stf f8,Z(r1)

add r1,r1,4

ble r1,r2,loop

.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B D X M R
B D d* d* E E E E E R

B p* p* D X M R
B p* p* D d* d* d* d* E E R

B p* D p* p* p* p* X d* M R
B p* p* p* p* D p* X M R
B p* p* p* p* D p* d* X M R

d*=dep dados; p*=dep segm, bolha

latência ainda em 15 ciclos — por que???

utilização: 0,47 IPCreal / 2,0 IPCideal→ 27%

mais riscos→mais bloqueios — por que?

cada bloqueio é mais caro — por que?

UFPR DInf BCC 304

Arquitetura II — escalonamento estático 2007-1

Desenrolar fase 1: agrupar iterações

Combinar 2 iterações

(no geral N)

fundir controle do laço:

incremento do ı́ndice

e desvio

ajustar usos impĺıcitos

das

variáveis de indução

(r1 neste caso)

ldf f0, X(r1) ldf f0, X(r1)

mulf f4,f0,f2 mulf f4,f0,f2

ldf f6, Y(r1) ldf f6, Y(r1)

addf f8,f6,f4 addf f8,f6,f4

stf f8,Z(r1) stf f8,Z(r1)

add r1,r1,8 --- --,--,--

ble r1,r2,loop --- --,--,----

ldf f0, X(r1) ldf f0, X+8(r1)

mulf f4,f0,f2 mulf f4,f0,f2

ldf f6, Y(r1) ldf f6, Y+8(r1)

addf f8,f6,f4 addf f8,f6,f4

stf f8,Z(r1) stf f8,Z+8(r1)

add r1,r1,8 add r1,r1,8+8

ble r1,r2,loop ble r1,r2,loop

UFPR DInf BCC 309

Arquitetura II — escalonamento estático 2007-1

Escalonamento por SW – desenrolar o SAXPY

Deseja-se separar operações dependentes

∗ escopo de uma iteração é muito pequeno

∗ cadeia mais longa de operações tem 9 ciclos

⊲ resultado do ldf – 1 ciclo

⊲ adianta para mulf – 5 ciclos

⊲ adianta para adf – 2 ciclos

⊲ adianta para stf – 1 ciclo

⊲ não dá para esconder latência de 9 ciclos em 7 instruções,

mas dá se forem 2×9 ciclos em 14 instruções

∗ desenrolar laço = escalonar usando duas iterações

UFPR DInf BCC 308

Arquitetura II — escalonamento estático 2007-1

Escalonamento: compilador ou hardware

compilador

⊲ maior escopo (todo o programa), pode procurar mais longe

⊲ possibilita hw simples com relógio rápido

⊲ acurácia da previsão de desvios é ruim

⊲ 6 ∃ informação sobre latências (faltas na cache)

⊲ recuperação de especulação errada é cara

hardware

⊲ previsão de desvios com melhor acurácia

⊲ informação dinâmica sobre latências (cache) e dependências

⊲ fácil de especular e recuperar em caso de erro

⊲ |buffer de instruções| finito limita escopo para escalonamento

⊲ hw mais complicado (mais energia), relógio lento

UFPR DInf BCC 307

Arquitetura II — escalonamento estático 2007-1

Desempenho do SAXPY desenrolado

ldf f0, X(r1)

ldf f10, X+8(r1)

mulf f4,f0,f2

mulf f14,f10,f2

ldf f6, Y(r1)

ldf f16, Y+8(r1)

addf f8,f6,f4

addf f18,f16,f14

stf f8,Z(r1)

stf f18,Z+8(r1)

add r1,r1,16

ble r1,r2,loop

.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
B D X M R

B D X M R
B D E E E E E R

B D E E E E E R
B D X M R

B D X M s* s* R
B D d* E E s* R dep em f4

B p* D E p* E R
B D X M R

B D X M R
B D X M R

B D X M R
d*=dep dados; p*=dep segm; s*=risco estrut regs

duas iterações com 12 instruções — latência de 17 ciclos

desempenho: 12 instr/17 ciclos→ IPC = 0,71

utilização: 0,71 IPCreal / 1,0 IPCideal→ 71% (≫ 47%)

UFPR DInf BCC 312

Arquitetura II — escalonamento estático 2007-1

Desenrolar fase 3: re-nomear registradores

Escalonamento causa

riscos WAR:

é necessário

re-nomear

registradores

.

ldf f0, X(r1) ldf f0, X(r1)

mulf f4,f0,f2 ldf f10, X+8(r1)

ldf f6, Y(r1) mulf f4,f0,f2

addf f8,f6,f4 mulf f14,f10,f2

stf f8,Z(r1) ldf f6, Y(r1)

ldf f0, X+8(r1) ldf f16, Y+8(r1)

mulf f4,f0,f2 addf f8,f6,f4

ldf f6, Y+8(r1) addf f18,f16,f14

addf f8,f6,f4 stf f8,Z(r1)

stf f8,Z+8(r1) stf f18,Z+8(r1)

add r1,r1,16 add r1,r1,16

ble r1,r2,loop ble r1,r2,loop

UFPR DInf BCC 311

Arquitetura II — escalonamento estático 2007-1

Desenrolar fase 2: escalonar segmentos

Escalonar para

reduzir bloqueios

por riscos RAW

.

ldf f0, X(r1) ldf f0, X(r1)

mulf f4,f0,f2 ldf f0, X+8(r1)

ldf f6, Y(r1) mulf f4,f0,f2

addf f8,f6,f4 mulf f4,f0,f2

stf f8,Z(r1) ldf f6, Y(r1)

ldf f0, X+8(r1) ldf f6, Y+8(r1)

mulf f4,f0,f2 addf f8,f6,f4

ldf f6, Y+8(r1) addf f8,f6,f4

addf f8,f6,f4 stf f8,Z(r1)

stf f8,Z+8(r1) stf f8,Z+8(r1)

add r1,r1,16 add r1,r1,16

ble r1,r2,loop ble r1,r2,loop

UFPR DInf BCC 310

Arquitetura II — escalonamento estático 2007-1

Analogia com pipeline

• segmentação em hw

cada ciclo contém:

estágio 3 da instr 1, est 2 da instr i+1, est 1 da instr i+2

• segmentação em sw

ciclo ; iteração “f́ısica” do laço

instrução ; iteração “lógica” original do laço

estágio ; instrução

• uma iteração “f́ısica” contém

instruções de múltiplas iterações originais

instr 3 da iteração 1, instr2 da iter i+1, instr 1 da iter i+2

UFPR DInf BCC 315

Arquitetura II — escalonamento estático 2007-1

Software pipelining

Software pipelining = Desenrolamento simbólico de laços

Se as iterações do laço são independentes, então pode extrair mais

paralelismo se usar instruções de iterações distintas

• idéia:

⊲ inicia com laço original

⊲ escreve novo laço com instruções de iterações distintas

⊲ adicione prólogo e eṕılogo para acertar ińıcio/final

• ganhos:

⊲ maximiza distância entre resultado e uso

⊲ código menor

⊲ enche e esvazia segmentos uma vez por volta,

ao invés de uma vez em cada iteração desenrolada

UFPR DInf BCC 314

Arquitetura II — escalonamento estático 2007-1

Nem tudo são flores...

Desenrolar loops é bom mas

• código é maior (≈ N×)

• escalonamento pode ser ruim nas fronteiras dos laços

• não é posśıvel tratar dependências entre iterações

for (i=0; i<N; i++)

X[i] = A*X[i-1]; /∗ iteração depende da anterior ∗/
laço desenrolado mantém uma cadeia de dependências que não

pode ser escalonada

• o que fazer se (número de iterações mod desenroladas 6= 0) ??

UFPR DInf BCC 313

Arquitetura II — escalonamento estático 2007-1

Exemplo 2

Altera estrutura para tolerar mais latência (3 iterações)

ldf f0, X(r1) ldf f0, X-8(r1)

mulf f4,f0,f2 mulf f4,f0,f2 ← prólogo

stf f4, X(r1) ldf f0, X-4(r1)

add r1,r1,8 loop: stf f4,X-8(r1) ← iteraç~ao

ble r1,r2,loop mulf f4,f0,f2 ← fı́sica

ldf f0, X(r1) ldf f0, X(r1) ←

mulf f4,f0,f2 add r1,r1,4 ←

stf f4, X(r1) ble r1,r2,loop ←

add r1,r1,8 stf f4, X-4(r1)

ble r1,r2,loop mulf f4,f0,f2 ← epı́logo

ldf f0, X(r1) stf f4, X(r1)

mulf f4,f0,f2

stf f4, X(r1) L M S

add r1,r1,8 L M S

ble r1,r2,loop L M S

L M S

UFPR DInf BCC 318

Arquitetura II — escalonamento estático 2007-1

Diagrama de tempo

Mesmo diagrama com nova terminologia:

ciclos ; iteração f́ısica (horizontal)

instruções ; iteração lógica (vertical)

estágios ; instruções (LM=ldf,mulf S=stf)

f́ıs1 f́ıs2 f́ıs3 f́ıs4 f́ıs5

lóg1 LM S ← prólogo

lóg2 LM S

lóg3 LM S

lóg4 LM S ← eṕılogo

iteração f́ısica 2 tem stf da iter lógica 1, e ldf,mulf da iter lógica 2

Note que numa iteração f́ısica os grupos de instruções estão na ordem

invertida→OK porque grupos não são relacionados (exec //)

UFPR DInf BCC 317

Arquitetura II — escalonamento estático 2007-1

Exemplo 1

iteração f́ısica: stf da iter original i ; ldf,mulf da iter original i+1

prólogo: inicializa pipeline→ ldf,mulf da iteração 0

eṕılogo: completa trabalho→ stf da última iteração

ldf f0,X(r1) ldf f0,X-8(r1) ← prólogo

mulf f4,f0,f2 mulf f4,f0,f2

stf f4,X(r1) loop: stf f4,X(r1) ← iteraç~ao

add r1,r1,8 ldf f0,X(r1) ← fı́sica

ble r1,r2,loop mulf f4,f0,f2 ←

ldf f0,X(r1) add r1,r1,8 ←

mulf f4,f0,f2 ble r1,r2,loop ←

stf f4,X(r1) stf f4,X+8(r1) ← epı́logo

add r1,r1,8

ble r1,r2,loop

UFPR DInf BCC 316

Arquitetura II — escalonamento estático 2007-1

Suporte de hardware para escalonamento

Instruções condicionais (“predicadas”)

Exemplo: emissão de 2 instruções/ciclo

primeira instr segunda instr

lw r1,16(r2) add r3,r4,r5

add r6,r3,r7

beqz r10,label

lw r8,0(r10)

lw r9,0(r8)

desperdiça oportunidade de emissão porque

3o lw depende do resultado do 2o lw.

UFPR DInf BCC 321

Arquitetura II — escalonamento estático 2007-1

Suporte de hardware para escalonamento

Instruções condicionais (“predicadas”)

Dois ńıveis de predicação

• predicação completa: cada instrução carrega um predicado IA-64

• move condicional: registrador é copiado se condição é válida

conditional move = cmove

cmoveqz r1,r2,r3 # if (r3 == 0) r1←r2;

if-conversion converte fluxo de controle em fluxo de dados

→ elimina desvios

pode causar montes de replicação de código Alpha, IA-32

UFPR DInf BCC 320

Arquitetura II — escalonamento estático 2007-1

Software pipelining

⊲ não aumenta (muito) o tamanho do código

⊲ pode variar grau de paralelismo para tolerar maiores latências

software super-pipelining

uma iteração f́ısica com iterações lógicas i, i+2, i+4

⊲ dif́ıcil de tratar condicionais dentro de laços

⊲ alocação de registradores pode ser complicada

UFPR DInf BCC 319

Arquitetura II — escalonamento estático 2007-1

Suporte de hardware para especulação em memória

Compilador não consegue garantir que X+r1 6= Y+r2

ldf f2,X(r1) ldf f2,X(r1)

mulf f4,f2,f0 ldfa f6,Y(r2) ← ld adiantado

stf f4,X(r1) mulf f4,f2,f0

ldf f6,Y(r2) stf f4,X(r1)

mulf f8,f6,f0 chk Y(r2) ← verifica

stf f8,Y(r2) mulf f8,f6,f0

stf f8,Y(r2)

Se quando executa primeiro store X+r1 = Y+r2,

então repete ldf f6,Y(r2) antes do segundo mulf

Mecanismo é chamado memory conflict buffer e usado no IA-64

UFPR DInf BCC 324

Arquitetura II — escalonamento estático 2007-1

Suporte de hardware para especulação em memória

Compilador só pode mover loads adiante de stores

se há certeza absoluta de que o movimento é correto

Arquitetura pode incluir instruções chk e lda

que verificam conflitos de endereçamento

chk = check address lda = load advanced

⊲ instrução chk é inserida no local original do load

e lda é movido para antes do(s) store(s)

⊲ quando load avançado lda (especulativo) é executado,

endereço efetivo é armazenado (no BdR?)

⊲ se um store subseqüente referencia aquele endereço

antes da instrução chk então a especulação falhou

⊲ se somente load foi especulado, então basta repetir

referência à memória quando instrução chk é executada

UFPR DInf BCC 323

Arquitetura II — escalonamento estático 2007-1

Suporte de hardware para escalonamento

Instruções condicionais (“predicadas”)

Usar versão condicional da instrução load: lwc = load condicional

load é efetivado se terceiro operando é zero

primeira instr segunda instr

lw r1,16(r2) add r3,r4,r5

lwc r8,0(r10),r10 add r6,r3,r7

beqz r10,label

lw r9,0(r8)

Se a seqüência após o desvio fosse curta,

todo o bloco básico poderia ser convertido

para execução condicional e o desvio eliminado

UFPR DInf BCC 322

Arquitetura II — hierarquia de memória 2007-1

resumo – Escalonamento Estático

• desenrolar laços

⊲ reduz a freqüência de desvios

⊲ aumenta tamanho do código

• software pipelining

⊲ não há dependências no corpo do laço

⊲ não reduz a freqüência de desvios

⊲ necessita blocos com prólogo e eṕılogo

• escalonamento de traçados

⊲ pode usar para código sem laços

⊲ não é simples

• suporte pela arquitetura (conjunto de instruções)

⊲ loads especulativos, loads avançados

⊲ predicação, move-condicional

UFPR DInf BCC 327

Arquitetura II — escalonamento estático 2007-1

Suporte de hardware para especulação em memória

O que acontece se o load adiantado causa uma falta de página?

Nada, se usar lde = load especulativo

ldf f2,X(r1) ldf f2,X(r1)

mulf f4,f2,f0 ldfe f6,Y(r2) ← ld especulativo

stf f4,X(r1) mulf f4,f2,f0

bfnez f4,label stf f4,X(r1)

ldf f6,Y(r2) mulfe f8,f6,f0 ← mul especulativo

mulf f8,f6,f0 bfnez f4,label

stf f8,Y(r2) stf f8,Y(r2)

⊲ Bit de interrupção/excessão é associado ao f6

⊲ bit é propagado para f8→ mulfe é especulativo

⊲ excessão é tratada quando f8 é usado pelo stf

⊲ mecanismo chamado de poison bit ou deferred interrupt no IA-64

UFPR DInf BCC 326

Arquitetura II — escalonamento estático 2007-1

Comportamento com excessões

Compilador não pode violar comportamento c.r.a excessões

Exemplo 1: instruções condicionais não podem causar excessões

se a condição é falsa, e o efeito da instr é anulado

anula inclusive/especialmente efeitos excepcionais

Exemplo 2: busca antecipada não pode causar excessões

UFPR DInf BCC 325

Arquitetura II — hierarquia de memória 2007-1

Vazão e Latência

• Latência da memória é o intervalo desde a requisição

pelo processador até a disponibilidade para o processador [s]

• Vazão é a taxa de transferência de/para a memória [x/s]

bandwidth = largura de banda

• Vazão e latência são intimamente relacionadas:

Se R é o número de requisições que a memória pode atender

simultaneamente, então

V = R/L [x/s = x / s]

Porque raramente V = 1/L ?

UFPR DInf BCC 330

Arquitetura II — hierarquia de memória 2007-1

Sistemas de Memória

rr rrr
rrrrrrrprocessador memória

Atualmente, o desempenho de computadores é limitado pela

latência da memória e pela vazão até a memória

latência é o tempo de um único acesso [s]

tempo de acesso à memória≫ ciclo do processador

vazão é o número de acessos por unidade de tempo [refs/s]

se uma fração m das instruções acessam a memória

→ ocorrem 1 + m referências/instrução

→ CPI=1 se e só se ocorrerem 1 + m referências/ciclo

UFPR DInf BCC 329

Arquitetura II — hierarquia de memória 2007-1

Sistema de Memória

• Sistemas de memória
⋆ hierarquia de memória

⋆ vazão e latência

⋆ DRAM e SRAM

• Memória cache
⋆ organização

⋆ leitura

⋆ escrita

⋆ otimizações

• Memória Virtual
⋆ endereçamento

⋆ paginação

⋆ TLB

⋆ excessões

UFPR DInf BCC 328

Arquitetura II — hierarquia de memória 2007-1

Prinćıpios da Localidade II

for (i=0; i<100; i++)

for (j=0; j<200; j++)

res[i] += vetor[i] * matriz[i][j];

localidade temporal: código, variáveis locais i e j

localidade espacial: elementos de res[], vetor[], matriz[]

e código (blocos básicos)

UFPR DInf BCC 333

Arquitetura II — hierarquia de memória 2007-1

Prinćıpios da Localidade I

Referências à memória apresentam duas propriedades:

Localidade Temporal: se um local é referenciado,

possivelmente, este será referenciado de novo em futuro próximo

Localidade Espacial: se um local é referenciado,

possivelmente, locais próximos serão referenciados em futuro próximo

UFPR DInf BCC 332

Arquitetura II — hierarquia de memória 2007-1

Padrões de Referência

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y y y

y

y

y

y

y y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y y

y

y

y

y

y

y

y

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr

rr rr

busca de
instruções

acessos
ao heap

iterações de laço

tempo

à pilha
acessos

endereços

UFPR DInf BCC 331

Arquitetura II — hierarquia de memória 2007-1

Hierarquias de Memória

Solução para aumento na latência relativa:

esconder a latência

interpondo memória pequena mas com alta velocidade

entre processador e memória DRAM

Memória cache permite esconder latência da memória porque

padrões de referência são muito previśıveis→ localidade

UFPR DInf BCC 336

Arquitetura II — hierarquia de memória 2007-1

Hierarquias de Memória

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
r

ppp
pp

pp
pp

pp
pp

ppp
ppp

ppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppp
ppp

pp
ppp

pp
pp

pp
ppp

ppp
pppp

ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp p
pppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp pppp

ppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppp
pppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppp

pppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp
ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppp

pppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp

ppppppppppppppppppppppppp
ppp pppppppppppppppppppppppppp

pp ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp pppppppppppppppppppppppppp

pp ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp pppppppppppppppppppppppppp
pp

ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppppppppppppppppppppppppp
ppp

1

10

100

1000

10000

1980 1985 1990 1995 2000 2005

desempenho: processadores vs DRAM

35% aa

proc 55% aa

DRAM 7% aa

cresce 50% aa

Lei de Moore
lei de less?

Processador que emite quatro instruções por ciclo poderia

executar 800-1000 instruções durante uma falta na cache!!!

UFPR DInf BCC 335

Arquitetura II — hierarquia de memória 2007-1

Prinćıpios da Localidade III

Caches podem tirar proveito dos dois tipos de localidade:

da localidade temporal ao lembrar do

conteúdo de posições acessadas recentemente

→ localidade temporal ajuda escolher o que expurgar da cache

da localidade espacial ao buscar

blocos em áreas acessadas recentemente

→ localidade espacial ajuda escolher o que carregar na cache

UFPR DInf BCC 334

Arquitetura II — hierarquia de memória 2007-1

Gerência da Hierarquia de Memória

• Gerência por software (registradores)

⊲ é parte do estado da CPU viśıvel compilador/programador

⊲ SW tem controle completo sobre alocação de armazenadores

mas HW pode fazer coisas às escondidas,

como re-nomeação de registradores

• gerência por hardware (caches)

⊲ não é parte do estado viśıvel

⊲ HW decide automaticamente o que manter em memória rápida

mas SW pode dar pistas,

como fazer busca antecipada ou marcar don’t cache

UFPR DInf BCC 339

Arquitetura II — hierarquia de memória 2007-1

Hierarquia de Memória

ppp
ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp
pppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
pppp

ppp
ppppppppppppppppppppppppp

pppppppppppppppppppppppppp
ppppppppppppppppppppppppp

ppppppppppppppppppppppppp
pppppppppppppppp

memória
pequena

(regs, SRAM)

rápida

B
A

usados freqüentemente

grande
memória

lenta
(DRAM)

mantém dados

processador

No acesso ao conteúdo:

acerto se encontra (dado∈ cache)→ latência baixa hit

falta se não encontra (dado 6∈ cache)→ latência elevada miss

UFPR DInf BCC 338

Arquitetura II — hierarquia de memória 2007-1

Hierarquia de Memória

ppp
ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp
pppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
pppp

ppp
ppppppppppppppppppppppppp

pppppppppppppppppppppppppp
ppppppppppppppppppppppppp

ppppppppppppppppppppppppp
pppppppppppppppp

memória
pequena

(regs, SRAM)

rápida

B
A

usados freqüentemente

grande
memória

lenta
(DRAM)

mantém dados

processador

tamanho: registradores≪ SRAM≪ DRAM por que?

latência: registradores≪ SRAM≪ DRAM por que?

vazão: interna ao CI≫ externa ao CI por que?

Memória rápida será efetiva se e só se tráfego em B≪A

UFPR DInf BCC 337

Arquitetura II — hierarquia de memória 2007-1

Memória – vazão

• Vazão: número de acessos por unidade de tempo [acessos/s]

⊲ taxa de transferência [bytes/segundo]

⊲ afeta tempo de carga dos blocos da cache e operações de E/S

⊲ pode ser aumentada com $$$

⊲ vazão de pico ≤ largura/unidade de tempo

vazão de pico é aquela imposśıvel de ser sustentada

⊲ vazão efetiva ≈ largura/(unidade de tempo + overhead)

⊲ se fração M das instruções referencia memória

→ 1 + M referências à memória/instrução

→ CPI=1 só se executa ≥ 1 + M referências/ciclo

UFPR DInf BCC 342

Arquitetura II — hierarquia de memória 2007-1

Tempo médio de acesso à memória

Tmed = Tcache ∗ (acertos + faltas ∗ Tmem)

pp pp

ppppppppppppppppppppppppppppppppppp

ppp

pp pp

pp pp

ppp

A
Tcache

acerto

falta

Tmem = A + 4 · Tc

A = tempo de acesso
à memória

Tc = tempo para copiar da

memória para a cache
(4 palavras por bloco)

Custo de acerto: ≈ ciclo do processador

penalidade por falta: ≫ ciclo do processador

UFPR DInf BCC 341

Arquitetura II — hierarquia de memória 2007-1

Sistemas de Memória T́ıpicos

tt

ttt

tt
tttttttttttttttttttttttttttttttttt tt ttt

ttttttttttttttttttttttttttttttttttt

tt

tt
tt

rr rrr
rrrrrrrrr

rr rrr
rrrrrrrrr

rr rr
rrrrrrrr

rr rrr
rrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrr

L1 cache
instr

L1 cache
dados

L2
cache

unificada

mem

mem

mem

mem

cache secundária
unificada, grande

(SRAM interna ao CI)

(SRAM interna ao CI) intercalados (DRAM)
bancos de memóriacaches primárias divididas

regs

proc

bloco de regs

(parte do proc)
com ≥ 3 portas

“Lei de less”: Processador super-escalar pode executar

≈ 103 instruções durante falta na cache

UFPR DInf BCC 340

Arquitetura II — hierarquia de memória 2007-1

Organização da Memória Principal – introdução

• Memória principal usa DRAM Dynamic Random Access Memory

⊲ latência: afeta penalidade nas faltas em cache

tempo de acesso: tempo entre requisição e dados prontos

tempo de ciclo: tempo entre duas requisições

⊲ organizada como matriz (quadrado/retângulo)

endereços multiplexados e tranferidos em 2 partes

linhas, controlado por→ RAS = row address strobe

colunas, controlado por→ CAS = column address strobe

porque memória é organizada numa matriz 2D

• Cache usa SRAM Static Random Access Memory

⊲ sem refresh (6 transistores/célula ao invés de 1)

tamanho de células SRAM/DRAM ≈ 4-8

custo e tempo de ciclo DRAM/SRAM ≈ 8-16

UFPR DInf BCC 345

Arquitetura II — hierarquia de memória 2007-1

Organização da Memória Principal – introdução

rr
rr

rr
rrrrrrrrrrrrrrrrrrrr

rr
rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr

rrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrr

pp pp

pp

ppp
pp

ppp
ppp

ppp
pp

rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

seleção de bit
(coluna)

decodificador
de linha

seletor de coluna
+ amplificadores

endereço
de linha

RAS

endereço de
coluna

CAS

dados

seleção de linha

intersecção contém
uma célula

UFPR DInf BCC 344

Arquitetura II — hierarquia de memória 2007-1

Memória – latência

• Latência: tempo para um único acesso [s]

⊲ afeta todas as operações na memória

→ afeta penalidade nas faltas em cache

⊲ não pode ser diminúıda só com $$$

mas pode ser escondida

⊲ no limite: velocidade da luz

≃ 0.7c no siĺıcio/aluḿınio ≈ 1 palmo/ns

c = velocidade da luz (30cm/ns no vácuo)

UFPR DInf BCC 343

Arquitetura II — hierarquia de memória 2007-1

Memória Dinâmica

• DRAM é otimizada para densidade e não para velocidade

⊲ célula com um transistor que se comporta como capacitor

⊲ bits armazenados como carga elétrica no capacitor

⊲ capacitor se descarrega na leitura → leitura destrutiva

⊲ carga se dispersa com o tempo (‘vaza’)

refresca memória acessando cada linha da matriz para ‘leitura’

⊲ deve ser ‘refrescada’ periodicamente — 5-8ms, 1% do tempo

• ciclo dura aprox dobro do tempo de acesso

⊲ é necessário pré-carregar as linhas de dados antes de acessar

UFPR DInf BCC 348

Arquitetura II — hierarquia de memória 2007-1

Sistemas de Memória

ppp

ppp

ppp

ppp

ppp

pp a0-a9
wr
cas
ras
oe
cs

d

10

*

cs = chip select ras = row address strobe
oe = output enable cas = column addrs strobe
wr = write

Um acesso à memória custa aproximadamente 60ns:

20ns RAS + 20ns CAS + 20ns OE

ppp ppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
pppppppppp

pp ppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppp

pp ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
pppppppppp

ppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp
pppppppppp pp

ppppppppppppppppppppp
ppp ppp ppppppppppppppppppppppppp

ppppppppppp

cs

ras

cas

a0-a9 A00-A09A10-A19

d

oe

mem[A00-A19]

pp ppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
pppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp
ppp ppp pppppppppppppppppppppppppp

pppppppppp

pp

pp

ppp ppp60ns

UFPR DInf BCC 347

Arquitetura II — hierarquia de memória 2007-1

Organização de CI de DRAM

pp
pppppppppppppppppppppppppppp pp

ss
ss

ss
ssssssssssssssss

ss
ss

ss
ssssssssssssssss

rr

ppp
ppp
p

ppp
pp

rr

ss
ssssssssssssssssssss
ssssssssssssssssssss
ssssssssssssssssssss
ssssssssssssssssssss
sssssssssssssssssss
ssssssssssssssssssss
sssssssssssssssssss
s

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrr
rrr

ppp
pp

ppp
pp

col1 col2 col3

linha1

linha2

linha3

linha2N

célula de
memória

col2M

RAS

N

palavra
linhas de

CAS

decodificador de coluna
amplificadores

dados

M+N

M

decodificador
de linha

linhas de bit

UFPR DInf BCC 346

Arquitetura II — hierarquia de memória 2007-1

DRAM – histórico

capacidade acesso [ns] ciclo [ns]

ano [Mbits] mesma col nova col

1980 0,064 150 250

1983 0,256 120 220

1986 1 100 190

1989 4 80 160

1992 16 60 120

1996 64 50 100

2000 256 40 90

2002 512 5 50

2004 1024 3 45

60% aa 7% aa

capacidade cresce 60% aa (melhor desde 96)

tempo de acesso reduz 7% aa

UFPR DInf BCC 351

Arquitetura II — hierarquia de memória 2007-1

Célula de Memória Dinâmica – escrita/leitura

w

w

w

w

pppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppp

pp

pppppppppppppppppppppppppppppppppppp

igual a leitura

linha
1

1

1

1

1. carrega linha de bit até Vdd/2
2. seleciona linha
3. linha de bit e capacitor

Leitura:

linha
1

bit

1

1

1

bit

dividem carga
4. amplificador detecta valor (1/0)
5. re-escreve valor

Escrita:

2. seleciona linha
1. força valor na linha de bit

3. capacitor mantém valor

Refresh:

por 60ms, então refresca

UFPR DInf BCC 350

Arquitetura II — hierarquia de memória 2007-1

Célula de Memória Dinâmica

w

w

Escrita:

2. seleciona linha
1. ativa seleção de bit (bit line)

1. carrega linha de bit até Vdd/2
2. seleciona linha
3. linha de bit e capacitor

4. amplifica diferença de voltagem

Leitura:

dividem carga

amplificador sente diferença de 106 elétrons
5. escreve e reforça valor

Refresh:

1. lê conteúdo de cada célula

(g=1)→ (s↔d)
transistor tipo P:

s d

g

seleção de linha

capacitor

transistor
de passagem

=bit {1,0}

seleção de bit

UFPR DInf BCC 349

Arquitetura II — hierarquia de memória 2007-1

Célula de Memória Estática (Static RAM)

tttttttttttttttttttt
tt
ttttttt

tttttttttttttttttttt
tt
ttttttt

w ww

w

w

w

tt

tt

Escrita:

1. ativa linhas de bit
bit=1, bit=0 (FF← 1)

2. seleciona linha/palavra

seleção de linha (palavra)

1. carrega linhas de bit até Vdd/2
2. seleciona linha/palavra
3. célula puxa uma das linhas para 0

Leitura:

4. amplificador detecta diferença
entre bit e bit

bitbit

seleção de bit

célula com 6 transistores
(2 por inversor)

UFPR DInf BCC 354

Arquitetura II — hierarquia de memória 2007-1

Memória Estática – SRAM

• Organização retangular (linha/coluna)

⊲ linhas de endereços e dados não são multiplexadas

• optimizada para 1o velocidade, e 2o densidade

⊲ 4-6 transistores por célula

⊲ bits armazenados em flip-flops/latches

⊲ estática→ sem refresh

⊲ consumo de energia é maior do que DRAM

• tempo de acesso = duração do ciclo

• densidade/desempenho

⊲ 1/4 da densidade de DRAM

⊲ 4-8x velocidade

• em 1998, capacidade de 1Mbit, tempo de acesso de 7 a 20ns

UFPR DInf BCC 353

Arquitetura II — hierarquia de memória 2007-1

Desempenho da Memória Principal

• Tempo de Ciclo ≫ tempo de acesso (≈ 2:1) (leit/escr)

• Tempo de Ciclo (leit/escr)

→ com que freqüência pode iniciar um acesso?

• Tempo de Acesso (leit/escr)

→ quanto tempo demora para acessar o conteúdo,

após iniciar acesso?

• Tempo de ciclo limita vazão da memória

pp pp

pp pp

tempo de acesso

tempo de ciclo

UFPR DInf BCC 352

Arquitetura II — hierarquia de memória 2007-1

Memória Principal Larga

pp
ppp

ppppppp
ppp

ppp
ppp

ppp
ppp

ppp
ppp

pp
ppp

ppp
pp

rr
rr

rrr
rr

rrr

pp
ppp

ppppp
ppp

ppp
pp

pp
ppp

ppppp
ppp

ppp
pp

pp
ppp

ppppp
ppp

ppp
pp

pp
ppp

ppppp
ppp

ppp
pp

CPU

cache

mem

Desempenho bom mas caro!

Penalidade para carregar
bloco de 4 palavras:

(4 + 56 + 4) = 64 ciclos

Largo:
CPU/mux 1 palavra
mux/cache, barramento,
memória N palavras
(Alpha com 64 e 256 bits)

Parâmetros:
4 ciclos para emitir endereço
56 ciclos para acessar 4 palavras
4 ciclos para transf p cache/CPU

L1 com largura 1 e L2 com largura 4, remove o MUX do caminho entre L1 e CPU

UFPR DInf BCC 357

Arquitetura II — hierarquia de memória 2007-1

Memória Principal Simples (simplória?)

pp
pp

pp
pppppppppppppppppppp

pp
pp

pp
pp

pp
pp

pp
pppppppppppppppppppp

pp
pp

ppppppppppppppppppppppppppppppppppppppp
ppp

CPU

cache

mem

Simples:
CPU, cache, barramento e memória
mesma largura (32 bits)

Barato mas desempenho ruim!

Parâmetros:
4 ciclos para emitir endereço
56 ciclos para acessar cada palavra
4 ciclos para transmitir palavra para cache/CPU

Penalidade para carregar bloco de 4 palavras:
(4 + 56 + 4) x 4 palavras = 256 ciclos

UFPR DInf BCC 356

Arquitetura II — hierarquia de memória 2007-1

Célula de Memória Estática – escrita/leitura

ssssssssssssssssssss
ss
sssssss

ww ww

ssssssssssssssssssss
ss
sssssss

w w

ssssssssssssssssssss
ss
sssssss

ww ww

ssssssssssssssssssss
ss
sssssss

w w

ss

ss

pppppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppppp

pp

pp

ss

ss pp

pp

pppppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppppp

1 0

bit bit

1 0
pal

1

1 0

pal
1

bit bit

01

Leitura:

ativa linha de
palavra e
célula força
bit armazenado

Escrita:

força novo valor
nas linhas de bit
e ativa linha
de palavra

UFPR DInf BCC 355

Arquitetura II — hierarquia de memória 2007-1

Intercalar para aumentar a vazão

3
7

11
15

2
6

10
14

1
5
9

13

0
4
8

12

Banco 0 Banco 3Banco 2Banco 1

ender. ender. ender.ender.

• Palavras vizinhas alocadas em bancos distintos

⊲ alocação definida pelos bits menos-significativos do endereço

• Bancos podem ser acessados concorrentemente

⊲ se número de bancos≫ tamanho do bloco da cache

⊲ acessos a endereços 6=s não-cont́ıguos podem ser emitidos para

bancos distintos: 1000,1004,1008,100c ‖
1014,1018,101c,1020

pressupõe que ∃ ≥ 8 bancos

• número de bancos ≥ # ciclos para acessar palavra num banco

UFPR DInf BCC 360

Arquitetura II — hierarquia de memória 2007-1

Intercalar para aumentar a vazão

ppppppppppppppppppp
ppppppppppppppppppppppppppp

ppppppppppppppppppp
ppppppppppppppppppppppppppp

ppppppppppppppppppp
ppppppppppppppppppppppppppp

qq qq

qq

qq

qq

qq

qq

ppppppppppppppppppp
ppppppppppppppppppppppppppp

ppppppppppppppppppp
ppppppppppppppppppppppppppp

ppppppppppppppppppp
ppppppppppppppppppppppppppp

ppppppppppppppppppp
ppppppppppppppppppppppppppp

pppppppppppppppppp
pppppppppppppppppppppppppppp

inicia acesso a D1

D1 dispońıvel

inicia acesso a D2

Padrão de acesso SEM intercalar
CPU mem

CPU
bco 1

bco 0

bco 2

bco 3

acessa banco 1
acessa banco 2

acessa banco 3

acessa banco 0

Padrão de acesso intercalado

pode acessar banco 0 novamente

UFPR DInf BCC 359

Arquitetura II — hierarquia de memória 2007-1

Memória Principal Intercalada

ppp
pp

pp
ppppppppppppppppppppp

pp
pp

pp
pp

pp
pp

pp
pppppppppppppppppppp

pp
pp

pp
pp

CPU

cache

mem mem mem mem
bco3bco2bco1bco0

Intercalada:
CPU, cache, barramento de 1 pal

Memória dividida em N módulos

Parâmetros:
4 ciclos para emitir endereço
56 ciclos para acessar cada palavra
4 ciclos para transm pal para cache/CPU

(4 + 56 + 4x4) = 76 ciclos

Penalidade para carregar
bloco de 4 palavras:

Boa relação de custo/desempenho

UFPR DInf BCC 358

Arquitetura II — hierarquia de memória 2007-1

Fast Page Mode

• Fast Page Mode inventado para adaptadores de v́ıdeo

⊲ registrador mantém toda uma linha da matriz

⊲ mudar coluna para acessar outros bits na mesma linha

• Extended Data Out – acrescenta latch entre mux e sáıda

→ permite mudar CAS mais cedo

• Synchronous DRAM – acrescenta sinal de relógio para acelerar

sinalização entre processador e controlador de memória

• Double Data Rate RAM – como SDRAM,

mas transmite dados nas duas bordas do relógio

UFPR DInf BCC 363

Arquitetura II — hierarquia de memória 2007-1

Fast Page Mode

w

ppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppp

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

pp
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrr rrr rrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrr rr rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrr rr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrr

rrrrrrrr

rrr rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrr rr rrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrr rr rrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrr rr rrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrr

rr rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrr

rr
rrrr

rr
rrrr

rr

rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrr
rrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrr

seletor de coluna
+ amplificadores

coluna

dados

ender coluna coluna coluna colunalinha

cas

ras 2o acesso 3o acesso1o acesso

CAS

endereço de

4o acesso

mantém linha inteira
registrador

endereço
de linha

RAS

Usa organização
interna do CI para
aumentar a vazão

UFPR DInf BCC 362

Arquitetura II — hierarquia de memória 2007-1

Memória Intercalada

• Intercalação simples

⊲ necessita circuito de controle em cada banco

⊲ emite endereço para todos os bancos (broadcast)

⊲ efetua acesso em paralelo

⊲ multiplexa o barramento para transferir

⊲ bom para sistemas com cache porque unidade de transfer é bloco

⊲ bom com escrita preguiçosa (escreve todo o bloco sujo)

• Intercalação complexa (super-bancos)

⊲ acesso concorrente a palavras não-cont́ıguas

⊲ acessos concomitantes

→ super-bancos endereçados individualmente

→ interface de memória com pipeline

número do super-banco deslocamento no super-banco
núm do banco deslocamento no banco

UFPR DInf BCC 361

Arquitetura II — hierarquia de memória 2007-1

Pergunta:

Considere um sistema com memória intercalada em 16 bancos

de 32 bits. O bloco da cache é de quatro palavras.

Quantas referências concorrentes podem ser sustentadas?

UFPR DInf BCC 366

Arquitetura II — hierarquia de memória 2007-1

Resposta:

Considere um sistema de memória com tempo de acesso (mesma

linha) de 14 ciclos. Quantos bancos são necessários para se obter o

melhor desempenho ao menor custo?

a) 4 bancos

b) 8 bancos

c) 16 bancos # bancos ≥ # ciclos, # bancos = 2B

d) 32 bancos

UFPR DInf BCC 365

Arquitetura II — hierarquia de memória 2007-1

Pergunta:

Considere um sistema de memória com tempo de acesso (mesma

linha) de 14 ciclos. Quantos bancos são necessários para se obter o

melhor desempenho ao menor custo?

a) 4 bancos

b) 8 bancos

c) 16 bancos

d) 32 bancos

UFPR DInf BCC 364

Arquitetura II — hierarquia de memória 2007-1

Parâmetros de Temporização de Leitura

TRAC intervalo entre descida de RAS e dados válidos

⋆ quotado como velocidade da DRAM (tempo de acesso)

⋆ valor t́ıpico para DRAM de 4Mb é TRAC=60ns

TRC intervalo ḿınimo entre o ińıcio de um acesso a uma linha e o

próximo (tempo de ciclo)

⋆ TRC=110ns para DRAM de 4Mb com TRAC=60ns

TCAC intervalo ḿınimo entre descida do CAS e dados válidos

⋆ TCAC=15ns para DRAM de 4Mb com TRAC=60ns

TPC intervalo ḿınimo entre o ińıcio de um acesso a uma coluna e o

próximo acesso

⋆ TPC=35ns para DRAM de 4Mb com TRAC=60ns

UFPR DInf BCC 369

Arquitetura II — hierarquia de memória 2007-1

Temporização de Leitura

rr rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrr rrr rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrr

rr rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrr rrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrr rrr rrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrr
rrr

m[A00-A19]

ras

cas

a0-a9

d

oe

A00-A09A10-A19

rr rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrr rrr rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrr

pp

rrr

ppp

ppp ppp

ppp

ppp ppp

rr
rrrrrrrr rr

rrrrrrrr rr
rrrrrrrr

pppppppppppppppppppppppppppp
pppppppppppppppppppppppppppptt

tttttttttttttttt tt tt
tttttttttttttttt

tempo de acesso

colunalinha

tempo de ciclo

ras
cas

addr

oe

dados10 8
DRAM 1MxN

UFPR DInf BCC 368

Arquitetura II — hierarquia de memória 2007-1

Resposta:

Considere um sistema com memória intercalada em 16 bancos

de 32 bits. O bloco da cache é de quatro palavras.

Quantas referências concorrentes podem ser sustentadas?

Depende das combinações de tipos de acesso:

→ a quatro blocos de cache

(faltas de leitura, cache não-bloqueante, sem conflitos nos bancos)

→ escritas a 16 palavras consecutivas

(se barramento suportar)

→ leitura de dois blocos, e escritas n ≤ 8 palavras

(se cache não-bloqueante e barramento suportarem)

etc...

UFPR DInf BCC 367

Arquitetura II — hierarquia de memória 2007-1

Memória Intercalada – vazão entre L2 e RAM

• Processador com relógio de 1GHz, 2 instruções por ciclo
⋆ 0.02 = taxa faltas instruções L1i 0.10 = taxa faltas dados L1d

⋆ 0.075 = taxa de faltas de dados na L2 1.25 refs/instrução

qual a demanda na RAM?

(1 ∗ 0.02 + 0.25 ∗ 0.10) ∗ 0.075 = 0.003375 faltasL2/instr

2 instr/ns ∗ 0.003375 faltas/instr = 0.00675 faltas/ns

• a cada falta carrega 8 pals da RAM para a L2:

6.75 bloco/µs ∗ 32 bytes/bloco = 216 bytes/µs→ 216 Mb/s

bancos TRAC=30ns, TRC=70ns OK?

4 16b / (70+16) ns = 186 Mb/s < 216 Mb/s

8 32b / (70+32) ns = 313 Mb/s > 216 Mb/s

16 64b / (70+64) ns = 477 Mb/s ≫ 216 Mb/s

4 ns por ciclo do barramento (250MHz), DRAM 32bits

UFPR DInf BCC 372

Arquitetura II — hierarquia de memória 2007-1

Memória Intercalada – latência na L2

• Processador com relógio de 1GHz, 2 instruções por ciclo
⋆ 0.02 = taxa de faltas de instruções na L1i 1.25 refs/instrução

⋆ 0.10 = taxa de faltas de dados na L1d

qual a demanda na L2?

1 ∗ 0.02 + 0.25 ∗ 0.10 = 0.045 faltas/instr ∗ 2 = 0.09 faltas/ns

• a cada falta carrega 4 pals da L2 na L1d+L1i:

0.09 bloco/ns ∗ 4 pals/bloco = 0.36 pals/ns→ 2.78 ns/pal

• quantos bancos para suprir demanda/vazão?

bancos SRAM 32bits, Tac=12ns OK?

4 3.0 ns/pal ≫ 1 ns ×
8 1.5 ns/pal > 1 ns ×
16 0.75 ns/pal < 1 ns

√
× vazão OK mas taxa xfer > ciclo

UFPR DInf BCC 371

Arquitetura II — hierarquia de memória 2007-1

Memória Intercalada – vazão entre L1 e L2

• Processador com relógio de 1GHz, 2 instruções por ciclo
⋆ 0.02 = taxa de faltas de instruções na L1i 1.25 refs/instrução

⋆ 0.10 = taxa de faltas de dados na L1d

qual a demanda na L2?

1 ∗ 0.02 + 0.25 ∗ 0.10 = 0.045 faltas/instr

2 instr/ns ∗ 0.045 faltas/instr = 0.09 faltas/ns

• a cada falta carrega 4 pals da L2 na L1d+L1i:

0.09 bloco/ns ∗ 4 pals/bloco = 0.36 pals/ns→ 2.78 ns/pal

• 0.09 bloco/ns ∗ 4 pals/bloco ∗ 4 byte/pal→ 694.4 Mbyte/s

bancos SRAM 32bits, Tac=12ns OK?

4 16b / (12+4) ns = 1.0 Gbyte/s > 0.694 Gb/s

8 32b / (12+8) ns = 1.6 Gbyte/s ≫ 0.694 Gb/s

16 64b / (12+16) ns = 2.28 Gbyte/s ≫ 0.694 Gb/s

UFPR DInf BCC 370

Arquitetura II — otimização de caches 2007-1

Cache

• Sistemas de memória

• Memória cache

∗ organização

∗ leitura

∗ escrita

∗ otimizações

∗ busca antecipada

• Memória Virtual
⋆ endereçamento

⋆ paginação

⋆ TLB

⋆ excessões

UFPR DInf BCC 375

Arquitetura II — otimização de caches 2007-1

Balanceamento ainda

• Adicionar uma cache de dados
⋆ taxa de faltas de 5%

⋆ blocos com 4 palavras de 64 bits

⋆ escrita preguiçosa

⋆ 25% das faltas são em blocos sujos
→ demanda de aprox 1 pal a cada 4 ciclos

demanda diminui por fator de 4

• Capacidade ḿınima ainda é impraticável:

⋆
256Mb x 1→ 64x1 x 128 / 4 = 2048 chips→ 64 Gbytes
64Mb x 4→ 16x4 x 128 / 4 = 512 chips→ 16 Gbytes

• Solução: adicionar mais um ńıvel de cache mais caro que 16G?

• Outra Solução: usar CIs mais largos (x8, x16, x32)

• Outra Solução: usar CIs mais avançados

fast page mode, EDO, Sdram, DRdram...

UFPR DInf BCC 374

Arquitetura II — hierarquia de memória 2007-1

Balanceamento de Vazão entre CPU e Memória

• Requisitos de vazão pelo processador
⋆ processador super-escalar com ciclo de 1ns

⋆ sem cache de dados

⋆ 1 acesso à memória (64 bits) por ciclo do processador

• Vazão suportada pela memória
⋆ DRAM com ciclo de 90ns

⋆ CIs com 256Mbits
→ 128 bancos para prover 1 palavra por ciclo

256Mb x 1→ 64x1 x 128 = 8192 chips→ 256 Gbytes
64Mb x 4→ 16x4 x 128 = 2048 chips→ 64 Gbytes

• Estes números não são razoáveis...

UFPR DInf BCC 373

Arquitetura II — otimização de caches 2007-1

Algoritmo para leitura

cache recebe endereço;

se objeto existe na cache (acerto hit)

entrega para processador;

senão (falta miss)

lê bloco da memória

espera o tempo de acesso à memória

entrega ao processador

e atualiza cache

UFPR DInf BCC 378

Arquitetura II — otimização de caches 2007-1

Cache por dentro

ttt
ttttttt

ttt
ttttttt

ttt
tt

ttt

rr
rrrr

rr
rrrr

rr
rrrrrrrr

pp

pp

proc cache memória

endereço endereço

dados dados

cópia da posição
100 em mem 101 em mem

cópia da posição

etiqueta
(endereço)

linha da cache

bloco de dados

100
308
8192

xx yy zz ww

UFPR DInf BCC 377

Arquitetura II — otimização de caches 2007-1

Sistemas de Memória T́ıpicos

tt

ttt

tt
tttttttttttttttttttttttttttttttttt tt ttt

ttttttttttttttttttttttttttttttttttt

tt

tt
tt

rr rrr
rrrrrrrrr

rr rrr
rrrrrrrrr

rr rr
rrrrrrrr

rr rrr
rrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrr

L1 cache
instr

L1 cache
dados

L2
cache

unificada

mem

mem

mem

mem

cache secundária
unificada, grande

(SRAM interna ao CI)

(SRAM interna ao CI) intercalados (DRAM)
bancos de memóriacaches primárias divididas

regs

proc

bloco de regs

(parte do proc)
com ≥ 3 portas

“Lei de Less”: Processador super-escalar pode executar

≈ 103 instruções durante falta na cache

UFPR DInf BCC 376

Arquitetura II — otimização de caches 2007-1

Organização da cache

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
....
...
....
....
...
....
.....
...
....
....
...
....
....
...

..

..

qq qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq

qq

..

.......... ..

...
....
...
....
....
....
...
.....
....
...
....
...
....
....
...
.

..

..........

...
....
....
....
...
....
....
....
....
....
...
....
....
...
.... ..

..........

...
....
....
....
...
....
....
....
....
....
...
....
....
...
....

qq

..

..........

....
...
....
....
...
....
....
....
....
....
...
....
....
...
.... ..

..........

....
...
....
....
...
....
....
....
....
....
...
....
....
...
....

#blocos = 2I

dado para CPU

#pals/bloco = 2P

E

etiquetavál

etiqueta ı́ndice pal byte

E P 2I

end da CPU

tamanho da cache = num blocos ∗ tam bloco ∗ tam palavra

Quanto mais blocos =⇒menor a taxa de faltas

Blocos com 4-16 palavras tiram vantagem de localidade espacial

UFPR DInf BCC 381

Arquitetura II — otimização de caches 2007-1

Mapeamento Direto

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq

qqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqq

rr rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrr

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

..................
..............

.......
...
...
..
...
....
...
..
..
...
..
..
.
...
..
.
..
...
.
..
.
..
.
..
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
..
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.....
....
...
...
...
....
..
...
...
...
.....
...
.......
........
.....
......
.....
.........

.........
................

....................
..

.................
.............

.........
..........

........
.......

........
.......

......
....
......
.....
....
.....
.....
.....
....
....
...
.....
...
.....
...
....
....
...
....
..
...
....
...
...
...
...
....
..
..
..
....
...
...
...
...
...
..
..
...
..
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
.
..
...
..
..
...
..
..
..
..
..
...
.
..
..
...
..
.
...
.
..
.
...
.
.
.
..
..
.
.
.
.
.
..
..
..
.
...
.
.
.
..
.
..
.
.
..
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
..
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

..

..

.

.

.

..

.

.

..

..

..

..
...
.
..
...
..
...
..
..
...
..
....
..
....
.....
...
......
.......
...............

.....

...
...
....
...
...
...
....
...
.....
....
....
....
....
.....
....

...
..
...
.
...
.
.
.
...
..
.
...
.
..
.
..
...
..
..
.
...
..
.
..
..
.
...
.
..
.
..
.
...
..
.
..
..
..
..
..
..
..
..
.
...
.
..
.
..
.
...
.
..
..
.
..
.
...
..
..
..
.
...
.
..
.
..
.
...
.
..
..
..
..
..
.
..
..
..
..
.
..
..
...
..
.
..
...
.
..
.
...
..
..
...
..
..
...
.
..
..
...
..
..
...
.
..
...
.
..
..
..
..
..
.
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
.
...
..
.
..
...
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
...
..
..
....
...
...
...
..
..
...
..
..
....
..
...
...
..
..
...
...
..
...
..
..
..
....
..
..
...
..
..
...
..
..
..
....
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
.
...
..
.
...
..
...
..
...
.
.
...
..
.
...
.
...
.
.
...
.
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
...
.
.
..
..
..
..
...
...
..
...
...
....
...
....
....
....
....
...
....
......
.....
....

..
..
..
...
..
..
..
..
..
..
...
..
...........

...................

.....
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
...
...
.
...
..
...
.
...
...
..
...
...
.
.
..
.
.
..
.
.
..
.
..
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

etiqueta bloco de dados

etiqueta ı́ndice

acertou?

endereço

pal byte

vál

cache

dado para processador
endereço da
referência

UFPR DInf BCC 380

Arquitetura II — otimização de caches 2007-1

Alocação de blocos

0 1 2 3 4 5 6 7

número do conjunto

0 31 2

mapeamento
direto

bloco 12 mapeia
somente no bloco 4

12 % 8 = 4

associativa
por conjuntos

(binária)

bloco 12 mapeia
no conjunto 0
12 % 4 = 0

associativa
(total)

bloco 12 mapeia
em qualquer conjunto

8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
21

0 1 2 3 4 5 6 7
1

número do bloco

UFPR DInf BCC 379

Arquitetura II — otimização de caches 2007-1

Taxas de Faltas e de Acertos

Se encontra na cache — acerto

Se não encontra na cache — falta

taxa de acertos
△

=
número de acertos

número de referências

taxa de faltas
△

= 1− taxa de acertos

UFPR DInf BCC 384

Arquitetura II — otimização de caches 2007-1

Associatividade II

Associativa - 4 conjuntos

0 99 200 33

M[12] = 99; M[13] = 200; M[14] = 33

aloc: 12%1 = ?

Associativa binária - 2 conjuntos

0

1

99

200

aloc: 12%2 = 033

aloc: 13%2 = 1

99

Mapeam direto - 1 conjunto

0

1

2

3

aloc: 12%4 = 0

200

33

aloc: 13%4 = 1

aloc: 14%4 = 2

aloc: N%4 = 3

Escolha de v́ıtima para reposição: com mapeamento direto 6 ∃ escolha...
1) escolhe o bloco usado no passado mais distante (LRU)

2) escolhe a esmo

UFPR DInf BCC 383

Arquitetura II — otimização de caches 2007-1

Associatividade I

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqq

qqq
qqqqqqqqqqqqqqqqqqqq
qqqqqqq qqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqqqqqq
qqqqqqq qqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqqqqqq
qqqqqqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqqqqqq
qqqqqqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqq

qqq
qqqqqqqqqqqqqqqqqqqq
qqqqqqq

...
....
....
....
...
....
.....
...
....
...
....
....
...

...
....
....
....
...
....
.....
...
....
...
....
....
...

...
....
....
....
...
....
.....
...
....
...
....
....
...

...
....
....
....
...
....
.....
...
....
...
....
....
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

qq
qqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq
qqqqqq qq

qqqqqq qq
qqqqqq qq

qqqqqq

qq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

qq
qqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq

....
...
....
....
...
....
....
....
....
...
....
....
...

....
...
....
....
...
....
.....
...
....
...
....
....
...

...
....
...
....
...
....
.....
...
....
....
...
....
....

....
....
...
....
....
...
.....
....
...
....
...
....
...

....
....
...
....
....
...
.....
....
...
....
....
...
...

...
....
....
...
....
....
....
....
....
...
....
....
...

...
....
...
....
...
....
.....
...
....
....
...
....
....

....
...
....
....
...
....
.....
...
....
...
....
....
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

qq
qqqqqq qq

qqqqqq

qq

....
...
....
....
...
....
....
....
....
...
....
....
...

e

e = endereço

d = dados

Totalmente associativa

d

d

e

e

d

Mapeamento diretoAssociativa binária

UFPR DInf BCC 382

Arquitetura II — otimização de caches 2007-1

Causas de faltas

• faltas compulsórias – linhas são tocadas pela primeira vez.

⊲ Solução: blocos com muitas palavras para fazer busca

antecipada impĺıcita;

• faltas por capacidade – conj. de trabalho≫ tamanho da cache.

⊲ Solução: aumentar tamanho da cache;

• faltas por conflito – mapeamento de endereços 6=s em

mesmo bloco da cache.

⊲ Solução: aumentar associatividade.

⊲ ocorrem mesmo quando a cache não está cheia;

UFPR DInf BCC 387

Arquitetura II — otimização de caches 2007-1

Resposta:

Qual a taxa de faltas se |conj dados| ≫ capacidade da cache?

(a) baixa

(b) média

(c) alta

(d) faltas independem dos tamanhos relativos

Qual a taxa de faltas se |conj dados| ≪ capacidade da cache?

UFPR DInf BCC 386

Arquitetura II — otimização de caches 2007-1

Pergunta:

Qual a taxa de faltas se |conj dados| ≫ capacidade da cache?

(a) baixa

(b) média

(c) alta

(d) faltas independem dos tamanhos relativos

UFPR DInf BCC 385

Arquitetura II — otimização de caches 2007-1

Tempo médio de acesso à memória II

Tempo de acesso não pode ser (muito) reduzido

tempo de transferência depende de projeto do barramento:

∗ barramento estreito: uma palavra por ciclo ($↓);
∗ barramento/memória largos: mais de uma palavra por ciclo; ($↑);
∗ memória entrelaçada: acesso paralelo e transferência serializada;

barramento estreito 4(A+1)

barramento largo (A+1) memória entrelaçada (A+4)

pp pp

pp pp pp pp

A

A A

UFPR DInf BCC 390

Arquitetura II — otimização de caches 2007-1

Tempo médio de acesso à memória I

• 1 ciclo por acerto na cache (Tcache)

• penalidade: 2 a 100 ciclos para acessar memória (Tmem)

• tMed = Tcache + (faltas · Tmem)

pp pp

ppppppppppppppppppppppppppppppppppp

ppp

pp pp

pp pp

ppp

A
Tcache

acerto

falta

Tmem = A + 4 · Tc

A = tempo de acesso
à memória

Tc = tempo para copiar da

memória para a cache
(4 palavras por bloco)

Custo de acerto: ≈ ciclo do processador

penalidade por falta: ≫ ciclo do processador

UFPR DInf BCC 389

Arquitetura II — otimização de caches 2007-1

Causas de faltas

Redução na TxFaltas de MD para 2-ária
equivale a dobrar capacidade

ppp pp

ppp pp

ppppppppppppppppppp
ppp

rrr

rrr

rr pp

rr

ppp pp

pp

taxa de faltas

20%

14%

1%
compulsórias

2 4 8 16 32 128641
capacidade
[Kbyte]

capacidade
assoc total
assoc 8x
assoc 4x

map dir
conflito:

UFPR DInf BCC 388

Arquitetura II — otimização de caches 2007-1

Poĺıticas de escrita

• Escrita forçada write-through
⋆ cada escrita é propagada até a memória

⋆ escritas ocorrem na velocidade da memória

• Escrita preguiçosa write-back
⋆ acumula escritas na cache

⋆ a cada escrita, o bit sujo é ligado

⋆ bloco permanece sujo na cache até que seja substitúıdo

⋆ na substituição, se bloco v́ıtima está sujo então
o bloco inteiro é enviado para atualizar memória

⋆ falta na leitura pode causar escrita do bloco sujo

• Fila de Escrita write-buffer
⋆ imprescind́ıvel com escrita forçada

⋆ com escrita forçada, fila tem uma palavra de largura

⋆ com escrita preguiçosa, fila tem um bloco de largura

UFPR DInf BCC 393

Arquitetura II — otimização de caches 2007-1

Poĺıticas de escrita

• Escrita forçada (write-through)

⊲ propaga escrita até memória

⊲ escritas completam

na velocidade da memória

• Escrita preguiçosa (write-back)

⊲ acumula escritas na cache

→ bit sujo

⊲ falta em leitura custa

propagação até memória

qqqqqqqqqqqqqqqqqq
qq

qqq
qqq

qqq
qqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq

qq
qq

qq
qqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq

qq

qq
qq

qqqqqqqqqqqqqqqqqq
qq

qq
qqqqqqqqqqqqqq

c-secundária

processador

c-instr c-dados

Tescr=10

Tescr=1

UFPR DInf BCC 392

Arquitetura II — otimização de caches 2007-1

Implementação da Escrita

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrr
rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrr

rr

rr
rrrr

rr

rr
rrrr

rr

rr
rrrr

rrr
rrr

rrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrr

rr

rr

rr

rr rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rr rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rr rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rr rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

ppppppppppppppppppp
ppppppppppppppppppppppppppp

pp
pppp

ppppppppppppppppppp
ppppppppppppppppppppppppppp ppppppppppppppppppp

ppppppppppppppppppppppppppp ppppppppppppppppppp
ppppppppppppppppppppppppppp

rr

rr

t k b

t

etiqueta ı́ndice bloco

etiqV

hit habEscr
palavra

dados

2k

UFPR DInf BCC 391

Arquitetura II — otimização de caches 2007-1

Fila de escrita II

Fila reduz tempo médio da

referência de escrita

cada elemento da fila contém

um par <endereço, valor>

controlador de cache efetua

atualização da memória

qqqqqqqqqqqqqqqqqq
qq

qq
qqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qq

qqq
qqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq

qqq
qqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qq

c-instr c-dados

c-secundária

processador

memória

UFPR DInf BCC 396

Arquitetura II — otimização de caches 2007-1

Fila de escrita I

Referências de escrita bloqueiam processador até que

acesso à ńıvel mais baixo da hierarquia complete

10% das referências são escritas;

escritas na cache secundária custam ≈ 10 ciclos

→ Tmem = 0.9 ∗ 1 + 0.1 ∗ 10 = 1.9 ciclos

solução: fila de escritas

para desacoplar velocidade do processador da

velocidade da memória

UFPR DInf BCC 395

Arquitetura II — otimização de caches 2007-1

O que fazer quando ocorre uma falta na escrita?

• Aloca espaço na escrita write-allocate
⋆ espaço é alocado na cache para bloco faltante, e então é atualizado

⋆ se uma palavra no bloco foi atualizada, outras também o serão...

⋆ se cache com escrita preguiçosa, falta provoca até duas transações:
1) se bloco está sujo, expurga-o
2) carrega bloco faltante

• Não aloca espaço na escrita no-write-allocate
⋆ não é alocado espaço na cache para bloco faltante

⋆ se não ocorreu falta de leitura, bloco pode não ser necessário...

⋆ bloco faltante é atualizado diretamente na memória

⋆ fila de escrita é imprescind́ıvel

• Combinações comuns
⋆ escrita forçada & não-alocação de espaço

⋆ escrita preguiçosa & alocação de espaço na escrita fetch-on-write

UFPR DInf BCC 394

Arquitetura II — otimização de caches 2007-1

Tempo médio de acesso à memória

Tmed = Tcache + (faltas · Tmem)

pp pp

ppppppppppppppppppppppppppppppppppp

ppp

pp pp

pp pp

ppp

A
Tcache

acerto

falta

Tmem = A + 4 · Tc

A = tempo de acesso
à memória

Tc = tempo para copiar da

memória para a cache
(4 palavras por bloco)

Custo de acerto: ≈ ciclo do processador

penalidade por falta: ≫ ciclo do processador

UFPR DInf BCC 399

Arquitetura II — otimização de caches 2007-1

revisão – Revisão de Caches

• Localidade Temporal
⋆ objeto será referenciado novamente no futuro próximo: pilha, código

• LocalidadeEspacial
⋆ objetos vizinhos serão referenciados no futuro próximo: vetores, instruções

• Taxa de Acertos = núm acertos / núm referências
⋆ Taxa de Faltas = 1 - Taxa de acertos

• 3 Cs: faltas compulsórias, por conflitos, por capacidade
⋆ compulsórias: são compulsórias...

⋆ conflitos: endereços mapeiam no mesmo bloco ↑associatividade

⋆ capacidade: |conj de dados| > |cache|; ↑tamanho

• Poĺıticas de escrita
⋆ escrita forçada, escrita preguiçosa, fila de escrita

⋆ nas faltas: aloca espaço, não-aloca espaço

UFPR DInf BCC 398

Arquitetura II — otimização de caches 2007-1

Fila de escrita III

• Processador executa sw $5,24($8)

⊲ na fase MEM, processador insere

na fila o par <(24+$8), $5>

⊲ se há espaço na fila,

escrita completa em um ciclo

⊲ senão, processador bloqueia

até abrir espaço na fila,

enquanto escrita anterior

é propagada até L2

• Fila tem capacidade para 2-16 regis-

tros

⊲ fila fica cheia na entrada de funções

com muitos parâmetros...

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqq
qqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

c-instr c-dados

c-secundária

processador

UFPR DInf BCC 397

Arquitetura II — otimização de caches 2007-1

Reduzir a taxa de faltas

• Faltas compulsórias: primeira referência a um bloco (a frio)

⊲ faltas que ocorreriam numa cache infinita

• Faltas por capacidade: cache não comporta conjunto de

trabalho

⊲ faltas que ocorreriam mesmo com poĺıticas perfeitas de alocação

e reposição

• Faltas por conflito: colisões no mapeamento de blocos na cache

⊲ faltas que não ocorreriam se a cache fosse totalmente associativa

e reposição fosse com LRU

⊲ podem ocorrer com cache não-cheia

UFPR DInf BCC 402

Arquitetura II — otimização de caches 2007-1

Melhoria no desempenho de caches

Tempo médio de acesso a memória =

tempo de acerto +

taxa de faltas x penalidade pela falta

Para melhorar o desempenho é necessário:

• reduzir a taxa de faltas

• reduzir a penalidade

• reduzir o tempo de acerto

Estratégia de projeto mais simples é projetar a cache primária maior

posśıvel, sem elongar o ciclo de relógio, e sem estágios adicionais no

pipeline fica mais complicado com emissão fora-de-ordem

UFPR DInf BCC 401

Arquitetura II — otimização de caches 2007-1

Desempenho de caches

tempo de CPU = #Instr× (CPIexec + CPImem)× ciclo

CPImem =
numRefs

instr
× (Tacerto + txFaltas · penalidade)

Tempo médio de acesso à memória

Tmem = Tacerto + txFaltas · penalidade

UFPR DInf BCC 400

Arquitetura II — otimização de caches 2007-1

2. Reduzir faltas – Associatividade

Regra 2:1

taxa de faltas de uma cache com mapeamento direto de tamanho N

=

taxa de faltas de cache com associatividade binária de tamanho N/2

Achtung: desempenho é medido pelo tempo de execução!!

maior associatividade pode aumentar tempo de acesso

Em [Hill88] sugere-se que relação entre tempo de acerto de

assoc-binária / mapeamentoDireto é

1,02 para caches internas e

1,10 para caches externas

dados estarão dispońıveis somente após comparação da etiqueta

UFPR DInf BCC 405

Arquitetura II — otimização de caches 2007-1

1. Reduzir faltas – Tamanho do Bloco

ppp
ppp

pp
ppp

pp
ppppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppp

ppp

pp
pp pp

pp

pp
pp

ppp
pp

ppp
pp

ppp
pp

pp pp pp pp

pp

pp
ppppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppppp pppppppppppppppppppppp
ppppppp ppppppppppppppppppppppppppp pppppppppppppppppppppp

ppppppp pppppppppppppppppppppppppp ppppppppppppppppppppp
ppppppp pppppppppppppppppppppppppp ppppppppppppppppppppp

ppppppp pppppppppppppppppppppppppp ppppppppppppppppppppp
ppppppp

pppppppppppppppppppppppppp ppppppppppppppppppppp
ppppppp

0

5

10

15

20

25

16 32 64 128 256

256K

1K
4K

16K
64K

taxa de faltas vs tamanho do bloco

tamanho do bloco [bytes]

• localidade espacial reduz faltas compulsórias

• para mesmo tamanho, menor número de blocos aumenta conflitos

• bloco maior aumenta tempo de preenchimento >penalidade

UFPR DInf BCC 404

Arquitetura II — otimização de caches 2007-1

Reduzir a taxa de faltas – parâmetros de projeto

• Maior capacidade

⊲ reduz faltas por capacidade e por conflito

⊲ tempo de acerto pode aumentar

• Tamanho do bloco

⊲ localidade espacial reduz faltas compulsórias

⊲ menor número de blocos pode aumentar conflitos

⊲ bloco maior pode aumentar penalidade (tempo de

preenchimento)

• Associatividade

⊲ reduz faltas por conflito (até associatividade 4-8)

⊲ pode aumentar tempo de acesso

UFPR DInf BCC 403

Arquitetura II — otimização de caches 2007-1

4. Reduzir faltas – Busca antecipada por hardware

• Busca antecipada de instruções

⊲ Alpha 21064 busca dois blocos numa falta

⊲ bloco extra é colocado num stream buffer

⊲ numa falta, procura no stream buffer

• Busca antecipada de dados

⊲ 1 stream buffer para dados resolve 25% das faltas

numa cache de 4KB; 4 stream buffers resolvem 43% [Jouppi90]

⊲ para aplicações cient́ıficas, 8 streams resolveram 50-70% das

faltas com duas caches de 64KB, assoc-quaternária

[Palacharla94]

• Busca antecipada necessita de sistema de memória com

vazão sobrando e que possa ser utilisada sem penalidade

UFPR DInf BCC 408

Arquitetura II — otimização de caches 2007-1

3.1 Reduzir faltas – Cache de V́ıtimas

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

CPU L1 dados L2
unificada

(falta na L1)

expulso

acerto na VC

da L1

victim cache
assoc, 4bl expulso da VC

• Procura na L1;

• se falta, procura da cache de v́ıtimas;

• se encontrou, troca linha por aquela que vai ser expulsa da L1;

• se falta na CdV, v́ıtima da L1→ CdV;

• Efeito combinado: tempo de acesso do mapeamento direto

com redução nas faltas por conflito.

UFPR DInf BCC 407

Arquitetura II — otimização de caches 2007-1

3. Reduzir faltas – Cache de V́ıtimas

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

CPU L1 dados L2
unificada

(falta na L1)

expulso

acerto na VC

da L1

victim cache
assoc, 4bl expulso da VC

Cache de V́ıtimas é uma cache associativa pequena (4-8 blocos),

ligada à cache com mapeamento direto para conter

linhas recentemente expurgadas

[Jouppi90]: CdV com 4 elementos remove de 20% a 95% dos

conflitos numa cache de 4Kbytes com mapeamento direto;

Usado no Alpha e máquinas da HP

UFPR DInf BCC 406

Arquitetura II — otimização de caches 2007-1

Exemplo: agrupamento de vetores

/∗ Antes: 2 vetores ∗/
int val[TAM];

int key[TAM];

/∗ Depois: 1 vetor de estruturas ∗/
struct agrup {

int val;

int key;

}

struct agrup doisVetores[TAM];

Redução de conflitos entre val e key:

melhora localidade espacial

UFPR DInf BCC 411

Arquitetura II — otimização de caches 2007-1

6. Reduzir faltas – Otimização pelo compilador

• Instruções

⊲ reordenar funções na memória para reduzir faltas por conflito

⊲ verificar perfil de execução para descobrir conflitos,

e então re-ligar aplicativos

• Dados

⊲ agrupar vetores: acessos a vetor de elementos compostos tem

melhor localidade espacial que 2 vetores

⊲ troca de loops: mudar aninhamento dos loops para acessar

dados na ordem de armazenamento em memória

⊲ fusão de loops: combinar 2 loops independentes com

comportamento similar e sobreposição de variáveis

⊲ blocagem: melhorar a localidade temporal ao acessar “blocos”

de dados repetidamente ao invés de percorrer linhas/colunas

inteiras

UFPR DInf BCC 410

Arquitetura II — otimização de caches 2007-1

5. Reduzir faltas – Busca antecipada por software

• Busca antecipada de dados
⋆ carregar dados em registrador (HP PA-RISC load)

⋆ carregar dados para a cache (MIPS-4, PowerPC)

⋆ instruções de busca antecipada não podem causar faltas de página
→ é uma forma de execução especulativa

• Executar instruções de busca antecipada custa tempo
⋆ custo da busca antecipada é menor que os ganhos pelos acertos?

⋆ processadores super-escalares gulosos facilitam despacho destas instruções

• Busca antecipada causa poluição na cache
⋆ carregar blocos em stream buffers e não na cache

⋆ numa falta, carrega stream buffers com blocos após o faltante

⋆ numa falta, procura na cache e nos SBs

⋆ 1 SB é bom para instruções ≥ 1 SBs para dados (≈ 4..8)

UFPR DInf BCC 409

Arquitetura II — otimização de caches 2007-1

Exemplo: blocagem

1 for (i=0; i < N; i++) /∗ Antes ∗/
2 for (j=0; j < N; j++) {

3 for (r=0.0, k=0; k < N; k++)

4 r = r + y[i][k] * z[k][j];

5 x[i][j] = r;

6 }

• Dois loops internos:
⋆ lê todos os NxN elementos de z[]

⋆ lê N elementos de uma linha de y[] repetidamente

⋆ escreve N elementos de 1 coluna de x[]

• Faltas por capacidade são função de N e tamanho da cache
⋆ núm faltas = 2N3 + N2, se não ocorrerem conflitos...

• Idéia: computar sub-matriz que cabe na cache

UFPR DInf BCC 414

Arquitetura II — otimização de caches 2007-1

Exemplo: fusão de loops

/∗ Antes: duas faltas por acesso em a e em c ∗/
1 for (i=0; i < N; i++)

2 for (j=0; j < N; j++)

3 a[i][j] = 1/b[i][j] * c[i][j];

4 for (i=0; i < N; i++)

5 for (j=0; j < N; j++)

6 d[i][j] = a[i][j] + c[i][j];

/∗ Depois: uma falta por acesso em a e em c ∗/
7 for (i=0; i < N; i++)

8 for (j=0; j < N; j++) {

9 a[i][j] = 1/b[i][j] * c[i][j];

a d[i][j] = a[i][j] + c[i][j];

b } /∗ re-uso e melhor localidade espacial ∗/

UFPR DInf BCC 413

Arquitetura II — otimização de caches 2007-1

Exemplo: troca de loops

1 for (k=0; k < 100; k++) /∗ Antes ∗/
2 for (j=0; j < 100; j++)

3 for (i=0; i < 5000; i++)

4 x[i][j] = 2 * x[i][j]; /∗ |passo|=100 ∗/

5 for (k=0; k < 100; k++) /∗ Depois ∗/
6 for (i=0; i < 5000; i++)

7 for (j=0; j < 100; j++)

8 x[i][j] = 2 * x[i][j]; /∗ |passo|=1 ∗/

Acessos seqüenciais ao invés de passadas de 100 palavras

→melhora localidade espacial passada ≡ stride

UFPR DInf BCC 412

Arquitetura II — otimização de caches 2007-1

Exemplo: blocagem

1 for (jj=0; jj < N; jj = jj+B) /∗ Depois ∗/
2 for (kk=0; kk < N; kk = kk+B)

3 for (i=0; i < N; i++)

4 for (j = jj; j < min(jj+B,N); j++) {

5 for (r = 0.0, k = kk; k < min(kk+B,N); k++)

6 r = r + y[i][k] * z[k][j];

7 x[i][j] = x[i][j] + r; } /∗ x[i][j] parcial ∗/

j
z 1 2 3 4 5 6

1

2

3

4

5

6

k
y 1 2 3 4 5 6

1

2

3

4

5

6

j
x 1 2 3 4 5 6

1

2

3

4

5

6

iik

UFPR DInf BCC 417

Arquitetura II — otimização de caches 2007-1

Exemplo: blocagem

1 for (jj=0; jj < N; jj = jj+B) /∗ Depois ∗/
2 for (kk=0; kk < N; kk = kk+B)

3 for (i=0; i < N; i++)

4 for (j = jj; j < min(jj+B,N); j++) {

5 for (r = 0.0, k = kk; k < min(kk+B,N); k++)

6 r = r + y[i][k] * z[k][j];

7 x[i][j] = x[i][j] + r; /∗ x[i][j] parcial ∗/
8 }

• B é chamado de fator de blocagem

• Faltas por capacidade caem de 2N3 + N2 para 2N3/B + N2

• Faltas por conflito talvez diminuem

UFPR DInf BCC 416

Arquitetura II — otimização de caches 2007-1

Exemplo: blocagem

1 for (i=0; i < N; i++) /∗ Antes ∗/
2 for (j=0; j < N; j++) {

3 for (r=0.0, k=0; k < N; k++)

4 r = r + y[i][k] * z[k][j];

5 x[i][j] = r;

6 }

j
z 1 2 3 4 5 6

1

2

3

4

5

6

k
y 1 2 3 4 5 6

1

2

3

4

5

6

j
x 1 2 3 4 5 6

1

2

3

4

5

6

ik i

não tocado tocado há muito tocado há pouco

UFPR DInf BCC 415

Arquitetura II — otimização de caches 2007-1

A.a Reduzir a penalidade – hierarquia de caches

qq qq qq qqCPU L1 L2 DRAM

Taxa de faltas local = faltas na cache / acessos à cache

Taxa de faltas global = faltas na cache / referências pelo processador

Tmem = tAL1 + FL1 × PL1

= tAL1 + FL1 × [tAL2 + FL2 × PDRAM]

onde tA é o tempo de acerto,

F é taxa de faltas, e

P é a penalidade por falta

UFPR DInf BCC 420

Arquitetura II — otimização de caches 2007-1

A. Reduzir a penalidade – hierarquia de caches

Memória não pode ser simultaneamente grande e rápida;

→ hierarquia com caches maiores mais longe do processador

rrr rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrr

rr
rrrr

rr rr

capacidade da memória em cada ńıvel

processador

cache L1

cache L2

n4

n5

n1

n2

n3

registradores

DRAM

disco

tempo de acesso

UFPR DInf BCC 419

Arquitetura II — otimização de caches 2007-1

Melhoria no desempenho de caches

Tempo médio de acesso a memória =

tempo de acerto +

taxa de faltas x penalidade pela falta

Para melhorar o desempenho é necessário:

• reduzir a taxa de faltas

• reduzir a penalidade nas faltas

• reduzir o tempo de acerto

UFPR DInf BCC 418

Arquitetura II — otimização de caches 2007-1

C. Reduzir a penalidade – minimizar tempo de carga

• Tempo de preenchimento do bloco é longo

• ...mas não precisa esperar até que bloco seja preenchido

• Early restart – assim que palavra requisitada chegar da memória,

entrega ao processador, que continua a executar

• Critical word first – busca palavra requisitada primeiro e a

entrega ao processador assim que chegar da memória

⊲ processador continua enquanto bloco está sendo preenchido

⊲ técnica é útil com blocos grandes

⊲ processador requisita p2: p0 p1 p2 p3

⊲ p2 é entregue, e bloco é preenchido com p2→ p3→ p0→ p1

⊲ localidade espacial indica que próximo acesso será

na palavra seguinte, que pode não ter chegado ainda

UFPR DInf BCC 423

Arquitetura II — otimização de caches 2007-1

B. Red penalidade – prioridade para faltas de leitura

• Escrita forçada com fila de escrita causa risco RAW

⊲ processador tenta ler dado que está na fila de escrita

⊲ solução ruim: espera até que fila esvazie e então continua LOAD

→ aumenta penalidade nas faltas de leitura

⊲ solução melhor: verifica se ∃m dependências;

se não, LOAD prossegue sem bloquear

• Escrita preguiçosa: falta na leitura substitui bloco sujo

⊲ solução ruim: escreve bloco sujo e então busca bloco faltante

⊲ solução melhor:

1. escreve bloco sujo num buffer/fila,

2. lê bloco faltante e entrega ao processador,

3. então escreve bloco sujo

⊲ + rápido porque CPU prossegue assim que ler bloco faltante

UFPR DInf BCC 422

Arquitetura II — otimização de caches 2007-1

A.b Reduzir a penalidade – hierarquia de caches

qq qq qq qqCPU L1 L2 DRAM

Propriedade de Inclusão:

Conteúdo das caches maiores inclui o conteúdo das menores

→ cache menor contém cópias dos dados na cache maior

⊲ qual a relação entre associatividade, tamanho e inclusão?

⊲ qual a relação entre bits de tag/́ındice e assoc, tamanho e

inclusão?

⊲ [Baer,Wang88] On the Inclusion Properties for Multi-Level Cache Hierarchies

Caches exclusivas trocam linhas numa falta

→ L1← novo; L2← velho

UFPR DInf BCC 421

Arquitetura II — otimização de caches 2007-1

Melhoria no desempenho de caches

Tempo médio de acesso a memória =

tempo de acerto +

taxa de faltas x penalidade pela falta

Para melhorar o desempenho é necessário:

• reduzir a taxa de faltas

• reduzir a penalidade nas faltas

• reduzir o tempo de acerto

UFPR DInf BCC 426

Arquitetura II — otimização de caches 2007-1

D.1 Reduzir a penalidade – cache não-bloqueante

u

u

u

u

u

u
u u

u u

u

u

u

u

u

u

u

u
u

u

u

u

u
u

u

u

u

u

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....
.....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.

...
...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
...
..
...
.....
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........
.........
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..
..
...
...
...
...
..
...
...
...
..
...
...
...
..
...
...
...
...
..
...
...
...
..
...
...
...
..
...
...
...
...
..
...
...
...
..
...
...
...
..
...
...
...
...
..
...
...
...
..
...
...

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
....
...
....
...
...
...
...
...
...
....
...
...
...
...
...
...
....
...
...
...
...
...
...
....
...
...
...
...
...
...
....
...
...
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
....
...
....
...
...
...
...
...
...
....
...
...
...
...
...
...
....
...
...
...
...
...
...
....
...
...
...
...
...
...
....
...
...
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

swm256

ponto flutuante

Fração do
tempo médio

perdido em
referências
à memória

hydro2d
su2cor

fppp
tomcatv

expressoora
xlisp compress

eqntott

inteiros

hit under 1 miss

hit under 64 misses
hit under 2 misses

UFPR DInf BCC 425

Arquitetura II — otimização de caches 2007-1

D. Reduzir a penalidade – cache não-bloqueante

• Cache não-bloqueante entrega dados enquanto trata de uma falta

⊲ processador com execução fora-de-ordem

⊲ memória com múltiplos bancos→ cache & DRAM

⊲ [Kroft81] Lock-up Free Instruction Fetch/Prefetch Cache Organization

• acerto sob falta (hit under miss) reduz penalidade efetiva porque

cache fornece dados, ao invés de bloquear processador na falta

• acerto sob múltiplas faltas (miss under miss) reduz penalidade

ainda mais ao sobrepor tratamento de múltiplas faltas

⊲ complexidade do controlador da cache é MUITO maior

por causa dos acessos concomitantes à memória

⊲ necessita de memória com múltiplos bancos

⊲ PentiumPro permite até 4 faltas pendentes

UFPR DInf BCC 424

Arquitetura II — otimização de caches 2007-1

II.i Reduzir T de acerto – evitar tradução de ender

qqq
qqq

qqq
qqq

qqq
qq

qqq
qqq

qqq
qqq

qqq
qqq

qqq
qqq

qq

qqq
qq

qqq

CPU

mem

TPág

CPU

mem

TPág

cacheetiq c/
endVirt

CPU

EV

cache TPág

EF

etiq c/
endFis

mem

organização
convencional

cache ender virtual

cache

nas faltas

núm página

blocoı́ndiceetiqueta

deslocamento

sobrepõe indexação com
tradução EV-EF

ı́ndice não pode mudar
durante tradução

|cache| = |página|

traduz somente

EV

EF EV

EV

EFEF

UFPR DInf BCC 429

Arquitetura II — otimização de caches 2007-1

II. Reduzir o tempo de acerto

– evitar tradução de endereços

• Cache endereçada com: endereço virtual vs endereço f́ısico

• a cada troca de contexto deve expurgar a cache
⋆ senão ocorrem falsos-acertos

⋆ processo que entra no processador tem montes de faltas compulsórias

⋆ conseqüência da troca de contexto pode durar 105 ciclos

⋆ solução: usar identificador de processo na etiqueta na cache

• como trata de sinônimos?
⋆ dois endereços virtuais que mapeiam no mesmo endereço f́ısico

⋆ solução: garantir que indexação da cache ocorre com bits que coincidem no
EV e EF

EVirtual núm página virtual deslocamento
ender na cache |—ı́ndice—|
EF́ısico núm página f́ısica deslocamento

UFPR DInf BCC 428

Arquitetura II — otimização de caches 2007-1

I. Reduzir o tempo de acerto

– caches simples e pequenas

Tempo de acerto curto se:

⊲ cache pequena→ reduz tempo de acesso

⊲ cache simples→mapeamento direto

Alpha 21164 tem 8KB para dados e 8KB para instruções,

96KB cache secundária, unificada, associatividade ternária,

e relógio muito rápido!

UFPR DInf BCC 427

Arquitetura II — otimização de caches 2007-1

Resumo – melhorar desempenho de caches

T méd acesso mem = T acerto + tx faltas x penalidade/falta

Para melhorar o desempenho é necessário:

⋆ reduzir a taxa de faltas

⊲ parâmetros de projeto: núm,tam blocos, associatividade

⊲ cache de v́ıtimas, stream buffers, busca antecipada

⊲ otimização do código: agrupamento, troca de ı́ndices, fusão, blocagem

⋆ reduzir a penalidade nas faltas

⊲ hierarquia de caches

⊲ priorizar faltas na leitura (critical word first, early restart)

⊲ cache não-bloqueante

⋆ reduzir o tempo de acerto

⊲ caches simples e pequenas

⊲ não traduzir endereço virtual para f́ısico

⊲ escritas em pipeline

UFPR DInf BCC 432

Arquitetura II — otimização de caches 2007-1

III.ii Reduzir tempo de acerto

– escritas em pipeline

Din

ender

Dout

CPU

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr

rrr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrr

rr

rr ttttttttttttttttttttttttt
ttttttttttttttttttttttttt

ttttttttttttttttttttttttt
tttttttttttttttt

ttttttttttttttttttttttttt
ttttttttttttttttttttttttt

ttttttttttttttttttttttttt
tttttttttttttttt

rrr
rr

rrr
rrr

rrrr

rr

rr
rrrr

ppppppppppppppppppp
ppppppppppppppppppppppppppppp

rrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

pp

rrr

ppp
pppppppppppppppppp
ppppppppppppppppp

rrr
rrrr

rrr

rr
rrrr

delayed
addr

delayed
data

dados

load/store

WRenstore

escreve dado anterior

load

compara etiqueta

tags

store hit?

load hit?

UFPR DInf BCC 431

Arquitetura II — otimização de caches 2007-1

III.i Reduzir o tempo de acerto

– escritas em pipeline

Escrita consome dois ciclos

• um para comparar etiqueta e outro para escrever na cache

• armazena dados e endereço em buffer

• escreve dados na cache durante comparação de etiqueta

na próxima escrita

• risco RAW entre leitura e escrita atrasada→ adiantamento

UFPR DInf BCC 430

Arquitetura II — otimização de caches 2007-1

Cache por dentro

ttt
ttttttt

ttt
ttttttt

tt
tt

tt

rr
rrrr

rr
rrrr

rrr
rrrrrrr

pp

pp

proc cache memória

endereço endereço

dados dados

cópia da posição
100 em mem 101 em mem

cópia da posição

etiqueta
(endereço)

linha da cache

bloco de dados

100
308
8192

xx yy zz ww

UFPR DInf BCC 435

Arquitetura II — otimização de caches 2007-1

Sistemas de Memória T́ıpicos

tt

ttt

tt
tttttttttttttttttttttttttttttttttt tt ttt

ttttttttttttttttttttttttttttttttttt

tt

tt
tt

rr rrr
rrrrrrrrr

rr rrr
rrrrrrrrr

rr rr
rrrrrrrr

rr rrr
rrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrr

L1 cache
instr

L1 cache
dados

L2
cache

unificada

mem

mem

mem

mem

cache secundária
unificada, grande

(SRAM interna ao CI)

(SRAM interna ao CI) intercalados (DRAM)
bancos de memóriacaches primárias divididas

regs

proc

bloco de regs

(parte do proc)
com ≥ 3 portas

“Lei de Less”: Processador super-escalar pode executar

≈ 103 instruções durante falta na cache

UFPR DInf BCC 434

Arquitetura II — otimização de caches 2007-1

Cache

• Sistemas de memória

• Memória cache
⋆ organização

⋆ leitura

⋆ escrita

⋆ otimizações

⋆ busca antecipada

• Busca antecipada

• Memória Virtual
⋆ endereçamento

⋆ paginação

⋆ TLB

⋆ excessões

UFPR DInf BCC 433

Arquitetura II — otimização de caches 2007-1

Mapeamento Direto

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq

qqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqq

rr rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrr

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

..................
..............

.......
...
...
..
...
....
...
..
..
...
..
..
.
...
..
.
..
...
.
..
.
..
.
..
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
..
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.....
....
...
...
...
....
..
...
...
...
.....
...
.......
........
.....
......
.....
.........

.........
................

....................
..

.................
.............

.........
..........

........
.......

........
.......

......
....
......
.....
....
.....
.....
.....
....
....
...
.....
...
.....
...
....
....
...
....
..
...
....
...
...
...
...
....
..
..
..
....
...
...
...
...
...
..
..
...
..
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
.
..
...
..
..
...
..
..
..
..
..
...
.
..
..
...
..
.
...
.
..
.
...
.
.
.
..
..
.
.
.
.
.
..
..
..
.
...
.
.
.
..
.
..
.
.
..
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
..
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

..

..

.

.

.

..

.

.

..

..

..

..
...
.
..
...
..
...
..
..
...
..
....
..
....
.....
...
......
.......
...............

.....

...
...
....
...
...
...
....
...
.....
....
....
....
....
.....
....

...
..
...
.
...
.
.
.
...
..
.
...
.
..
.
..
...
..
..
.
...
..
.
..
..
.
...
.
..
.
..
.
...
..
.
..
..
..
..
..
..
..
..
.
...
.
..
.
..
.
...
.
..
..
.
..
.
...
..
..
..
.
...
.
..
.
..
.
...
.
..
..
..
..
..
.
..
..
..
..
.
..
..
...
..
.
..
...
.
..
.
...
..
..
...
..
..
...
.
..
..
...
..
..
...
.
..
...
.
..
..
..
..
..
.
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
.
...
..
.
..
...
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
...
..
..
....
...
...
...
..
..
...
..
..
....
..
...
...
..
..
...
...
..
...
..
..
..
....
..
..
...
..
..
...
..
..
..
....
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
...
..
..
...
..
...
..
..
...
.
...
..
.
...
..
...
..
...
.
.
...
..
.
...
.
...
.
.
...
.
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
...
.
.
..
..
..
..
...
...
..
...
...
....
...
....
....
....
....
...
....
......
.....
....

..
..
..
...
..
..
..
..
..
..
...
..
...........

...................

.....
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
...
...
.
...
..
...
.
...
...
..
...
...
.
.
..
.
.
..
.
.
..
.
..
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

etiqueta bloco de dados

etiqueta ı́ndice

acertou?

endereço

pal byte

vál

cache

dado para processador
endereço da
referência

UFPR DInf BCC 438

Arquitetura II — otimização de caches 2007-1

Alocação de blocos

0 1 2 3 4 5 6 7

número do conjunto

0 31 2

mapeamento
direto

bloco 12 mapeia
somente no bloco 4

12 % 8 = 4

associativa
por conjuntos

(binária)

bloco 12 mapeia
no conjunto 0
12 % 4 = 0

associativa
(total)

bloco 12 mapeia
em qualquer conjunto

8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
21

0 1 2 3 4 5 6 7
1

número do bloco

UFPR DInf BCC 437

Arquitetura II — otimização de caches 2007-1

Algoritmo para leitura

cache recebe endereço;

se objeto na cache (acerto hit)

entrega para processador;

senão (falta miss)

lê bloco da memória

espera

entrega ao processador

e atualiza cache

UFPR DInf BCC 436

Arquitetura II — otimização de caches 2007-1

Taxas de Faltas e de Acertos

Se encontra na cache — acerto

Se não encontra na cache — falta

taxa de acertos
△

=
número de acertos

número de referências

taxa de faltas
△

= 1− taxa de acertos

UFPR DInf BCC 441

Arquitetura II — otimização de caches 2007-1

Associatividade II

Associativa - 4 conjuntos

0 99 200 33

M[12] = 99; M[13] = 200; M[14] = 33

aloc: 12%1 = ?

Associativa binária - 2 conjuntos

0

1

99

200

aloc: 12%2 = 033

aloc: 13%2 = 1

99

Mapeam direto - 1 conjunto

0

1

2

3

aloc: 12%4 = 0

200

33

aloc: 13%4 = 1

aloc: 14%4 = 2

aloc: N%4 = 3

Escolha de v́ıtima para reposição: com mapeamento direto 6 ∃ escolha...
1) escolhe o bloco usado no passado mais distante (LRU)

2) escolhe a esmo

UFPR DInf BCC 440

Arquitetura II — otimização de caches 2007-1

Organização da cache III

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
....
...
....
....
...
....
.....
...
....
....
...
....
....
...

..

..

qq qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq

qq

..

.......... ..

...
....
...
....
....
....
...
.....
....
...
....
...
....
....
...
.

..

..........

...
....
....
....
...
....
....
....
....
....
...
....
....
...
.... ..

..........

...
....
....
....
...
....
....
....
....
....
...
....
....
...
....

qq

..

..........

....
...
....
....
...
....
....
....
....
....
...
....
....
...
.... ..

..........

....
...
....
....
...
....
....
....
....
....
...
....
....
...
....

#blocos = 2I

dado para CPU

#pals/bloco = 2P

E

etiquetavál

etiqueta ı́ndice pal byte

E P 2I

end da CPU

tamanho da cache = num blocos ∗ tam bloco ∗ tam palavra

Quanto mais blocos =⇒menor a taxa de faltas

Blocos com 4-16 palavras tiram vantagem de localidade espacial

UFPR DInf BCC 439

Arquitetura II — otimização de caches 2007-1

Causas de faltas

• faltas compulsórias – linhas são tocadas pela primeira vez.
⋆ Solução: blocos com muitas palavras para fazer busca antecipada impĺıcita;

• faltas por capacidade – conj. de trabalho≫ tamanho da cache.
⋆ Solução: aumentar tamanho da cache;

• faltas por conflito – mapeamento de endereços no

mesmo bloco da cache.
⋆ Solução: aumentar associatividade.

⋆ Faltas por conflito ocorrem mesmo quando a cache não está cheia;
estas se devem aos conflitos de mapeamento nos blocos da cache

UFPR DInf BCC 444

Arquitetura II — otimização de caches 2007-1

Resposta:

Qual a taxa de faltas se |conj dados| ≫ capacidade da cache?

(a) baixa

(b) média

(c) alta

(d) faltas independem dos tamanhos relativos

Qual a taxa de faltas se |conj dados| ≪ capacidade da cache?

UFPR DInf BCC 443

Arquitetura II — otimização de caches 2007-1

Pergunta:

Qual a taxa de faltas se |conj dados| ≫ capacidade da cache?

(a) baixa

(b) média

(c) alta

(d) faltas independem dos tamanhos relativos

UFPR DInf BCC 442

Arquitetura II — otimização de caches 2007-1

Tempo médio de acesso à memória II

Tempo de acesso não pode ser (muito) reduzido

tempo de transferência depende de projeto do barramento:

⋆ barramento estreito: uma palavra por ciclo ($↓);
⋆ barramento/memória largos: mais de uma palavra por ciclo; ($↑);
⋆ memória entrelaçada: acesso paralelo e transferência serializada;

barramento estreito 4(A+1)

barramento largo (A+1) memória entrelaçada (A+4)

pp pp

pp pp pp pp

A

A A

UFPR DInf BCC 447

Arquitetura II — otimização de caches 2007-1

Tempo médio de acesso à memória I

• 1 ciclo por acerto na cache (tCache)

• penalidade: 2..100 ciclos para acessar memória (tMem)

• tMed = tCache ∗ (acertos + faltas ∗ tMem)

pp pp

ppppppppppppppppppppppppppppppppppp

ppp

pp pp

pp pp

ppp

A
Tcache

acerto

falta

Tmem = A + 4 · Tc

A = tempo de acesso
à memória

Tc = tempo para copiar da

memória para a cache
(4 palavras por bloco)

Custo de acerto: ≈ ciclo do processador

penalidade por falta: ≫ ciclo do processador

UFPR DInf BCC 446

Arquitetura II — otimização de caches 2007-1

Causas de faltas

Redução na TxFaltas de MD para 2-ária
equivale a dobrar capacidade

ppp pp

ppp pp

ppppppppppppppppppp
ppp

rrr

rrr

rr pp

rr

ppp pp

pp

taxa de faltas

20%

14%

1%
compulsórias

2 4 8 16 32 128641
capacidade
[Kbyte]

capacidade
assoc total
assoc 8x
assoc 4x

map dir
conflito:

UFPR DInf BCC 445

Arquitetura II — otimização de caches 2007-1

Poĺıticas de escrita

• Escrita forçada (write-through)
⋆ propaga escrita até memória

⋆ escritas com velocidade da memória

• Escrita preguiçosa (write-back)
⋆ acumula escritas na cache→ bit sujo

⋆ falta em leitura custa propagação até memória

qqqqqqqqqqqqqqqqqq
qq

qqq
qqq

qqq
qqqqqqqqq

qqqqqqqqqqqqqqqqqq
qq

qq
qq

qq
qqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qq

qq

qq
qq

qqqqqqqqqqqqqqqqqq
qq

qqq
qqqqqqqqqqqqq

c-secundária

processador

c-instr c-dados

Tescr=10

Tescr=1

UFPR DInf BCC 450

Arquitetura II — otimização de caches 2007-1

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrr
rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrr

rr

rr
rrrr

rr

rr
rrrr

rr

rr
rrrr

rrr
rrr

rrr

rr
rrrrrrrrrrrrrrrr

rr

rr

rr

rr rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rr rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rr rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rr rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

ppppppppppppppppppp
ppppppppppppppppppppppppppp

pp
pppp

ppppppppppppppppppp
ppppppppppppppppppppppppppp ppppppppppppppppppp

ppppppppppppppppppppppppppp ppppppppppppppppppp
ppppppppppppppppppppppppppp

rr

rr

t k b

t

etiqueta ı́ndice bloco

etiqV

hit habEscr
palavra

dados

2k

UFPR DInf BCC 449

Arquitetura II — otimização de caches 2007-1

Implementação da Escrita

UFPR DInf BCC 448

Arquitetura II — otimização de caches 2007-1

Fila de escrita I

Referências de escrita bloqueiam processador até que

acesso à ńıvel mais baixo da hierarquia complete

10% das referências são escritas;

escritas na cache secundária custam ≈ 10 ciclos

=⇒Tmem = 0.9 ∗ 1 + 0.1 ∗ 10 = 1.9 ciclos

solução: fila de escritas

para desacoplar velocidade do processador da

velocidade da memória

UFPR DInf BCC 453

Arquitetura II — otimização de caches 2007-1

O que fazer quando ocorre uma falta na escrita?

• Aloca espaço na escrita write-allocate
⋆ espaço é alocado na cache para bloco faltante, e então é atualizado

⋆ se uma palavra no bloco foi atualizada, outras também o serão...

⋆ se cache com escrita preguiçosa, falta provoca até duas transações:
1) se bloco está sujo, expurga-o
2) carrega bloco faltante

• Não aloca espaço na escrita no-write-allocate
⋆ não é alocado espaço na cache para bloco faltante

⋆ se não ocorreu falta de leitura, bloco pode não ser necessário...

⋆ bloco faltante é atualizado diretamente na memória

⋆ fila de escrita é imprescind́ıvel

• Combinações comuns
⋆ escrita forçada & não-alocação de espaço

⋆ escrita preguiçosa & alocação de espaço na escrita fetch-on-write

UFPR DInf BCC 452

Arquitetura II — otimização de caches 2007-1

Poĺıticas de escrita

• Escrita forçada write-through
⋆ cada escrita é propagada até a memória

⋆ escritas ocorrem na velocidade da memória

• Escrita preguiçosa write-back
⋆ acumula escritas na cache

⋆ a cada escrita, o bit sujo é ligado

⋆ bloco permanece sujo na cache até que seja substitúıdo

⋆ na substituição, se bloco v́ıtima está sujo então
bloco inteiro enviado para atualizar memória

⋆ falta na leitura pode causar escrita do bloco sujo

• Fila de Escrita write-buffer
⋆ imprescind́ıvel com escrita forçada

⋆ com escrita forçada, fila tem uma palavra de largura

⋆ com escrita preguiçosa, fila tem um bloco de largura

UFPR DInf BCC 451

Arquitetura II — otimização de caches 2007-1

revisão – Revisão de Caches

• Localidade Temporal
⋆ objeto será referenciado novamente no futuro próximo: pilha, código

• LocalidadeEspacial
⋆ objetos vizinhos serão referenciados no futuro próximo: vetores, instruções

• Taxa de Acertos = núm acertos / núm referências
⋆ Taxa de Faltas = 1 - Taxa de acertos

• 3 Cs: faltas compulsórias, por conflitos, por capacidade
⋆ compulsórias: são compulsórias...

⋆ conflitos: endereços mapeiam no mesmo bloco ↑associatividade

⋆ capacidade: |conj de dados| > |cache|; ↑tamanho

• Poĺıticas de escrita
⋆ escrita forçada, escrita preguiçosa, fila de escrita

⋆ nas faltas: aloca espaço, não-aloca espaço

UFPR DInf BCC 456

Arquitetura II — otimização de caches 2007-1

Fila de escrita III

• Processador executa sw $5,24($8)
⋆ na fase MEM, processador insere na fila

par <(24+$8), $5>

⋆ se há espaço na fila,
escrita completa em um ciclo

⋆ senão, processador bloqueia
até abrir espaço na fila,
enquanto escr anterior é propagada até L2

• Fila tem capacidade para 2-16 regis-

tros
⋆ fila enche na entrada de funções com muitos

parâmetros...

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

c-instr c-dados

c-secundária

processador

UFPR DInf BCC 455

Arquitetura II — otimização de caches 2007-1

Fila de escrita II

Fila reduz tempo médio da

referência de escrita

cada elemento da fila contém

um par <endereço, valor>

controlador de cache efetua

atualização da memória

qqqqqqqqqqqqqqqqqq
qq

qq
qqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qq

qqq
qqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq

qqq
qqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qq

c-instr c-dados

c-secundária

processador

memória

UFPR DInf BCC 454

Arquitetura II — otimização de caches 2007-1

Melhoria no desempenho de caches

Tempo médio de acesso a memória =

tempo de acerto +

taxa de faltas x penalidade pela falta

Para melhorar o desempenho é necessário:

• reduzir a taxa de faltas

• reduzir a penalidade

• reduzir o tempo de acerto

Estratégia de projeto mais simples é projetar a cache primária maior

posśıvel, sem elongar o ciclo de relógio, e sem estágios adicionais no

pipeline fica mais complicado com emissão fora-de-ordem

UFPR DInf BCC 459

Arquitetura II — otimização de caches 2007-1

Desempenho de caches

tempo de CPU = #Instr× (CPIexec + CPImem)× ciclo

CPImem =
numRefs

instr
× (Tacerto + txFaltas · penalidade)

Tempo médio de acesso à memória

Tmem = Tacerto + txFaltas · penalidade

UFPR DInf BCC 458

Arquitetura II — otimização de caches 2007-1

Tempo médio de acesso à memória

Tmed = Tcache ∗ (acertos + faltas ∗ Tmem)

pp pp

ppppppppppppppppppppppppppppppppppp

ppp

pp pp

pp pp

ppp

A
Tcache

acerto

falta

Tmem = A + 4 · Tc

A = tempo de acesso
à memória

Tc = tempo para copiar da

memória para a cache
(4 palavras por bloco)

Custo de acerto: ≈ ciclo do processador

penalidade por falta: ≫ ciclo do processador

UFPR DInf BCC 457

Arquitetura II — otimização de caches 2007-1

1. Reduzir faltas – Tamanho do Bloco

ppp
ppp

pp
ppp

pp
ppppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppp

ppp

pp
pp pp

pp

pp
pp

ppp
pp

ppp
pp

ppp
pp

pp pp pp pp

pp

pp
ppppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppppp pppppppppppppppppppppp
ppppppp ppppppppppppppppppppppppppp pppppppppppppppppppppp

ppppppp pppppppppppppppppppppppppp ppppppppppppppppppppp
ppppppp pppppppppppppppppppppppppp ppppppppppppppppppppp

ppppppp pppppppppppppppppppppppppp ppppppppppppppppppppp
ppppppp

pppppppppppppppppppppppppp ppppppppppppppppppppp
ppppppp

0

5

10

15

20

25

16 32 64 128 256

256K

1K
4K

16K
64K

taxa de faltas vs tamanho do bloco

tamanho do bloco [bytes]

• localidade espacial reduz faltas compulsórias

• para mesmo tamanho, menor número de blocos aumenta conflitos

• bloco maior aumenta tempo de preenchimento >penalidade

UFPR DInf BCC 462

Arquitetura II — otimização de caches 2007-1

Reduzir a taxa de faltas – parâmetros de projeto

• Maior capacidade

⊲ reduz faltas por capacidade e por conflito

⊲ tempo de acerto pode aumentar

• Tamanho do bloco

⊲ localidade espacial reduz faltas compulsórias

⊲ menor número de blocos pode aumentar conflitos

⊲ bloco maior pode aumentar penalidade (tempo de

preenchimento)

• Associatividade

⊲ reduz faltas por conflito (até associatividade 4-8)

⊲ pode aumentar tempo de acesso

UFPR DInf BCC 461

Arquitetura II — otimização de caches 2007-1

Reduzir a taxa de faltas

• Faltas compulsórias: primeira referência a um bloco (partida a

frio)

⊲ faltas que ocorreriam numa cache infinita

• Faltas por capacidade: cache não comporta conjunto de

trabalho

⊲ faltas que ocorreriam mesmo com poĺıticas perfeitas de alocação

e reposição

• Faltas por conflito: colisões no mapeamento de blocos na cache

⊲ faltas que não ocorreriam se a cache fosse totalmente associativa

e reposição fosse com LRU

⊲ podem ocorrer com cache não-cheia

UFPR DInf BCC 460

Arquitetura II — otimização de caches 2007-1

3.1 Reduzir faltas – Cache de V́ıtimas

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

CPU L1 dados L2
unificada

(falta na L1)

expulso

acerto na VC

da L1

victim cache
assoc, 4bl expulso da VC

• Procura na L1;

• se falta, procura da cache de v́ıtimas;

• se encontrou, troca linha por aquela que vai ser expulsa da L1;

• se falta na CdV, v́ıtima da L1→ CdV;

• Efeito combinado: tempo de acesso do mapeamento direto com

redução nas faltas por conflito.

UFPR DInf BCC 465

Arquitetura II — otimização de caches 2007-1

3. Reduzir faltas – Cache de V́ıtimas

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

CPU L1 dados L2
unificada

(falta na L1)

expulso

acerto na VC

da L1

victim cache
assoc, 4bl expulso da VC

Cache de V́ıtimas é uma cache pequena (4-8 blocos), associativa,

ligada à cache com mapeamento direto para conter linhas

recentemente expurgadas

[Jouppi90]: CdV com 4 elementos remove de 20% a 95% dos

conflitos numa cache de 4Kbytes com mapeamento direto;

Usado no Alpha e máquinas da HP

UFPR DInf BCC 464

Arquitetura II — otimização de caches 2007-1

2. Reduzir faltas – Associatividade

Regra 2:1

taxa de faltas de uma cache com mapeamento direto de tamanho N

=

taxa de faltas de cache com associatividade binária de tamanho N/2

Achtung: desempenho é medido pelo tempo de execução!!

maior associatividade pode aumentar tempo de acesso

Em [Hill88] sugere-se que relação entre tempo de acerto de

assoc-binária / mapeamentoDireto é

1,02 para caches internas e

1,10 para caches externas

lembre que dados estão dispońıveis só após comparação da etiqueta

UFPR DInf BCC 463

Arquitetura II — otimização de caches 2007-1

6. Reduzir faltas – Otimização pelo compilador

• Instruções
⋆ reordenar funções na memória para reduzir faltas por conflito

⋆ verificar perfil de execução para descobrir conflitos, e então re-ligar aplicativos

• Dados
⋆ agrupar vetores: vetor de elmtos compostos tem melhor localidade espacial

que 2 vetores

⋆ troca de loops: mudar aninhamento dos loops para acessar dados na ordem
de armazenamento em memória

⋆ fusão de loops: combinar 2 loops independentes com comportamento similar
e sobreposição de variáveis

⋆ blocagem: melhorar a localidade temporal ao acessar “blocos” de dados
repetidamente ao invés de percorrer linhas/colunas inteiras

UFPR DInf BCC 468

Arquitetura II — otimização de caches 2007-1

5. Reduzir faltas – Busca antecipada por software

• Busca antecipada de dados
⋆ carregar dados em registrador (HP PA-RISC load)

⋆ carregar dados para a cache (MIPS-4, PowerPC)

⋆ instruções de busca antecipada não podem causar faltas de página
→ forma de execução especulativa

• Executar instruções de busca antecipada custa tempo
⋆ custo da busca antecipada é menor que os ganhos pelos acertos?

⋆ processadores super-escalares gulosos facilitam despacho destas instruções

• Busca antecipada causa poluição na cache
⋆ carregar blocos em stream buffers e não na cache

⋆ numa falta, carrega stream buffers com blocos após o faltante

⋆ numa falta, procura na cache e nos SBs

⋆ 1 SB é bom para instruções ≥ 1 SBs para dados (≈ 4..8)

UFPR DInf BCC 467

Arquitetura II — otimização de caches 2007-1

4. Reduzir faltas – Busca antecipada por hardware

• Busca antecipada de instruções
⋆ Alpha 21064 busca dois blocos numa falta

⋆ bloco extra é colocado num stream buffer

⋆ numa falta, procura no stream buffer

• Busca antecipada de dados
⋆ 1 stream buffer para dados resolve 25% das faltas numa cache de 4KB;

4 stream buffers resolvem 43% [Jouppi90]

⋆ para aplicações cient́ıficas, 8 streams resolveram 50-70% das faltas com duas
caches de 64KB, assoc-quaternária [Palacharla94]

• Busca antecipada necessita de sistema de memória com vazão

sobrando e que possa ser usada sem penalidade

UFPR DInf BCC 466

Arquitetura II — otimização de caches 2007-1

Exemplo: fusão de loops

/∗ Antes: duas faltas por acesso em a e em c ∗/
1 for (i=0; i < N; i++)

2 for (j=0; j < N; j++)

3 a[i][j] = 1/b[i][j] * c[i][j];

4 for (i=0; i < N; i++)

5 for (j=0; j < N; j++)

6 d[i][j] = a[i][j] + c[i][j];

/∗ Depois: uma falta por acesso em a e em c ∗/
7 for (i=0; i < N; i++)

8 for (j=0; j < N; j++) {

9 a[i][j] = 1/b[i][j] * c[i][j];

A d[i][j] = a[i][j] + c[i][j];

B } /∗ re-uso e melhor localidade espacial ∗/

UFPR DInf BCC 471

Arquitetura II — otimização de caches 2007-1

Exemplo: troca de loops

1 for (k=0; k < 100; k++) /∗ Antes ∗/
2 for (j=0; j < 100; j++)

3 for (i=0; i < 5000; i++)

4 x[i][j] = 2 * x[i][j]; /∗ passo=100 ∗/

5 for (k=0; k < 100; k++) /∗ Depois ∗/
6 for (i=0; i < 5000; i++)

7 for (j=0; j < 100; j++)

8 x[i][j] = 2 * x[i][j]; /∗ passo=1 ∗/

Acessos seqüenciais ao invés de passadas de 100 palavras

=⇒melhora localidade espacial passada == stride

UFPR DInf BCC 470

Arquitetura II — otimização de caches 2007-1

Exemplo: agrupamento de vetores

/∗ Antes: 2 vetores ∗/
int val[TAM];

int key[TAM];

/∗ Depois: 1 vetor de estruturas ∗/
struct agrup {

int val;

int key;

}

struct agrup doisVetores[TAM];

Redução de conflitos entre val e key:

melhora localidade espacial

UFPR DInf BCC 469

Arquitetura II — otimização de caches 2007-1

UFPR DInf BCC 474

Arquitetura II — otimização de caches 2007-1

Exemplo: blocagem

1 for (i=0; i < N; i++) /∗ Antes ∗/
2 for (j=0; j < N; j++) {
3 for (r=0, k=0; k < N; k++)

4 r = r + y[i][k] * z[k][j];

5 x[i][j] = r;

6 }

UFPR DInf BCC 473

Arquitetura II — otimização de caches 2007-1

Exemplo: blocagem

1 for (i=0; i < N; i++) /∗ Antes ∗/
2 for (j=0; j < N; j++) {

3 for (r=0, k=0; k < N; k++)

4 r = r + y[i][k] * z[k][j];

5 x[i][j] = r;

6 }

• Dois loops internos:
⋆ lê todos os NxN elementos de z[]

⋆ lê N elementos de uma linha de y[] repetidamente

⋆ escreve N elementos de 1 coluna de x[]

• Faltas por capacidade são função de N e tamanho da cache
⋆ núm faltas = 2N3 + N2, se não ocorrerem conflitos...

• Idéia: computar sub-matriz que cabe na cache

UFPR DInf BCC 472

Arquitetura II — otimização de caches 2007-1

Exemplo: blocagem

1 for (jj=0; jj < N; jj = jj+B) /∗ Depois ∗/
2 for (kk=0; kk < N; kk = kk+B)

3 for (i=0; i < N; i++)

4 for (j = jj; j < min(jj+B-1 , N); j++) {
5 for (r = 0, k = kk; k < min(kk+B-1, N); k++)

6 r = r + y[i][k] * z[k][j];

7 x[i][j] = r;

8 }

UFPR DInf BCC 477

Arquitetura II — otimização de caches 2007-1

Exemplo: blocagem

1 for (jj=0; jj < N; jj = jj+B) /∗ Depois ∗/
2 for (kk=0; kk < N; kk = kk+B)

3 for (i=0; i < N; i++)

4 for (j = jj; j < min(jj+B-1 , N); j++) {

5 for (r = 0, k = kk; k < min(kk+B-1, N); k++)

6 r = r + y[i][k] * z[k][j];

7 x[i][j] = r;

8 }

• B é chamado de fator de blocagem

• Faltas por capacidade caem de 2N3 + N2 para 2N3/B + N2

• Faltas por conflito talvez diminuem

UFPR DInf BCC 476

Arquitetura II — otimização de caches 2007-1

H&P QA Fig-5.21

UFPR DInf BCC 475

Arquitetura II — otimização de caches 2007-1

Melhoria no desempenho de caches

Tempo médio de acesso a memória =

tempo de acerto +

taxa de faltas x penalidade pela falta

Para melhorar o desempenho é necessário:

• reduzir a taxa de faltas

• reduzir a penalidade nas faltas

• reduzir o tempo de acerto

UFPR DInf BCC 480

Arquitetura II — otimização de caches 2007-1

H&P QA Fig-5.22

UFPR DInf BCC 479

Arquitetura II — otimização de caches 2007-1

UFPR DInf BCC 478

Arquitetura II — otimização de caches 2007-1

A.b Reduzir a penalidade – hierarquia de caches

qq qq qq qqCPU L1 L2 DRAM

Propriedade de Inclusão:

Conteúdo das caches maiores inclui o conteúdo das menores

=⇒ cache menor contém cópias dos dados na cache maior

⋆ qual a relação entre associatividade, tamanho e inclusão?

⋆ qual a relação entre bits de tag/́ındice e assoc, tamanho e inclusão?

⋆ [Baer,Wang88] On the Inclusion Properties for Multi-Level Cache Hierarchies

Caches exclusivas trocam linhas numa falta

=⇒ L1← novo; L2← velho

UFPR DInf BCC 483

Arquitetura II — otimização de caches 2007-1

A.a Reduzir a penalidade – hierarquia de caches

qq qq qq qqCPU L1 L2 DRAM

Taxa de faltas local = faltas na cache / acessos à cache

Taxa de faltas global = faltas na cache / referências pelo processador

Tmem = tAL1 + FL1 × PL1

= tAL1 + FL1 × [tAL2 + FL2 × PDRAM]

onde tA é o tempo de acerto,

F é taxa de faltas, e

P é a penalidade por falta

UFPR DInf BCC 482

Arquitetura II — otimização de caches 2007-1

A. Reduzir a penalidade – hierarquia de caches

Memória não pode ser simultaneamente grande e rápida;

=⇒ hierarquia com caches maiores mais longe do processador

rrr rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrr

rr
rrrr

rr rr

capacidade da memória em cada ńıvel

processador

cache L1

cache L2

n4

n5

n1

n2

n3

registradores

DRAM

disco

tempo de acesso

UFPR DInf BCC 481

Arquitetura II — otimização de caches 2007-1

C. Reduzir a penalidade – minimizar tempo de carga

• Tempo de preenchimento do bloco é longo

• ...mas não precisa esperar até que bloco seja preenchido

• Early restart – assim que palavra requisitada chegar da memória,

entrega ao processador, que continua a executar

• Critical word first – busca palavra requisitada primeiro e a

entrega ao processador assim que chegar da memória
⋆ processador continua enquanto bloco está sendo preenchido

⋆ técnica é útil com blocos grandes

⋆ processador requisita p2: p0 p1 p2 p3

⋆ p2 é entregue, e bloco é preenchido com p2→ p3→ p0→ p1

⋆ localidade espacial indica que próximo acesso será na palavra seguinte,
que pode não ter chegado ainda

UFPR DInf BCC 486

Arquitetura II — otimização de caches 2007-1

B. Reduzir a penalidade

– prioridade para faltas de leitura

• Escrita forçada com fila de escrita causa risco RAW
⋆ processador tenta ler dado que está na fila de escrita

⋆ solução ruim: espera até que fila esvazie e então prossegue com LOAD
=⇒ aumenta penalidade nas faltas de leitura

⋆ solução melhor: verifica se ∃ dependências;
se não, LOAD prossegue sem bloquear

• Escrita preguiçosa: falta na leitura substitui bloco sujo
⋆ solução ruim: escreve bloco sujo e então busca bloco faltante

⋆ solução melhor:
1. escreve bloco sujo num buffer/fila,
2. lê bloco faltante e entrega ao processador,
3. então escreve bloco sujo

⋆ menos perda de tempo porque CPU prossegue assim que ler bloco faltante

UFPR DInf BCC 485

Arquitetura II — otimização de caches 2007-1

A.c Reduzir a penalidade – hierarquia de caches

Hierarquia no Itanium-2

• L1: 2 x 16KB, 4 conjuntos, linhas com 64 bytes, quatro portas

(2-load + 2-store), latência de 1 ciclo

• L2: 256KB, 4 conjuntos, linhas com 128 bytes, quatro portas

(2-load + 2-store), latência de 5 ciclos

• L3: 3MB, 12 conjuntos, linhas com 128 bytes, uma porta de

32 bytes, latência de 12 ciclos

UFPR DInf BCC 484

Arquitetura II — otimização de caches 2007-1

I. Reduzir o tempo de acerto

– caches simples e pequenas

Tempo de acerto curto se:

• cache pequena =⇒ reduz tempo de acesso

• cache simples =⇒mapeamento direto

Alpha 21164 tem 8KB para dados e 8KB para instruções,

96KB cache secundária, unificada, associatividade ternária,

e =⇒ relógio muito rápido!

UFPR DInf BCC 489

Arquitetura II — otimização de caches 2007-1

Melhoria no desempenho de caches

Tempo médio de acesso a memória =

tempo de acerto +

taxa de faltas x penalidade pela falta

Para melhorar o desempenho é necessário:

• reduzir a taxa de faltas

• reduzir a penalidade nas faltas

• reduzir o tempo de acerto

UFPR DInf BCC 488

Arquitetura II — otimização de caches 2007-1

D. Reduzir a penalidade – cache não-bloqueante

• Cache não-bloqueante entrega dados enquanto trata de uma falta
⋆ processador com execução fora-de-ordem

⋆ memória com múltiplos bancos =⇒ cache & DRAM

⋆ [Kroft81] Lock-up Free Instruction Fetch/Prefetch Cache Organization

• acerto sob falta (hit under miss) reduz penalidade efetiva

fornecendo dados, ao invés de bloquear processador

• acerto sob múltiplas faltas (miss under miss) reduz penalidade

ainda mais ao sobrepor tratamento de múltiplas faltas
⋆ complexidade do controlador da cache é MUITO maior por causa dos acessos

concomitantes à memória

⋆ necessita de memória com múltiplos bancos

⋆ PentiumPro permite até 4 faltas pendentes

UFPR DInf BCC 487

Arquitetura II — otimização de caches 2007-1

III.i Reduzir o tempo de acerto

– escritas em pipeline

Escrita consome dois ciclos

• um para comparar etiqueta e outro para escrever na cache

• armazena dados e endereço em buffer

• escreve dados na cache durante comparação de etiqueta

na próxima escrita

• risco RAW entre leitura e escrita atrasada =⇒ adiantamento

UFPR DInf BCC 492

Arquitetura II — otimização de caches 2007-1

II.i Reduzir T de acerto – evitar tradução de ender’s

qqq
qqq

qqq
qqq

qqq
qq

qqq
qqq

qqq
qqq

qqq
qqq

qqq
qqq

qq

qqq
qq

qqq

CPU

mem

TPág

CPU

mem

TPág

cacheetiq c/
endVirt

CPU

EV

cache TPág

EF

etiq c/
endFis

mem

organização
convencional

cache ender virtual

cache

nas faltas

núm página

blocoı́ndiceetiqueta

deslocamento

sobrepõe indexação com
tradução EV-EF

ı́ndice não pode mudar
durante tradução

|cache| = |página|

traduz somente

EV

EF EV

EV

EFEF

UFPR DInf BCC 491

Arquitetura II — otimização de caches 2007-1

II. Reduzir o tempo de acerto

– evitar tradução de endereços

Cache endereçada com: endereço virtual vs endereço f́ısico

• a cada troca de contexto deve expurgar a cache
⋆ senão ocorrem falsos-acertos

⋆ processo que entra no processador tem montes de faltas compulsórias

⋆ conseqüência da troca de contexto pode durar 105 ciclos

⋆ solução: usar identificador de processo na etiqueta na cache

• como trata de sinônimos?
⋆ dois endereços virtuais que mapeiam no mesmo endereço f́ısico

⋆ solução: garantir que indexação da cache ocorre com bits que coincidem no
EV e EF

EVirt núm página virtual deslocamento
ender. cache |—ı́ndice—|
EF́ıs núm página f́ısica deslocamento

UFPR DInf BCC 490

Arquitetura II — memória principal e virtual 2007-1

Revisão – melhorar desempenho de caches

T méd acesso mem = T acerto + tx faltas x penalidade/falta

Para melhorar o desempenho é necessário:

⋆ reduzir a taxa de faltas

⊲ parâmetros de projeto: núm,tam blocos, associatividade

⊲ cache de v́ıtimas, stream buffers, busca antecipada

⊲ otimização do código: agrupamento, troca de ı́ndices, fusão, blocagem

⋆ reduzir a penalidade nas faltas

⊲ hierarquia de caches

⊲ priorizar faltas na leitura (critical word first, early restart)

⊲ cache não-bloqueante

⋆ reduzir o tempo de acerto

⊲ caches simples e pequenas

⊲ não traduzir endereço virtual para f́ısico

⊲ escritas em pipeline

UFPR DInf BCC 495

Arquitetura II — memória principal e virtual 2007-1

Resumo – melhorar desempenho de caches

T méd acesso mem = T acerto + tx faltas x penalidade/falta

Para melhorar o desempenho é necessário:

⋆ reduzir a taxa de faltas

⊲ parâmetros de projeto: núm,tam blocos, associatividade

⊲ cache de v́ıtimas, stream buffers, busca antecipada

⊲ otimização do código: agrupamento, troca de ı́ndices, fusão, blocagem

⋆ reduzir a penalidade nas faltas

⊲ hierarquia de caches

⊲ priorizar faltas na leitura (critical word first, early restart)

⊲ cache não-bloqueante

⋆ reduzir o tempo de acerto

⊲ caches simples e pequenas

⊲ não traduzir endereço virtual para f́ısico

⊲ escritas em pipeline

UFPR DInf BCC 494

Arquitetura II — otimização de caches 2007-1

III.ii Reduzir tempo de acerto

– escritas em pipeline

Din

ender

Dout

CPU

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr

rrr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrr

rr

rr ttttttttttttttttttttttttt
ttttttttttttttttttttttttt

ttttttttttttttttttttttttt
tttttttttttttttt

ttttttttttttttttttttttttt
ttttttttttttttttttttttttt

ttttttttttttttttttttttttt
tttttttttttttttt

rrr
rr

rrr
rrr

rrrr

rr

rr
rrrr

ppppppppppppppppppp
ppppppppppppppppppppppppppppp

rrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

pp

rrr

ppp
pppppppppppppppppp
ppppppppppppppppp

rrr
rrrr

rrr

rr
rrrr

delayed
addr

delayed
data

dados

load/store

WRenstore

escreve dado anterior

load

compara etiqueta

tags

store hit?

load hit?

UFPR DInf BCC 493

Arquitetura II — memória principal e virtual 2007-1

Espaço de Endereçamento – três modelos

• Primeiro Modelo (até ≈1960)

∗ Programador supõe que espaço de endereçamento é cont́ınuo

espaço se extende de 0x0000 0000 a 0xffff ffff

∗ programa deve ser carregado sempre no endereço f́ısico inicial

∗ memória pode conter somente um programa em execução

• Segundo Modelo (até 1972 - IBM 370, idéia de 1962)

∗ EdE cont́ınuo, > que memória f́ısica→ overlays

∗ Registrador de tradução para fazer relocação do programa

→ programa pode ser carregado em qualquer endereço f́ısico

∗ mais de um programa carregado em memória para execução

• Terceiro Modelo (após 1972 - IBM 370)

∗ EdE > que memória f́ısica, tradução de ender transparente

∗ muitos programas carregados na memória

UFPR DInf BCC 498

Arquitetura II — memória principal e virtual 2007-1

Tipos de loci em memória

rr rr rr

ISA
CPU

endereço
linguagem
de máquina

endereço
virtual

end efetivo

mapeam

ender

endereço
f́ısico

f́ısica

mem

• Endereço de linguagem de máquina

como especificado pelo montador

• Endereço virtual → endereço efetivo

conj de instruções especifica tradução dos endereços

gerados pelo montador para endereços usados pelo ligador

• Endereço f́ısico

sistema operacional especifica mapeamento de endereço virtual

para o número de uma posição na memória f́ısica

UFPR DInf BCC 497

Arquitetura II — memória principal e virtual 2007-1

Sistema de Memória

• Sistemas de memória

• Memória cache
⋆ organização

⋆ leitura

⋆ escrita

⋆ otimizações

⋆ busca antecipada

• Memória Virtual

⊲ endereçamento e proteção

⊲ paginação

⊲ TLB

⊲ excessões

UFPR DInf BCC 496

Arquitetura II — memória principal e virtual 2007-1

Tradução com registradores base e limite

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqq

qq
qqq

qq

qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqq

qq

qq

qqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqq

qq

qq

qq
reg limite

reg ender efetivo

reg base

+

≤
de limite?

ender f́ısico da base

load X

espaço de

endereçam

memória

principal

corrente

segmto

topo do segmto

end f́ısico

violação

Registradores base e limite são viśıveis somente quando

processador executa em modo supervisor

UFPR DInf BCC 501

Arquitetura II — memória principal e virtual 2007-1

Tradução Dinâmica de Endereços

• Motivação:

operações de E/S nas máquinas antigas eram lentas e processador

era envolvido em todas as transferências (polling)

Produtividade maior se dois ou mais programas

executassem concorrentemente→multiprogramação

• Programas independentes de posição:

facilitam a programação e gerenciamento da memória

→ é necessário um registrador base

• Proteção:

programas independentes não deveriam afetar-se acidentalmente

→ é necessário um registrador limite

UFPR DInf BCC 500

Arquitetura II — memória principal e virtual 2007-1

Endereços Absolutos

No ińıcio da década de 50, computador da moda era o EDSAC, e

endereço virtual = endereço na memória f́ısica

Só um programa executa na máquina,

com acesso irrestrito a todos seus recursos (RAM+E/S)

Endereços no programa dependem de

onde o programa está carregado na memória

É fácil escrever sub-rotinas com código independente de posição?

como?

UFPR DInf BCC 499

Arquitetura II — memória principal e virtual 2007-1

Paginação

Espaço de endereçamento dividido em páginas de 4-8 Kbytes

Tabela de Páginas mapeia endereços virtuais em endereços f́ısicos

rr
rrrrrrrr

rr
rr

rrrrrrrr

pp pp pp pp

mapeamento

número de pág fı́sica

1227

indexa uma página

deslocamento

0

indexa na página

EF

≥256 Mb

≥4 Gb

1231 0

EV número de página virtual deslocamento

Quais as vantagens das páginas de tamanho fixo

e da indireção através da tabela de páginas?

UFPR DInf BCC 504

Arquitetura II — memória principal e virtual 2007-1

Fragmentação da Memória

• Programas com segmentos de tamanho fixo devem ser

acomodados na memória que está dispońıvel

• à medida que programas/usuários entram e saem do sistema,

memória fica com buracos onde estavam os programas

→ fragmentação

• De quando em quando, programas devem ser

re-locados/movidos para abrir espaço

→ compactação

SO da MicrosoftTM obriga usuários a fazer compactação de disco, um problema que

foi resolvido (não pela primeira vez) no Unics, em 1979. That IS innovationTM.

UFPR DInf BCC 503

Arquitetura II — memória principal e virtual 2007-1

Áreas Separadas para Programa e Dados

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrr
rrr
rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrr
rrr
rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrr
rrr
rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrr

rr

rr

rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrr
rrrrrrrrrrrrrrrrrrrrrrrr

rrr
rrr

rr

rr

rr

rrr

rr

rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrr
rrrrrrrrrrrrrrrrrrrrrrrr

rrr
rrr

rr

rr

rr

rrr

violação
de limite?

reg base

reg ender efetivo

reg limite ≤

+

violação
de limite?

reg base

reg ender efetivo

reg limite ≤

+

endereçam

espaço de

ld X

segm
cód

segm
dados

memória
principal

X

∃m vantagens nesta separação?

UFPR DInf BCC 502

Arquitetura II — memória principal e virtual 2007-1

Paginação sob demanda

• Paginação reduz fragmentação externa (buracos entre programas)

• Problema:

acomodar programa com muitos dados em memória pequena?

⊲ usar overlays – programador deve controlar quais trechos

de código/dados estão residentes em RAM eeeeca!

⊲ programação com overlays é complicada!

• Paginação sob demanda:

“uma página da memória secundária é trazida para a

memória primária sempre que for (implicitamente) requisitada

pelo processador” Atlas 1962

⊲ memória primária atua como cache para memória secundária

UFPR DInf BCC 507

Arquitetura II — memória principal e virtual 2007-1

Tabela de Páginas

• Qual o tamanho da tabela de páginas?

• Quantas tabelas de páginas são necessárias?

• O espaço necessário para as tabelas de páginas é

proporcional ao espaço de endereçamento, ao núm de usuários ...

⊲ espaço necessário é grande!

⊲ grande demais para manter em registradores (muitas páginas)

• Alocar TP em registradores especiais, só para o usuário corrente

⊲ pode não ser fact́ıvel para TPs grandes

• Alocar TP na memória principal

⊲ necessita uma referência para buscar endereço base da página e...

⊲ outra para acessar o dado/instrução

→ dobra o número de referências à memória

UFPR DInf BCC 506

Arquitetura II — memória principal e virtual 2007-1

Paginação (cont)

pp
ppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppp

pp
pp

pp
pp

pppppppppppppppppppppppppppppppp

rrr
rr

rrr
rrr
r

pp
ppp
ppppppppppppppppp

pp
pp

pppppppppppppppp

pppppppppppppp ppppppppppp
ppp

ppppppppppppppp

pppppppppppppp ppppppppppppp
ppp

ppppppppppppppp

pp
ppp
ppppppppppppppp

memória

tabela de
páginas

f́ısica

endereço virtual

endereço f́ısico

processador

UFPR DInf BCC 505

Arquitetura II — memória principal e virtual 2007-1

Sistemas modernos de Memória Virtual

• Proteção e privacidade

⊲ vários usuários,

⊲ cada um com seu espaço de endereçamento privativo,

⊲ e um ou mais espaços de endereçamento compartilhados

tabela de páginas ≈ espaço de endereçamento mapeamento

• paginação sob demanda

⊲ capacidade de executar programas maiores que a memória f́ısica

• melhor utilização dos recursos

⊲ uso compartilhado da memória

⊲ menor fragmentação externa

• custo: tradução de endereço a cada referência à memória

UFPR DInf BCC 510

Arquitetura II — memória principal e virtual 2007-1

Cache vs Paginação sob Demanda

qq qq qq qq
qq qq

ppp ppp

ppp pp ppp
CPU cache

mem
principal

CPU
mem

principal

secundária
mem

cache paginação

linha na cache quadro (moldura)

bloco na cache 32-64 bytes página 4-8K bytes

faltas na cache 1-20% faltas de página <0.001%

acerto na cache 1 ciclo acerto na TP 100 ciclos

falta na cache 100 ciclos falta de página 106 ciclos

falta tratada em HW falta tratada espec em SW

UFPR DInf BCC 509

Arquitetura II — memória principal e virtual 2007-1

DRAM como Cache de Disco

Se página virtual não está em memória f́ısica,

→ deve ser copiada do disco

→ alguma página deve ser ejetada para abrir espaço

localidade recomenda:

v́ıtima é a que foi usada no passado mais distante (LRU)

Exemplo: 11, 10, 12, 9, 11, 7, 11, 13 LRU c.r.a 13? 11?

Escrita é preguiçosa:

• páginas semente de leitura (código) são substitúıdas

• páginas com atualizações são marcadas sujas e,

antes de substitúıdas, disco deve ser atualizado

UFPR DInf BCC 508

Arquitetura II — memória principal e virtual 2007-1

Tabela de Páginas Linear

Registrador de Tabela de Páginas (RTP) aponta para

ińıcio da Tabela de Páginas do processo

A cada troca de contexto o SO atualiza o RTP para

que este aponte a tabela de páginas do processo de usuário.

Cada elemento da tabela de páginas contém:

nPF número da página f́ısica residente em memória

nPD número da página em disco (se página foi movida para disco)

nil página não-existente

stat bits de status e proteção/uso used, dirty, {RO,RW,EX}

UFPR DInf BCC 513

Arquitetura II — memória principal e virtual 2007-1

Tabela de Páginas

rr
rrrrrrrr

pp

ppppppppppppppppppp
ppppppppppppppppppp
pp

pp

pp

+

1

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrr

rr
rrrrrrrr

rr
rrrrrrrr

rrr
rrr
rrrrrrrrr

rr
rrrrrrrr

rr

válido

Tabela de
Páginas

15

RTP

19

01227

número de página virtual deslocamento

deslocamentonúmero de pág fı́sica

31 12 0
EV

EF

32

32

UFPR DInf BCC 512

Arquitetura II — memória principal e virtual 2007-1

Tradução de Endereços e Proteção

rrr
rr

rr

rrr

leit/escr?
sist/usuário?

proteção
exceção?

rr
rrrrr

rr
rr

rr
rrrrrrrr

número de página virtual

número de pág fı́sica

deslocamento

deslocamento

tradução

• cada referência a dado ou instrução necessita de

tradução e verificação de proteção

proteção obtida através da indireção

• um bom sistema de memória virtual deve ser rápido (≤ 1 ciclo)

e usar espaço eficientemente

UFPR DInf BCC 511

Arquitetura II — memória principal e virtual 2007-1

Cache de Mapeamentos I

A cada referência, processador consulta TP

para descobrir endereço f́ısico do objeto

→ faz uma referência à Tabela de Página para obter endereço

e então faz referência ao objeto...

→ para cada referência, DOIS acessos à memória...

Solução:

manter mapeamentos numa Cache de Mapeamentos

ou Translation Lookaside Buffer (TLB)

ou Translation Buffer (TB, no Vax)

UFPR DInf BCC 516

Arquitetura II — memória principal e virtual 2007-1

Tabela de Páginas Hierárquica

qq
qqq

qqq

qqq

qqq
qq

qqq
qq

qqq
qq

qqq

qq
qqq

qq
qqq

qqq
qq

ppppppppppppppppppp
ppppppppppppppppppppppp

ppppppppppppppppppp
ppppppppppppppppppppppp

ppppppppppppppppppp
ppppppppppppppppppppppp

31 21 11 0

p2p1

TP ńıvel1

TP ńıvel 2

EV

p1RTP

Raiz da TP corrente

desl

pág em mem secund

ı́ndice no
ńıvel 2

ı́ndice no
ńıvel 1

pág inexistente (não foi mapeada)

pág em mem fis

p2

desloc

páginas

UFPR DInf BCC 515

Arquitetura II — memória principal e virtual 2007-1

Tamanho da TP linear

Com endereços de 32 bits, páginas de 4 Kbytes, 4 bytes/elemento:

→ 220 elementos = 4 Mbytes por processo

→ 4 Gbytes de swap para conter espaço de endereço completo

Páginas maiores!

mais fragmentação interna última página meio vazia

penalidade por falta maior mais tempo para ler do disco

Processadores de 64 bits

→ mesmo páginas de 1 Mbyte implicam em tabelas com

244 elementos de 8 bytes (≈ 35 TBytes)

Há salvação?

Como?

UFPR DInf BCC 514

Arquitetura II — memória principal e virtual 2007-1

Parâmetros de projeto de TLBs

• Tamanho da TLB: 32 a 128 blocos

• tamanho de bloco: 1..2 mapeamentos por bloco

• associatividade alta

⊲ cada elemento mapeia uma página

menor localidade espacial entre as páginas

→ maior número de conflitos

⊲ TLBs grandes (256-512 elmtos) tem associatividade 4-8

⊲ TLBs menores com associatividade total

⊲ substituição de blocos com FIFO ou aleatória

implementar LRU na TLB é caro — por que?

UFPR DInf BCC 519

Arquitetura II — memória principal e virtual 2007-1

Cache de Mapeamentos II

qqq
qq

qqq

qqq
qq

nPF

nPF
nPF

nPF

nPF
nPF

nPF

nPF

nil

nil

nil

nPD

nPD

x qqq
qqqqq

pp
pppppp

ppp
ppppppp

ppp
ppp

ppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppp

pp
ppp

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p ppppppppppppppppppppp
pp

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p

ppppppppppppppppppppp
ppp

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p
ppppppppppppppppppp
ppp

pp
pppppppp

ppp
ppppp

qq
qqqqqq

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p p

p p p
p p
ppppppppppppppppppp
ppp

qq
qqqqqq

V

V E-f́ısico

E-f́ısicoE-virtual

0

d

d

0

0

0

TP

0

0

0

0

EV

RTP

Memória
F́ısicaTLB

UFPR DInf BCC 518

Arquitetura II — memória principal e virtual 2007-1

Translation Lookaside Buffer

Processador procura mapeamento na TLB;

se encontra, completa referência;

senão, busca mapeamento da Tabela de Páginas (em mem f́ısica)

e guarda na TLB para uso futuro

Se encontra na TLB→ tradução em ≤ 1 ciclo TLB hit

se falta na TLB→ procura na TP (30-100 ciclos) TLB miss

UFPR DInf BCC 517

Arquitetura II — memória principal e virtual 2007-1

Campos da Cache de Mapeamentos (TLB)

válido
usado

sujo núm página virtual
etiqueta

núm pág f́ısica

válido == 1 se mapeamento é válido

usado == 1 se página foi referenciada recentemente (LRU)

sujo == 1 se ocorreu uma ou mais escritas na página

Se página virtual não está em memória,

NÃO pode haver um mapeamento da página na TLB

UFPR DInf BCC 522

Arquitetura II — memória principal e virtual 2007-1

Resposta:

Qual a cobertura da TLB? ou,

qual o maior espaço de endereçamento mapeado pela TLB?

a) |TLB| × |pag|
b) |TLB| × |Tab pag|
c) |pag| × |Tab pag|
d) nenhuma das acima

UFPR DInf BCC 521

Arquitetura II — memória principal e virtual 2007-1

Pergunta:

Qual a cobertura da TLB?

a) |TLB| × |pag|
b) |TLB| × |Tab pag|
c) |pag| × |Tab pag|
d) nenhuma das acima

UFPR DInf BCC 520

Arquitetura II — memória principal e virtual 2007-1

TLB & Cache – excessões

qq

qqq
qqqqq

qq
qqqqqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

na busca refer a dados

sw $3, 0($3)

Faltas & Excessões

Causas: endereço ilegal fora do espaço de endereçamento

ou desalinhado end%46=0

ou falta na TLB

ou falta na tabela de páginas page fault

UFPR DInf BCC 525

Arquitetura II — memória principal e virtual 2007-1

Tradução de Endereços

qqq qq

qqq

qq qq

qqq
qq

qqq
qq

qqq

qq
qq qq

qq
qq

procura na
TLB

percorre
TP

falta de
página (SO)

verifica
proteção

atualiza
TLB

segmentation
fault

endereço
f́ısico

onde?

falta de
proteção

pág ∈
memmemória

pág 6∈
negado permitido

hitmiss

endereço
virtual

UFPR DInf BCC 524

Arquitetura II — memória principal e virtual 2007-1

Tratamento de Faltas na TLB

• Em software MIPS, Alpha

⊲ falta na TLB causa exceção, SO caminha pela TP hierárquica

e re-carrega elemento da TLB

⊲ instrução que causou a falta na TLB é re-iniciada (busca)

⊲ caminhada ocorre em modo privilegiado (end f́ıs), sem tradução

• Em hardware SparcV8, x86, PowerPC

⊲ unidade de gerenciamento de memória (MMU) caminha pela TP

e re-carrega elemento da TLB

⊲ instrução que causou a falta na TLB é re-iniciada (busca)

⊲ se página (dados/código, ou TPs 2o ńıvel) não está em memória,

MMU sinaliza uma falta de página na instrução que causou falta

na TLB

Por que a instrução causadora deve ser buscada novamente?

UFPR DInf BCC 523

Arquitetura II — memória principal e virtual 2007-1

TLB & Cache

pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp ppp pp

ppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppı́ndiceetiqueta

deslocamento# pág f́ıs

x

x x x

x xqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqq

qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqq

qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
qqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqq

qqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqq

pp
pppppppppppppp

pp
pppppp

pp
pppppppppppppp

ppp
ppppppppppppp

pp

pp

ppp
ppppppppppppp

pp pp

ppp

ppp

ppp

pp ppp pp

pp
pp

pp

pp

suvetiqueta # pg f́ıs

TLB

E-virtuallw r3,100(r5)

vetiqueta cache

&

&

acerto na TLB E-f́ısico

acerto na cache

UFPR DInf BCC 528

Arquitetura II — memória principal e virtual 2007-1

Reposição de Páginas

Se página virtual não está em memória

SO assume controle e requisita cópia ao controlador de disco

SO escolhe v́ıtima para ser substitúıda pela nova página;

→ se v́ıtima estiver suja, SO deve atualizar disco

Localidade implica em v́ıtima ser

página usada no passado mais distante (LRU)

Como implementar LRU para 4 conjuntos com 3 bits?

Pode ser pseudo-LRU...

UFPR DInf BCC 527

Arquitetura II — memória principal e virtual 2007-1

TLB & Cache

Falta na TLB pode ocorrer

• na busca de instrução

(i) processador esvazia pipeline; (ii) re-carrega TLB; e

(iii) busca instrução novamente custo: drenar pipeline + carga da TLB

• referência a dados (ld e st)

(i) instrs à frente completam; instr não pode alterar estado: ld r1,0(r1)

(ii) processador re-carrega TLB; e (iii) busca instrução

novamente

custo: drenar pipeline + carga da TLB + estágios até MEM

qq

qqq
qqqqq

qqq
qqqqqqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

na busca refer a dados

sw $3, 0($3)

UFPR DInf BCC 526

Arquitetura II — multiprocessadores 2007-1

Motivação

Problema:

algumas computações são muito grandes para uniprocessadores

Por grande entende-se muito tempo ou muita memória

Solução:

a) projetar processadores mais rápidos

→ de 1985-2005 o crescimento de desempenho foi enorme

→ processadores modernos já são MUITO complexos

b) usar vários processadores trabalhando em paralelo

; progresso no desenvolvimento de software tem sido lento

→ progresso bom sw de servidores e algumas aplics embutidas

→ base de sw para desktops é enorme...

UFPR DInf BCC 531

Arquitetura II — multiprocessadores 2007-1

Processamento Paralelo & Multiprocessadores

• Motivação

• Tipos de máquinas paralelas

• Coerência entre caches

• Sincronismo

• Ordenação de operações em memória

UFPR DInf BCC 530

Arquitetura II — multiprocessadores 2007-1

Resumo – memória f́ısica e virtual

• Aumento da vazão

⊲ intercalação de blocos

⊲ barramentos largos + intercalação + split transactions

• Redução da Latência

⊲ fast page mode

⊲ re-escrever Leis de Maxwell?

• Memória Virtual

⊲ Proteção vs utilização dos recursos

proteção obtida através da indireção

⊲ |TP| grande→ tabela de página hierárquica (multi-ńıvel)

⊲ TLB para reduzir custo da tradução

⊲ relação entre Mem Virtual e tratamento de excessões

falta de página é evento freqüente→ tratamento rápido

UFPR DInf BCC 529

Arquitetura II — multiprocessadores 2007-1

Aplicações

• Processamento paralelo
⋆ paralelismo real num único programa

⋆ compartilhamento de dados pode ser freqüente/intenso

• Processamento de Transações
⋆ paralelismo entre transações independentes

⋆ ênfase em produtividade (throughput)

• Sistemas Operacionais
⋆ programa paralelo grande que executa por muito tempo

⋆ SO paralelo é geralmente otimizado “a mão”

⋆ compartilhamento de dados in-freqüente
→ estruturas de dados protegidas com granularidades variadas

• estas formas são distintas da exploração de

paralelismo entre as instruções de uma única linha de execução

single-thread vs multiple-threads

UFPR DInf BCC 534

Arquitetura II — multiprocessadores 2007-1

Complicador: Custos da cooperação

• Cooperação entre processadores envolve:

⊲ programar aplicações para execução paralela dif́ıcil

⊲ computação→ processadores trabalham bom

⊲ comunicação→ processadores esperam ruim

• Custo da comunicação depende de:

⊲ sw/hw para empacotar mensagens

⊲ rede que transporta mensagens

• Evento de comunicação custa vários micro-segundos

⊲ processador @ 1GHz→ 1µs=1000 ciclos

⊲ deve-se explorar localidade, busca antecipada, e o que mais

houver...

UFPR DInf BCC 533

Arquitetura II — multiprocessadores 2007-1

Complicador: Lei de Amdahl

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqq

qq

pp pp
pp pp

pp pp

pp pp

1

N

proc
núm de

h 1-f
f1-h

tempo

Ganho de 80 com 100 processadores só se 0, 25% do trabalho é serial

fazer Exerćıcio 6.1

UFPR DInf BCC 532

Arquitetura II — multiprocessadores 2007-1

Taxonomia de Flynn – SIMD

• SIMD – Single Instruction stream, Multiple Data streams

⊲ armazenagem de instruções e operandos usualmente separada

⊲ modelo de programação é data parallel

⊲ apropriado para problemas numéricos resolvidos com laços

⊲ paralelização automática pode ser posśıvel —geralmente é

r r r

r r r

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

unid de
execução

memória de
instruções

unidade de
instruções

instruções
um fluxo de

memória
de

operandos

unid de
execução

de dados

múltiplos
fluxos

UFPR DInf BCC 537

Arquitetura II — multiprocessadores 2007-1

Taxonomia de Flynn – SISD

• SISD – Single Instruction stream, Single Data stream

⊲ armazenagem de instruções e operandos pode ser única

Harvard vs Princeton

⊲ ...o bom e velho uniprocessador

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrr

memória de
instruções

memória
de

operandos

um fluxo de
instruções dados

um fluxo de

unidade de
instruções

unidade de
execução

UFPR DInf BCC 536

Arquitetura II — multiprocessadores 2007-1

Taxonomia de Flynn

Taxonomia de Flynn, publicada 1966, e baseada no

número de fluxos de instruções e

número de fluxos de dados

• SISD – Single Instruction, Single Data

⊲ uniprocessador

• SIMD – Single Instruction, Multiple Data

⊲ processadores vetoriais/sistólicos

• MISD – Multiple Instruction, Single Data

⊲ poucos exemplos práticos (processadores sistólicos ?)

• MIMD – Multiple Instruction, Multiple Data

⊲ em uso comum; muito flex́ıvel

UFPR DInf BCC 535

Arquitetura II — multiprocessadores 2007-1

Modelo PRAM

• Parallel RAM = perfeição (≈ irreal)

⊲ memória completamente compartilhada

⊲ latência unitária

⊲ largura de banda infinita→ não há contenção

⊲ localização dos dados irrelevante

r r r

r r r
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

rede de interconexão

6 ∃ contenção

processador processador

latência
unitária

6 ∃ contenção
memória principal

UFPR DInf BCC 540

Arquitetura II — multiprocessadores 2007-1

Eixos de Projeto

• Modelos de programação

⊲ sequencial (SISD)

⊲ data parallel (SIMD)

⊲ memória compartilhada (MIMD) shared memory

⊲ troca de mensagens (MIMD) message passing

• Interface binária da aplicação

camada de sw que mapeia modelo de programação no hardware

⊲ memória compartilhada→ comunicação com Load’s Store’s

⊲ troca de mensagens→ comunicação com send() recv()

• Hardware

⊲ memória compartilhada ← comunicação “grudada” na memória

⊲ troca de mensagens ← comunicação “grudada” no sist de E/S

UFPR DInf BCC 539

Arquitetura II — multiprocessadores 2007-1

Taxonomia de Flynn – MIMD

• MIMD – Multiple Instruction streams, Multiple Data streams

mais flex́ıvel que SIMD,

“melhor” para uso geral

exemplo:

uma aplicação paralela

ou multi-programação

paralelização automática

é dif́ıcil (em geral)

r r r

r r r

r r r

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqq

de
operandos

memória

instrs

fluxos de

múltiplos

unidade de
instruções

unidade de
execução

memória de
instruções

unidade de
instruções

unidade de
execução

memória de
instruções

dados

múltiplos

fluxos de

UFPR DInf BCC 538

Arquitetura II — multiprocessadores 2007-1

UMA – Uniform Memory Access

• Localização dos dados é irrelevante (não importa)

• contenção limita vazão→ na rede e na memória

• geralmente usam caches

• usado em pequenos multiprocessadores = MPs simétricos

Symmetric MultiProcessors ou SMPs

r r r

r r r

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

processador processador

latência
longa

∃ contenção na rede
rede de interconexão

∃ contenção nos bancos de memoria
mem principal

UFPR DInf BCC 543

Arquitetura II — multiprocessadores 2007-1

UMA – Uniform Memory Access

• latência no acesso à memória é a mesma para todos processadores

mas pode ser longa

• latências crescem com tamanho do sistema

aumentar escala é dif́ıcil

r r r

r r r

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrr

ppppppppppppppppppp
ppppppppppppppppppppppppppp

pp
pppp

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

processador processador

latência
longa

∃ contenção na rede
rede de interconexão

∃ contenção nos bancos de memoria
mem principal

UFPR DInf BCC 542

Arquitetura II — multiprocessadores 2007-1

Perfeição não é realizável

• Latência cresce se tamanho do sistema cresce

⊲ veloc da luz é fixa→ latência ∝ distância

• Vazão é limitada pela organização da memória

e da rede de interconexão

• estas levam a uma divisão entre arquiteturas MIMD com

Uniform Memory Access –UMA

e

Non-Uniform Memory Access –NUMA

UFPR DInf BCC 541

Arquitetura II — multiprocessadores 2007-1

Aglomerados (clusters)

• Nós UMA pequenos num sistema NUMA grande

• h́ıbrido? aglomerado de aglomerados?

r r r

r r r

r r r

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

ppp ppppppppppppppppppppp
ppppppppppppppppppppp
ppp

ppp ppppppppppppppppppppp
ppppppppppppppppppppp
ppp

rede de interconexão do aglomerado

mem aglom 0

proc 0 proc 7

mem aglom 7

proc 56 proc 63

UMA NUMA

UFPR DInf BCC 546

Arquitetura II — multiprocessadores 2007-1

Multiprocessadores NUMA

Non-Uniform Memory Access

• Memória logicamente compartilhada mas fisicamente distribúıda

⊲ um espaço de endereçamento lógico

⊲ pode ser tratado como memória compartilhada

• desempenho depende fortemente da localização dos dados

• Multicomputadores

⊲ cada processador tem espaço de endereçamento privativo

⊲ comunicação através de troca de mensagens (expĺıcita)

UFPR DInf BCC 545

Arquitetura II — multiprocessadores 2007-1

NUMA – Non-Uniform Memory Access

• Latência pequena no acesso à memória local

• latência grande no acesso à memória remota P→Mloc→R→Mrem

• vazão para memória local pode ser mais alta que para remota

• contenção na rede e no acesso à memória

r r r

r r r

ppppppppppppppppppp
ppppppppppppppppppppppppppp

pp
pppp

ppppppppppppppppppp
ppppppppppppppppppppppppppp

pp
pppp

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

longa
latência

curta
latência

processador

memória

processador

memória

processador

memória

∃ contenção
rede de interconexão

UFPR DInf BCC 544

Arquitetura II — multiprocessadores 2007-1

Resposta I

Com 100 processadores interligados por uma rede perfeita e ideal,

qual fração do código pode ser executada serialmente,

se desejo ganho de {50,75,100}, com relação a 1 processador?

Ganhototal =
1

(1− Fracmelhor) + (Fracmelhor / Ganhomelhor)

50 = 1/(1− 0.99) + (0.99/100) 1%

75 = 1/(1− 0.9965) + (0.9965/100) 0, 35%

100 = 1/(1− 0.999999...) + (0.999999.../100) ≈ 0%

UFPR DInf BCC 549

Arquitetura II — multiprocessadores 2007-1

Pergunta

Com 100 processadores interligados por uma rede perfeita e ideal,

qual fração do código pode ser executada serialmente,

se desejo ganho de {50,75,100}, com relação a 1 processador?

UFPR DInf BCC 548

Arquitetura II — multiprocessadores 2007-1

COMA – Cache Only Memory Architecture

• Dados nas caches migram para onde são necessários

localização dos dados importa muito pouco

• COMA é uma forma de NUMA

• área de pesquisa quente (90-94), só uma implementação (KSR-1)

r r r

r r r

ppppppppppppppppppp
ppppppppppppppppppppppppppp

pp
pppp

ppppppppppppppppppp
ppppppppppppppppppppppppppp

pp
pppp

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

longa
latência

curta
latência

processador

cache

processador processador

cachecache

∃ contenção

rede de interconexão

UFPR DInf BCC 547

Arquitetura II — multiprocessadores 2007-1

Comunicação Inter-processos

Na maioria das aplicações paralelas interessantes,

processos paralelos (tarefas) devem comunicar-se

Método de comunicação leva à divisão entre:

memória logicamente distribúıda→ troca de mensagens

memória logicamente compartilhada→memória compartilhada

UFPR DInf BCC 552

Arquitetura II — multiprocessadores 2007-1

O que é a fração serial?

• Inicialização

⊲ de estruturas de dados

⊲ criação de processos nos processadores

⊲ distribuição de trabalho entre os processadores

• Sincronização

⊲ contenção no acesso às regiões cŕıticas semáforos

⊲ mudanças de fases do programa loop mais externo

• Término

⊲ coleta dos resultados parciais

⊲ E/S para disco

UFPR DInf BCC 551

Arquitetura II — multiprocessadores 2007-1

Resposta II

p p

p p

p p

p p

p ppp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

pp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

pp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

pp

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

ppp
pp

pp
ppp

ppp
ppp

pp
pp

pp
pp

pp
ppp

pp
ppp

ppp
ppp

ppp
ppp

ppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppp

pppppppppppppppppppppppppp
pppppppppppppppppppppppppp

ppppppppppppppppppppppppp
ppppppppppppppppppppppppp
pppppppppppppppppppppppp
pppppppppppppppppppppppp
ppppppppppppppppppppppp
ppppppppppppppppppppppp
pppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
pppp

ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp

ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp pppppppppp
p ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp

ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp
ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppp

pp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp
ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp

ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp
ppppppppppp ppppppppppp ppppppppppp ppppppppppp pppppp

ppppp ppppppppppp ppppppppppp ppppppppppp ppppppppp
pp ppppppppppp ppppppppppp ppppppppppp ppppppppp

pp ppppppppppp ppppppppppp ppppppppppp ppppp
pppppp ppppppppppp ppppppppppp ppppppppppp

ppppppppppp ppppppppppp ppppppppppp ppppp
pppppp ppppppppppp ppppppppppp pppppppp

ppp ppppppppppp ppppppppppp ppppppp
pppp ppppppppppp ppppppppppp ppp

pppppppp ppppppppppp ppppppppppp
ppppppppppp ppppppppppp ppppppppp

pp ppppppppppp ppppppppppp
ppppppppppp ppppppppppp pppp

ppppppp ppppppppppp pppppp
ppppp ppppppppppp pppppp

ppppp ppppppppppp pppp
ppppppp ppppppppppp

ppppppppppp ppppppppppp
ppppppppppp pppppppppp

p ppppppppppp
ppppppppppp ppppppp

pppp pppppppppppp
pppppppppppp p

ppppppppppppppppppppppppppppppp ppppppppppppppppppppppppppppppp ppppppppppppppp

ppp
pp

pp
pp

pp
pp

ppp
pp

pp
ppp

pp
ppppppppppppppp

100

50

25

10

5
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

ganho

fração paralela

Lei de Amdahl para multiprocessadores

100 procs
50 procs
10 procs

UFPR DInf BCC 550

Arquitetura II — multiprocessadores 2007-1

Métricas de Desempenho na Comunicação

latência

ppp

pp

pp ppp
p

pp pp
pp pp pp

pp

pp ppp
p

ppp

pp pp
pp

pp ppp
p

pp pp
pp

pp

pp

tempo
de vôo [bytes / larg de banda]

transmissão

tempo de

[bytes / larg de banda]
transmissão

tempo de

latência de transporte

latência total

recepção

overhead de
transmissão

rem

dest

overhead de

UFPR DInf BCC 555

Arquitetura II — multiprocessadores 2007-1

Métricas de Desempenho na Comunicação

largura de banda/vazão

• A vazão pode ser limitada por

⊲ processador, memória, rede de interconexão

• a largura de banda pode ser medida em dois pontos:

⊲ na rede→ bisection bandwidth:

no pior diâmetro (c.r.a vazão global), corta os fios e mede vazão

⊲ em cada nó da rede→ na interface com a rede

• mecanismo de comunicação afeta a largura de banda

→ ocupação de recursos utilização

⊲ tamanho das mensagens afeta vazão

(acessos à memória + overhead)

⊲ taxa de comunicação

(# interrupções→ intervalo entre msgns)

UFPR DInf BCC 554

Arquitetura II — multiprocessadores 2007-1

Tipos de Máquinas Paralelas

Duas religiões em computação paralela:

• memória logicamente distribúıda→multicomputadores

• memória logicamente compartilhada→multiprocessadores

• comunicação expĺıcita vs comunicação impĺıcita

Nos dois casos, há uma rede no caminho cŕıtico

na verdade, multiprocessadores são multicomputadores travestidos:

sempre há uma rede de interconexão;

; eventos de comunicação baseados em mensagens...

UFPR DInf BCC 553

Arquitetura II — multiprocessadores 2007-1

Mem compartilhada vs Mem distribúıda

• Memória compartilhada

⊲ hw mais complicado (caches são coerentes)

⊲ conceitualmente similar a uniprocessadores e MPs centralizados

⊲ ‘facilidade’ de programar com modelo de memória compartilhada

⊲ fácil de programar quando padrões de comunicação são

complexos

ou mudam dinamicamente durante execução

⊲ baixa latência quando transfere ı́tens pequenos loads e stores

⊲ compartilhamento controlado por hw permite

migração automática dos dados

⊲ MP com memória compartilhada emula troca de mensagens

com facilidade

UFPR DInf BCC 558

Arquitetura II — multiprocessadores 2007-1

Métricas de Desempenho na Comunicação

granularidade

• esconder latência pela superposição de comunicação e

computação

⊲ superposição geralmente dificulta a programação

⊲ granularidade ≡ computação / comunicação

As três métricas (vazão, latência, granularidade)

são influenciadas pela aplicação:

tamanho dos ı́tens (msgns) afeta vazão e latência

padrões de comunicação podem causar congestionamento

UFPR DInf BCC 557

Arquitetura II — multiprocessadores 2007-1

Métricas de Desempenho na Comunicação

latência

• latência = Tx ovhd

+ tempo de vôo + tempo de transmissão

+ Rx ovhd

⊲ tempo de vôo ∝ velocidade da luz (≈ 0,65c), distância

⊲ tempo de transmissão ∝ 1/relógio da rede

⊲ Tx ovhd e Rx ovhd dependem do mecanismo de comunicação

e de sua implementação em hw/sw

• latência afeta desempenho e facilidade de programação

⊲ desempenho: recursos ocupados, ou processador esperando

⊲ programação: alocação de dados para aumentar localidade

• há forte relação entre overhead e ocupação...

UFPR DInf BCC 556

Arquitetura II — multiprocessadores 2007-1

Multiprocessadores

• Arquitetura – memória logicamente compartilhada

⊲ cada nó possui parte da memória global da máquina

⊲ todos os nós enxergam toda a memória

⊲ memória local ao nó + memória remota ao nó NUMA

• Efeitos na latência

⊲ Referências a objetos compartilhados não distinguem localização,

se local ou remota diferença no desempenho

⊲ mesmo modelo de programação de uniprocessador

• Exemplos:

⊲ Servidores da Sun, Silicon Graphics, IBM

⊲ motherboards com mais de uma CPU

⊲ Kendall Square Research KSR-1 (COMA) faliu em 95

UFPR DInf BCC 561

Arquitetura II — multiprocessadores 2007-1

Multicomputadores

• Arquitetura – memória distribúıda mais detalhes em breve

⊲ cada nó de processamento é computador completo (cpu+mem)

⊲ cada computador tem seu espaço de endereçamento privativo

⊲ cada nó tem identificador único, processos em cada nó tbém

⊲ comunicação entre nós somente através de mensagens

• Efeitos na latência

⊲ rede é pipeline para mensagens SE implementação permite

⊲ latência = tempo por nó ∗ núm de nós

+

comprimento da msgm / bytes por un de tempo

⊲ com msgns longas, primeiro termo torna-se insignificante

→ comunicação infreqüente e com msgns longas

→ granularidade relativamente grande (comput/comun≫ 1)

UFPR DInf BCC 560

Arquitetura II — multiprocessadores 2007-1

Mem compartilhada vs Mem distribúıda

• Memória distribúıda

⊲ hardware mais simples (6 ∃ coerência entre caches)

⊲ padrões de comunicação devem ser explicitados com precisão

⊲ programador deve estruturar programa para

minimizar custos da comunicação

⊲ sincronização associada aos eventos de comunicação

⊲ emular memória compartilhada é dif́ıcil e/ou ineficiente

SO envolvido em proteção,

nomeação e

envio/recepção de msgns

UFPR DInf BCC 559

Arquitetura II — coerência entre caches 2007-1

Revisão – Eixos de Projeto

• Modelos de programação

⊲ sequencial (SISD)

⊲ data parallel (SIMD)

⊲ memória compartilhada (MIMD) shared memory

⊲ troca de mensagens (MIMD) message passing

• Interface binária da aplicação

camada de sw que mapeia modelo de Programação no hardware

⊲ memória compartilhada→ comunicação com load, store

⊲ troca de mensagens→ comunicação com send(), recv()

• Hardware

⊲ memória compartilhada ← comunicação via sist de memória

⊲ troca de mensagens ← comunicação via sist de E/S

UFPR DInf BCC 564

Arquitetura II — coerência entre caches 2007-1

Processamento Paralelo & Multiprocessadores

• Motivação

• Tipos de máquinas paralelas

• Coerência entre caches

• Sincronismo

• Ordenação de operações em memória

UFPR DInf BCC 563

Arquitetura II — coerência entre caches 2007-1

Resumo

• Vazão através da rede (bisecção), e na interface processador-rede

• latência = Tx ovhd

+ tempo de vôo + tempo de transmissão

+ Rx ovhd

• granularidade ≡ computação / comunicação

• multiprocessadores: vários processadores interligados

espaço de endereçamento compartilhado

comunicação impĺıcita, granularidade pequena/média

• multicomputadores: máquinas independentes cooperam

espaços de endereçamento disjuntos

comunicação expĺıcita, granularidade grande

UFPR DInf BCC 562

Arquitetura II — coerência entre caches 2007-1

Sincronização e Atomicidade

• Operações atômicas devem ser serializadas pelos

mecanismos de escrita em memória

• Problemas decorrentes de disputas:

⊲ latência sem contenção

⊲ serialização se há contenção

→ dificulta escalar para sistemas maiores

Barramento é um meio de comunicação compartilhado

comunicação por difusão broadcast

; comunicação é serializada através do barramento

UFPR DInf BCC 567

Arquitetura II — coerência entre caches 2007-1

Execução atômica

/∗ P1 ∗/ /∗ P2 ∗/
c = a = 0; d = b = 0;

b = b + 1; a = a + 1;

c = a + b; d = c + b;

print c; print d;

/∗ Quais os valores de “print c” e “print d”? ∗/

Comandos ‘atômicos’ em C

não são

executados atomicamente

pelo processador

a = a + 1; ≡ lw r1,0(r2)

addi r1,r1,1

sw r1,0(r2)

UFPR DInf BCC 566

Arquitetura II — coerência entre caches 2007-1

Revisão

• Vazão da rede (bisecção), e na interface processador-rede

• latência = Tx ovhd

+ tempo de vôo + tempo de transmissão

+ Rx ovhd

• granularidade ≡ computação / comunicação

• multiprocessadores: vários processadores interligados

espaço de endereçamento compartilhado

comunicação impĺıcita, granularidade pequena/média

• multicomputadores: máquinas independentes cooperam

espaços de endereçamento disjuntos

comunicação expĺıcita, granularidade grande

UFPR DInf BCC 565

Arquitetura II — coerência entre caches 2007-1

Causas de In-coerência

• Compartilhamento de dados para escrita

é a causa considerada mais comumente

• migração de processos

processo que sai deixa dados para trás

• entrada/sáıda

geralmente corrigida com invalidação de blocos nas caches

Não é necessária uma noção de tempo absoluto:

o que é necessário é a coerência ‘aparente’,

ao invés de coerência absoluta

→ a incoerência temporária entre memória

e cache com escrita preguiçosa pode ser aceitável

UFPR DInf BCC 570

Arquitetura II — coerência entre caches 2007-1

Coerência de caches

P1, P2 e P3 carregam X em suas caches;

P1 atualiza sua versão;

C2 e C3 ficam com sua cópia desatualizada.

→ isso ocorre mesmo que as caches usem

escrita forçada (ou escrita preguiçosa)

Informalmente, coerência entre caches é um método para

garantir que os acessos à memória sejam coerentes,

apesar das caches.

UFPR DInf BCC 569

Arquitetura II — coerência entre caches 2007-1

Coerência de caches

ppp
pppppppppppppppppp
ppp ppppppppppppppppppp

ppppppppppppppppppp
pp ppp

pppppppppppppppppp
ppp ppppppppppppppppppp

ppppppppppppppppppp
pp ppp

pppppppppppppppppp
ppp ppppppppppppppppppp

ppppppppppppppppppp
pp

ppp
pppppppppppppppppp
ppp pppppppppppppppppp

pppppppppppppppppp
pp ppp

pppppppppppppppppp
ppp pppppppppppppppppp

pppppppppppppppppp
pp ppp

pppppppppppppppppp
ppp pppppppppppppppppp

pppppppppppppppppp
pp

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrr

X X XX’

P1 P2 P3
Mem

Processador P1 atualiza cópia para X’

C1

com ∀ poĺıtica de escrita
X em C2 e C3 caducam

(preguiçosa/forçada)

Mem

X X XX

P1 P2 P3

Inicialmente, três cópias idênticas de X em C1, C2 e C3

C3C2C1 C3C2

C3C2

UFPR DInf BCC 568

Arquitetura II — coerência entre caches 2007-1

Métodos de Coerência para Barramentos

• Espionagem (snooping)

⊲ todas as caches observam todo o tráfego no barramento

⊲ etiquetas com duas portas: CPU e barramento

⊲ ações de um controlador de cache são viśıveis pelos demais

difusão no barramento

• O que ocorre nas escritas?

invalidar cópias nas outras caches: protocolos de invalidação

atualizar cópias nas outras caches: protocolos de atualização

P1 P2 P3 Mem

C1 C3C2

UFPR DInf BCC 573

Arquitetura II — coerência entre caches 2007-1

Métodos de Coerência para Barramentos

P1 P2 P3 Mem

C1 C3C2

• As caches usam escrita preguiçosa (tipicamente)

⊲ porque estas minimizam tráfego no barramento

• Os blocos nas caches podem estar num destes estados (t́ıpicos)

⊲ INVÁLIDO: conteúdo do bloco não pode ser usado

⊲ VÁLIDO: não está sujo, compartilhado (há ≥ 1 cópia)

⊲ SUJO: única cópia suja

⊲ RESERVADO: não-sujo, única cópia (aumenta eficiência)

UFPR DInf BCC 572

Arquitetura II — coerência entre caches 2007-1

Soluções para Problemas de Coerência

• Evitar caches privativas mover caches para sistema de memória

• Dados compartilhados não podem ficar na cache

⊲ possivelmente, a solução mais simples por software

• Invalidar blocos em momentos estratégicos

⊲ por exemplo, após seções cŕıticas

⊲ fazer invalidações seletivas pode ser dif́ıcil... em hw e/ou sw

• Usar uma tabela global

⊲ tabela mantém localização dos dados compartilhados

⊲ já foi tentado, mas não cresce em escala

• Usar caches que espionam o barramento em uso comum

• Usar diretórios distribúıdos junto com a memória

⊲ necessário em sistemas grandes (>64 processadores)

UFPR DInf BCC 571

Arquitetura II — coerência entre caches 2007-1

Protocolo de Invalidação Simplificado

• Caches usam escrita preguiçosa

• Estados

⊲ INVÁLIDO: conteúdo do bloco não pode ser usado

⊲ COMPART-ilhado: não está sujo, compartilhado (há ≥ 1 cópia)

⊲ EXCLUSIVO: única cópia suja

• a cada transação no barramento, o controlador de cache:

⊲ verifica se bloco está na cache

⊲ se estiver na cache, efetua mudança de estado cfe ME (adiante)

UFPR DInf BCC 576

Arquitetura II — coerência entre caches 2007-1

Protocolo de Atualização

atividade atividade cache cache memória

no processador no barramento C1 C2 ender X

0

P1 lê X falta em X 0 0

P2 lê X falta em X 0 0 0

P1 faz X=1 broadcast de X=1 1 1 1

P2 lê X acerto em X 1 1 1

P1 P2 P3 Mem

C1 C3C2

Há mais tráfego no barramento, se P2 não usar X novamente.

UFPR DInf BCC 575

Arquitetura II — coerência entre caches 2007-1

Protocolo de Invalidação

atividade atividade cache cache memória

no processador no barramento C1 C2 ender X

0

P1 lê X falta em X 0 0

P2 lê X falta em X 0 0 0

P1 faz X=1 invalidação para X 1 - 0

P2 lê X falta em X * 1 1 1

* P1 responde à falta em C2 e atualiza memória

P1 P2 P3 Mem

C1 C3C2

UFPR DInf BCC 574

Arquitetura II — coerência entre caches 2007-1

Desempenho de Protocolos para Barramentos

• Tipos de faltas nas caches:

⊲ capacidade (mais significativa)

⊲ conflitos

⊲ compulsórias

⊲ coerência (4o C)

• Faltas por coerência

são faltas adicionais causadas pelo protocolo de coerência

• Falso compartilhamento

⊲ a unidade de coerência é um bloco de cache

⊲ pode ocorrer que um bloco inteiro seja compartilhado,

mas palavras individuais não são compartilhadas

UFPR DInf BCC 579

Arquitetura II — coerência entre caches 2007-1

Protocolo de Invalidação Simplificado (cont.)

H-P QA

fig 6.11

UFPR DInf BCC 578

Arquitetura II — coerência entre caches 2007-1

Protocolo de Invalidação Simplificado (cont.)

H-P QA

fig 6.11

UFPR DInf BCC 577

Arquitetura II — coerência entre caches 2007-1

Coerência de Caches com Diretórios

qq
qqq

qq qq
qqq

qqq

proc +
cache

E/Smemória

proc +
cache

E/Smemória

proc +
cache

E/Smemória

proc +
cache

E/Smemória

rede de interconexão

diretório diretório diretório diretório

Não há um barramento para serializar acessos de escrita

Transações do protocolo de coerência usam

mensagens e

recibos (ACKs)

UFPR DInf BCC 582

Arquitetura II — coerência entre caches 2007-1

Coerência de Caches com Diretórios

qq
qqq

qq qq
qqq

qqq

proc +
cache

E/Smemória

proc +
cache

E/Smemória

proc +
cache

E/Smemória

proc +
cache

E/Smemória

rede de interconexão

diretório diretório diretório diretório

Para construir MPs grandes e escaláveis:

Informação sobre compartilhamento é mantida em diretórios

distribúıdos fisicamente pela memória

A informação de estado é mantida nas caches

e nos diretórios em memória

UFPR DInf BCC 581

Arquitetura II — coerência entre caches 2007-1

Escalabilidade

Multiprocessadores constrúıdos com barramentos escalam bem

até 10-20 processadores

barramento é o gargalo !!!

por que não usar mais barramentos? → dividir tráfego entre

barramento de endereços & coerência, e

barramento de dados

mesmo assim, limite é lá pelos 20 processadores...

UFPR DInf BCC 580

Arquitetura II — coerência entre caches 2007-1

Coerência de Caches com Diretórios

• bloco no estado uncached→memória atualizada

⊲ falta na leitura: envia dado a quem pede;

marca bloco como shared; apontador=dono

⊲ falta na escrita: envia dado a quem pede;

marca bloco como exclusive; apontador=dono

• bloco no estado shared→memória atualizada

⊲ falta na leitura: envia dado da memória a quem pede;

apontador=dono,novo

⊲ falta na escrita: envia dado da memória a quem pede;

invalida todas as outras cópias;

marca bloco como exclusive; apontador=dono

UFPR DInf BCC 585

Arquitetura II — coerência entre caches 2007-1

Coerência de Caches com Diretórios

Informação sobre compartilhamento mantida em diretório

na memória:

• estados de blocos em memória:

⊲ shared: ≥ 1 processador/es tem cópia/s; memória atualizada

⊲ uncached: não há cópias em caches

⊲ exclusive: 1 processador tem cópia; memória está desatualizada

• elementos do diretório apontam para procs. com cópias

⊲ p.ex. com vetor de bits — um bit por processador

• tipos de apontadores:

⊲ mapa completo – N processadores, N apontadores (bits)

⊲ limitado – número fixo de apontadores (4-8)

⊲ lista – lista encadeada de blocos de caches

UFPR DInf BCC 584

Arquitetura II — coerência entre caches 2007-1

Coerência de Caches com Diretórios

O espaço de endereçamento é alocado estaticamente entre

os processadores

Endereço especifica número do nó e endereço no nó nó | endereço
nó de residência nó em cuja memória o endereço foi alocado,

nó contém diretório que controla estado do bloco

nó local nó que mantém cópia de bloco em sua cache

nó é local c.r.a processador que está referenciando o bloco

nó remoto nó que também mantém cópia do bloco

cuja cópia deve ser invalidada

UFPR DInf BCC 583

Arquitetura II — coerência entre caches 2007-1

Coerência de Caches com Diretórios – ME diretório

H-P QA

fig 6.30

UFPR DInf BCC 588

Arquitetura II — coerência entre caches 2007-1

Coerência de Caches com Diretórios – ME cache

H-P QA

fig 6.29

UFPR DInf BCC 587

Arquitetura II — coerência entre caches 2007-1

Coerência de Caches com Diretórios

• bloco no estado exclusive→memória des-atualizada

⊲ falta na leitura: pede dado a quem o possui;

atualiza memória;

marca bloco como shared; apontador=dono,novo

⊲ Write-Back: marca bloco como uncached;

apontador=NIL

⊲ falta na escrita: pede dado a quem o possui;

marca bloco como exclusive; apontador=dono

UFPR DInf BCC 586

Arquitetura II — sincronização e consistência 2007-1

Processamento Paralelo & Multiprocessadores

• Motivação

• Tipos de máquinas paralelas

• Coerência entre caches

• Sincronismo

• Ordenação de operações em memória

UFPR DInf BCC 591

Arquitetura II — sincronização e consistência 2007-1

Resumo

• Coerência de caches: aparência de tempo absoluto

mantém ordem aparente das operações na memória

• Protocolos com espionagem em meio compartilhado (difusão)

⊲ invalidação – invalida cópias

⊲ atualização – atualiza cópias nas outras caches

• Protocolos com comunicação ponto-a-ponto

⊲ invalidação

⊲ atualização (é mais barato atualizar com msgns)

⊲ diretório distribúıdo mantém localização das cópias

∗ mapa completo

∗ mapa parcial

∗ lista encadeada

UFPR DInf BCC 590

Arquitetura II — coerência entre caches 2007-1

Coerência de Caches com Diretórios – exemplo

Considere três processadores, P1, P2, P3, e a seqüência de eventos

1. bloco X não está em nenhuma cache

2. os três processadores efetuam leitura de X

3. P3 atualiza X (fica bloqueado)

4. acerto em C3, mas P3 não é dono do bloco

5. C3 requisita exclusividade (para poder escrever)

6. memória envia invalidações para C1 e C2

7. memória recebe respostas (acks), marca linha como exclusiva

informa a C3 que agora é a dona do bloco

8. C3 atualiza bloco, marca-o como sujo

P3 prossegue

UFPR DInf BCC 589

Arquitetura II — sincronização e consistência 2007-1

Execução atômica

/∗ P1 ∗/ /∗ P2 ∗/
c = a = 0; d = b = 0;

b = b + 1; a = a + 1;

c = a + b; d = c + b;

print c; print d;

/∗ Quais os valores de “print c” e “print d”? ∗/

Comandos ‘atômicos’ em C

não são

executados atomicamente

pelo processador

a = a + 1; ≡ lw r1,0(r2)

addi r1,r1,1

sw r1,0(r2)

UFPR DInf BCC 594

Arquitetura II — sincronização e consistência 2007-1

Sincronismo

• Sincronismo é necessário sempre que há processos concorrentes

num sistema mesmo em uni-processador

• Forks e Joins: os processos de um programa paralelo

podem ter que esperar até que certos eventos tenham ocorrido

• Produtor-Consumidor: o processo consumidor deve esperar

até que o processo produtor tenha produzido dados

• Uso exclusivo de recurso: o sistema operacional deve garantir

que somente um processo de cada vez use um recurso

qqq
qqq

qq

qq qqq
qq

qqq

qq

qq qq qq
P1

P2
joinfork produtor consumidor

UFPR DInf BCC 593

Arquitetura II — sincronização e consistência 2007-1

Revisão

• Coerência de caches: aparência de tempo absoluto

mantém ordem aparente das operações na memória

• Protocolos com espionagem em meio compartilhado (difusão)

⊲ invalidação – invalida cópias

⊲ atualização – atualiza cópias nas outras caches

• Protocolos com comunicação ponto-a-ponto (redes)

⊲ invalidação

⊲ atualização (é mais barato atualizar com msgns)

⊲ diretório distribúıdo mantém localização das cópias

∗ mapa completo

∗ mapa parcial

∗ lista encadeada

UFPR DInf BCC 592

Arquitetura II — sincronização e consistência 2007-1

Exemplos de Primitivas de Sincronização (hw)

Test and set e Reset

TEST AND SET(lock)

{ tmp←mem[lock]; mem[lock]←1; return tmp; }

RESET(lock) { mem[lock]←0; }

Programa fica em loop até que lock=0 é retornado spin-lock

while (TEST AND SET(lock) == 1) { };

/∗ região cŕıtica ∗/
RESET(lock);

UFPR DInf BCC 597

Arquitetura II — sincronização e consistência 2007-1

Semáforos (locks)

Um semáforo é um T.A.D. composto de um inteiro não-negativo,

e das operações: E W Dijkstra, 1965

P(s): if s > 0 decrementa s de 1; senão espera

V(s): incrementa s de 1 e acorda um dos processos a esperar

P e V devem ser executados atomicamente, sem interrupções,

ou acessos a s por outros processos

Processo()

P(s)

região cŕıtica

V(s)

Valor inicial de s determina número

máximo de processos na região cŕıtica.

UFPR DInf BCC 596

Arquitetura II — sincronização e consistência 2007-1

Comunicação e Sincronização

Sincronização pode ser programada com loads e stores normais:

/∗ proc 1 ∗/ /∗ proc 2 ∗/
flag1=0 flag2=0

... ...

flag1=1 flag2=1

LAB1: if(flag2 == 1) LAB2: if(flag1 == 1)

goto LAB1 goto LAB2

/∗ seção cŕıtica ∗/ /∗ seção cŕıtica ∗/
flag1=0 flag2=0

MAS é dif́ıcil de programar e depurar→ este exemplo pode bloquear

UFPR DInf BCC 595

Arquitetura II — sincronização e consistência 2007-1

Sincronização em modo usuário

Em sistema com caches:

variável com a trava mantida na cache

swap ≡ escrita→montes de tráfego de coerência

Alternativa: espera em loop até liberar, então tenta obter trava

tryit: ld r4, 0(r1) # em cache como SHARED
qdo outro proc escreve:

SHARED→ INVAL
bnez r4, tryit # espera até ficar livre

li r2, 1 # livre! talvez ainda está?
lockit: swap r2, 0(r1) # troca atômica

bnez r2, tryit # se falhou, repete

UFPR DInf BCC 600

Arquitetura II — sincronização e consistência 2007-1

Sincronização em modo usuário

Sincronização com spin locks:

→ baixa latência para obter trava

→ região cŕıtica pode ficar travada por pouco tempo

li r2, 1

lockit: swap r2, 0(r1) # troca atômica
bnez r2, lockit # se falhou, repete

região cŕıtica

...

unlock: st r0, 0(r1) # libera

Em sistema com caches:

variável com a trava mantida na cache

swap ≡ escrita→montes de tráfego de coerência

UFPR DInf BCC 599

Arquitetura II — sincronização e consistência 2007-1

Exemplos de Primitivas de Sincronização (hw)

Fetch and Add

FETCH and ADD(x,a)

{ tmp←mem[x]; mem[x]←tmp+a; return tmp; }

Fetch and Φ

FETCH and Φ(x,a)

{ tmp←mem[x]; mem[x]←Φ(tmp,a); return tmp; }

Swap

SWAP(x,a) { tmp←mem[x]; mem[x]←a; a←tmp; }

UFPR DInf BCC 598

Arquitetura II — sincronização e consistência 2007-1

Exemplos de Primitivas de Sincronização – LL+SC

⋆ load linked lê valor e escreve endereço em reg de endereçamento global

⋆ store conditional escreve valor se reg de endereço global não foi alterado;
retorna indicação de sucesso (1) ou falha (0)

Exemplo: troca atômica de r4 com mem[r1] atomic swap

try: mov r3, r4 # carrega valor para troca

ll r2, 0(r1) # load linked: r2←mem[r1]

sc r3, 0(r1) # store conditional:
OK: mem[r1]←r3; r3←1

NO: r3←0
beqz r3, try # se SC falhou, repete

mov r4, r2 # escreve valor trocado

UFPR DInf BCC 603

Arquitetura II — sincronização e consistência 2007-1

Exemplos de Primitivas de Sincronização – LL+SC

⋆ load linked lê valor e escreve endereço em reg de endereçamento global

⋆ store conditional escreve valor se reg de endereço global não foi alterado;
retorna indicação de sucesso (1) ou falha (0)

Load linked(R,m) { /∗ R=reg, m=variável ∗/
<flag,end>← <1,m>;

R← mem[m]; }

Store conditional(m,R) {

if (<flag,end> == <1,m>)

cancela reserva de m por outros procs;

mem[m]← R; R← 1;

else R← 0; }

UFPR DInf BCC 602

Arquitetura II — sincronização e consistência 2007-1

Exemplos de Primitivas de Sincronização – LL+SC

Load linked + Store conditional não-bloqueante

• par de instruções usa registrador especial para

manter flag, endereço e resultado do store conditional

• load linked

lê valor e escreve endereço em reg de endereçamento global

• store conditional

escreve valor se reg de endereço global não foi alterado;

retorna indicação de sucesso (1) ou falha (0)

• opera sob a premissa de que máquina tem barramento

UFPR DInf BCC 601

Arquitetura II — sincronização e consistência 2007-1

Ordenação de Eventos na Memória

• Atualizações podem ser re-ordenadas pelo sistema de memória

Exemplo:

P1: A=0; P2: B=0;

... ...

A=1; B=1;

L1: if (B==0) ... L2: if (A==0) ...

• intuitivamente, é imposśıvel que ambos A e B sejam zero

MAS isso pode ocorrer se as atualizações

forem re-ordenadas pelo sistema de memória

• num Multi-Proc, as regras que ordenam a atualização em

memória

devem ser cuidadosamente definidas e atendidas pela

implementação

UFPR DInf BCC 606

Arquitetura II — sincronização e consistência 2007-1

Atomicidade, Consistência e Ordenação de Eventos

• Atomicidade
⋆ informalmente: acessos a uma variável acontecem um de cada vez,

e afetam todas as cópias imediatamente

• Consistência Seqüencial
⋆ informalmente: extensão intuitiva do modelo de memória dos uniprocessadores

• Consistência Relaxada
⋆ informalmente: somente operações de sincronismo são consistentes
→melhor desempenho

• Ordenação de Eventos = caracteŕıstica da implementação

⊲ ordenação forte – consistência seqüencial

⊲ ordenação fraca – consistência relaxada

coerência de caches→mesmo endereço

consistência de caches→ endereços distintos

UFPR DInf BCC 605

Arquitetura II — sincronização e consistência 2007-1

Desempenho de locks

Instruções com read-modify-write atômico bloqueantes

test and set, fetch and Φ, swap

vs

Instruções com read-modify-write atômico não-bloqueantes

load linked+store conditional

vs

Protocolos baseados em load’s e store’s normais

Desempenho depende de vários fatores inter-relacionados:

latência sem contenção

grau de contenção

serialização se há contenção impede aumentar escala

caches

execução de load’s e store’s fora de ordem

UFPR DInf BCC 604

Arquitetura II — sincronização e consistência 2007-1

Consistência Seqüencial

Um sistema é seqüencialmente consistente se o resultado de uma

execução é o mesmo caso as operações de todos os processadores

fossem executadas em alguma ordem seqüencial, e as operações de

cada processador individual aparecem na ordem especificada pelo seu

programa. Leslie Lamport, 1979

ppp
ppp

ppp
pp pp

rr
rr
rrrrrrrrrr

rrr
rr
rrrrrrrrrr rrr

rrrrrrrrr

rr
rr
rrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrr
r rr

P1 P2 P3 P4

memoria

UFPR DInf BCC 609

Arquitetura II — sincronização e consistência 2007-1

Causas de Inconsistência – Atrasos na Rede

rr
rrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrrrr rr

rrrrrrrrrr

P1 P2

rede de interconexão

Flag←1

A←9

Flag::0 A::3

A←9Flag←1

A=3

Flag:0

ld Flagaddi Flag,1
st Flag

addi A,9

st A

tempo de viagem é ∝ à distância entre fonte e destino

UFPR DInf BCC 608

Arquitetura II — sincronização e consistência 2007-1

Causas de Inconsistência – Filas de Escrita

rrr
rrrrrrrrr

rrr
rrrrrrrrr

rrr
rrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrr
rrrrrrrrr

rrr
rrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

P1 P2

B=0 A=0

A←1 B←1

barramento

read A

B::0

read B

addi A,A,1
st A

ld B ld A
st B
addi B,B,1

A::0

leituras podem ultrapassar valores que estão esperando vez na fila

porque endereços são distintos

UFPR DInf BCC 607

Arquitetura II — sincronização e consistência 2007-1

Ordenação de Execução (de Programas)

• Considere diferentes seqüências de execução de instruções

inicialmente A=B=C=0

P1 P2 P3

a: A←1 c: B←1 e: C←1

b: print BC d: print AC f: print AB

• Só podemos observar indiretamente a seqüência real de eventos,

com base no que é impresso

BC, AC, AB representa os valores impressos

⊲ se processo é executado em ordem, um conjunto de seqüências é

posśıvel: acbdef [10, 10, 11], ecdfab [11, 01, 01], etc

⊲ se instruções podem executar fora de ordem, outras seqüências

são posśıveis: adbcfe [00, 10, 11] e indesejáveis?

UFPR DInf BCC 612

Arquitetura II — sincronização e consistência 2007-1

Atomicidade

• Definição:

um acesso pelo processador P à variável X é atômico se nenhum

outro processador pode acessar qualquer cópia de X enquanto o

acesso pelo processador P estiver ocorrendo.

• atomicidade no hardware pode ser relaxada
⋆ o hardware pode parecer que tem comportamento atômico sem que todas as

cópias sejam atualizadas simultaneamente

• Atomicidade é importante para sincronismo baseado em operações

read-modify-write

• Problemas com ordenação podem ocorrer mesmo com

atomicidade
⋆ atomicidade é uma propriedade de acessos à variáveis individuais,

e não garante ordenação de atualizações de variáveis distintas.

⋆ operações atômicas são serializadas pelos mecanismos de escrita em memória

UFPR DInf BCC 611

Arquitetura II — sincronização e consistência 2007-1

Consistência Seqüencial

Um sistema é seqüencialmente consistente se o resultado de uma

execução é o mesmo caso as operações de todos os processadores

fossem executadas em alguma ordem seqüencial, e as operações de

cada processador individual aparecem na ordem especificada pelo seu

programa. Leslie Lamport, 1979

P1: α, β, γ

P2: P,Q,R
P3: ♣,♥,♠,♦

ordem global: ♣, α, β,P,♥,Q, γ,R,♠,♦
Consistência Seqüencial =

interleaving arbitrário que preserva a ordem

de referências à memória de programas seqüenciais

UFPR DInf BCC 610

Arquitetura II — sincronização e consistência 2007-1

Consistência Relaxada

• Consistência seqüencial pode diminuir desempenho porque

a consistência é forte e as restrições de ordenamento tbém

• Consistência relaxada: pode relaxar

ordem de execução ou atomicidade da escrita

⊲ relaxa ordem de escritas para leituras

⊲ relaxa ordem de escritas para escritas

⊲ relaxa ordens de leituras para leituras, e leituras para escritas

⊲ lê escritas pelos outros adiantadamente

⊲ lê escritas próprias antecipadamente

• relaxamento é geralmente determinado pela implementação

em hardware vários modelos já foram propostos

• ∃m mecanismos que permitem ignorar relaxamento

UFPR DInf BCC 615

Arquitetura II — sincronização e consistência 2007-1

Coerência entre caches (revisitada)

• Informalmente, coerência entre caches é um método

para fazer com que escritas em qualquer local na memória

sejam percebidos na mesma ordem pelos outros processadores

⊲ coerência se aplica a referências a um único endereço,

ao invés de ordenação de referências a endereços distintos

(=consistência)

⊲ caches podem ser encaradas como filas de escrita (enormes)

com atrasos potencialmente muito longos (por vezes infinitos)

⊲ coerência entre caches é um mecanismo que

dá a aparência de atomicidade

UFPR DInf BCC 614

Arquitetura II — sincronização e consistência 2007-1

Ordenação de Execução (de Programas)

• Cada interleaving sugere que um conjunto espećıfico de valores

será impresso se os acessos à memória são atômicos

⊲ se acessos à memória não são atômicos,

diferentes processadores podem perceber seqüências distintas:

[01, 10, 01] P1: e→ c

P2: a→ e

P3: c→ a

• atomicidade + operações de memória ordenadas

→ ordenação forte

• num sistema que é seqüencialmente consistente

os eventos são fortemente ordenados

UFPR DInf BCC 613

Arquitetura II — sincronização e consistência 2007-1

Ordenação Fraca

• Ordenação fraca:

não se presume nada sobre

ordenação de operações entre pontos de sincronização expĺıcita

• regras informais:

⊲ instruções de sincronização notificam hardware

(controladores de caches)

⊲ ações para manter consistência ocorrem somente nas

instruções de sincronização

UFPR DInf BCC 618

Arquitetura II — sincronização e consistência 2007-1

Cercas em memória

Cercas são instruções para fences

forçar serialização dos acessos à memória

Processadores com modelos de ordenação fracos nos quais

load’s e store’s para endereços distintos podem ser re-ordenados

devem prover instruções para forçar a serialização

dos acessos à memória

Cercas são operações custosas

mas paga-se o custo da serialização somente quando necessário

UFPR DInf BCC 617

Arquitetura II — sincronização e consistência 2007-1

Consistência Relaxada

• Consistência seqüencial pode diminuir desempenho

porque a consistência é forte e as restrições de ordenamento tbém

• Consistência relaxada: pode relaxar

ordem de execução ou atomicidade da escrita
⋆ relaxa ordem de escrita para leitura

⋆ relaxa ordem de escrita para escrita

⋆ relaxa ordens de leitura para leitura, e leitura para escrita

⋆ lê escrita pelos outros adiantadamente

⋆ lê escritas próprias antecipadamente

• relaxamento é geralmente determinado pela implementação em

hw

• ∃ mecanismos que permitem ignorar relaxamento

⊲ cercas (fence operations)

⊲ semântica das instruções de sincronização expĺıcitas

UFPR DInf BCC 616

Arquitetura II — entrada e sáıda 2007-1

Resumo

• Primitivas de sincronização em barramento (que serializa acessos)

test and set, fetch and Φ

• Primitivas de sincronização distribúıdas (sem serializar acessos)

load-linked e store-conditional

• coerência de caches→mesmo endereço

• consistência de memória→ endereços distintos

• Consistência seqüencial: a ordem interna dos acessos de cada

processo é respeitada

• Consistência fraca: ordem de acessos não é respeitada

• Cercas garantem pontos de sincronização ordenados

UFPR DInf BCC 621

Arquitetura II — sincronização e consistência 2007-1

Programas propriamente sincronizados

processo 1 processo 2

... ...

acquire(mutex); acquire(mutex);

fence; fence;

<regiao critica> <regiao critica>

fence; fence;

release(mutex); release(mutex);

Modelos de ordenação relaxados permitem a re-ordenação de

instruções pelo compilador, ou processador,

desde que a re-ordenação não atravesse uma cerca

Além disso, o processador não pode executar especulativamente,

ou fazer busca antecipada, atravessando cercas.

UFPR DInf BCC 620

Arquitetura II — sincronização e consistência 2007-1

Programas propriamente sincronizados

processo 1 processo 2

... ...

acquire(mutex); acquire(mutex);

<regiao critica> <regiao critica>

release(mutex); release(mutex);

Variáveis de sincronização (mutexes) são disjuntas das variáveis com

dados

acessos à variáveis compartilhadas para escrita são

protegidos por regiões cŕıticas

→ não há corridas exceto pelos semáforos/locks

Em geral, não é posśıvel provar que um programa é livre de corridas

no acesso aos dados.

UFPR DInf BCC 619

Arquitetura II — entrada e sáıda 2007-1

Quem se importa com desempenho de E/S?

• Desempenho de CPU cresce 55% ao ano

• Desempenho de sist de E/S é limitado por partes mecânicas

(discos)

melhora <10% aa em operações/segundo ou MBytes/segundo

• Lei de Amdahl:

ganho de desempenho é limitado pela parte mais lenta

⊲ 10x CPU e 10% E/S→ desempenho cresce 5x perde 50%

⊲ 100x CPU e 10% E/S→ desempenho cresce 10x perde 90%

• Gargalo em E/S

⊲ fração cada vez menor do tempo na CPU

⊲ utilidade/valor cada vez menor de CPUs mais rápidas

UFPR DInf BCC 624

Arquitetura II — entrada e sáıda 2007-1

Desempenho

I/O certainly has been lagging in the last decade

Seymour Cray, 1976

Also, I/O needs a lot of work

David Kuck, 1988

If, ..., performance of CPUs improves as 55% per year and I/O did

not improve, every task would become I/O bound

H&P, 2001

UFPR DInf BCC 623

Arquitetura II — entrada e sáıda 2007-1

Entrada e Sáıda

• Desempenho

• Tipos e Caracteŕısticas de Dispositivos

• Arquitetura do Sistema de E/S

⊲ Barramentos

⊲ Processamento de E/S

• Discos

⊲ Sistemas de Discos de Alto Desempenho

UFPR DInf BCC 622

Arquitetura II — entrada e sáıda 2007-1

Concorrência entre E/S e Computação

E/S concorre com computação de maneiras complexas

pp
pppppp pp

pppppp

pp
ppp

pp
ppp

pp
pppppp

ppppppppppppppppppppppppp
ppppppppppppppppppppppppp

ppppppppppppppppppppppppp
ppppppppppppppppppppppppppp
ppppppppppppppppppppppppppp

pppppppppppppppppppppppppppp
pppppppppppppppppppppppppppp

pppppppppppppppppppppppppppp
ppppppppppppppppppppppppppp
pppppppppppppppppppppppppp

P 3P 1

req de E/S interrupção

P 2 P 1

req de E/S

pronto

usuário

SO

E/S pronto

UFPR DInf BCC 627

Arquitetura II — entrada e sáıda 2007-1

Desempenho de E/S

There is an old network saying:

Bandwidth problems can be cured with money.

Latency problemas are harder because the speed of light is fixed,

you can’t bribe God David Clark

• Produção (throughput)

⊲ largura de banda ou operações por segundo

• Latência

⊲ tempo de resposta – a produtividade dos humanos cresce

super-linearmente se o tempo de resposta diminui

⊲ tempo decorrido – depende de concorrência

latência de operações escondida se concorre com computação

UFPR DInf BCC 626

Arquitetura II — entrada e sáıda 2007-1

Quem se importa com desempenho de E/S?

Se desempenho de E/S é limitado por partes mecânicas,

e desempenho da eletrônica segue a Lei de Moore,

então é melhor aumentar complexidade da eletrônica para

melhorar desempenho global dos sistemas:

• reduzir número de fios + aumentar veloc da comunicação USB

• aumentar complexidade do controlador de disco caches+DMA

• melhorar a sáıda do adaptador gráfico mesmo monitor

UFPR DInf BCC 625

Arquitetura II — entrada e sáıda 2007-1

Caracteŕısticas dos Dispositivos

• Comportamento

⊲ entrada (lê uma vez só)

⊲ sáıda (escreve uma vez só)

⊲ armazenagem (lê muitas vezes, também escreve)

• contra-parte

⊲ humano

⊲ computador

• taxa de transferência

⊲ taxa de pico

⊲ taxa sustentada (sustentável em condições “normais”)

UFPR DInf BCC 630

Arquitetura II — entrada e sáıda 2007-1

Exemplos de Aplicações

• Supercomputadores

∗ taxa de transferência é importante

→muitos MBytes/seg para arquivos grandes

• Processamento de Transações

∗ taxa de serviço é importante

∗ acessos aleatórios aos dados

→ taxa de acessos a disco por segundo

• Sistemas de Arquivos para Multi-programação (ex. Unix)

∗ tratamento de arquivos pequenos é importante

∗ acessos seqüenciais

∗ muitas criações e remoções

UFPR DInf BCC 629

Arquitetura II — entrada e sáıda 2007-1

Desempenho

Ttarefa = Tcpu + TES − Tconcorr

Exemplo 1: E/S completamente escondido: 10 = 10 + 4− 4

Exemplo 2: acelera CPU 2x, qual é o novo desempenho?

a) Ttarefa = 5 + 4− 4 = 5 melhor ← esconde

b) Ttarefa = 5 + 4− 0 = 9 pior ← expõe

c) Ttarefa = 5 + 4− 2 = 7 médio ← esconde um pouco

UFPR DInf BCC 628

Arquitetura II — entrada e sáıda 2007-1

Caracteŕısticas dos Barramentos

Opção alto desempenho baixo custo

linhas de dados, endereços 6=s sim não

largura do barram de dados largo estreito

tamanho das transferências rajadas palavra

número de mestres mais de um um

barramento em pipeline sim não

operação śıncrona asśıncrona

UFPR DInf BCC 633

Arquitetura II — entrada e sáıda 2007-1

Arquitetura do Sistema de E/S

Hierarquia de vias:

largura de banda é menor

a medida em que desce

na hierarquia

barramentos distintos

em cada ńıvel

Processamento de E/S:

controlado por programa

ADM

processadores de E/S qq qq qq
qqqqqqqqqqqqqqqq

qq qqq
qqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qq

ppp
ppp

ppp
ppp

cache

memória

barramento de E/S

barr de memória

processador

rede

ponte

UFPR DInf BCC 632

Arquitetura II — entrada e sáıda 2007-1

Tipos de Dispositivos

dispositivo comportamento parceiro taxa [bytes/seg]

teclado entrada humano 10

mouse entrada humano 20

scanner entrada humano 400 K

monitor gráf sáıda humano 60 M

rede local E/S computador 0.5-10 M

fita armazenagem computador 2 M

disco armazenagem computador 2-10 M

UFPR DInf BCC 631

Arquitetura II — entrada e sáıda 2007-1

Tipos de Barramentos – E/S

• Barramento que liga CPU e memória

• Barramento entre CPU e cache

• Barramento de E/S

∗ compatibilidade com algum padrão é importante (PCI, SCSI)

∗ projetado para tolerar número variado de dispositivos

∗ projetado para tolerar diversidade em vazão e latência

∗ maior comprimento→menor velocidade

∗ recentemente:

usa mais eletrônica para simplificar (menos fios)

e/ou

maior desempenho (protocolos mais complexos)

UFPR DInf BCC 636

Arquitetura II — entrada e sáıda 2007-1

Tipos de Barramentos – CPU-mem

• Barramento que interliga CPU e memória

∗ desempenho muito elevado:

800MByte/s a 64Gbyte/s

largura de 64 a 256 bits,

relógio de 100 a 400 MHz

pode usar as duas bordas do relógio (double data rate)

∗ projeto altamente otimizado

∗ número de dispositivos é limitado pelo projeto # pequeno!

menor comprimento→maior velocidade

∗ tendência: maior velocidade e menor largura

• Barramento entre CPU e cache

∗ desempenho mais alto ainda

• Barramento de E/S

UFPR DInf BCC 635

Arquitetura II — entrada e sáıda 2007-1

Caracteŕısticas dos Barramentos

• Barramento ≡ meio de comunicação compartilhado→ broadcast

• Barramento de E/S: dispositivos com

grande faixa de valores de vazão e latência

⊲ Mestre é capaz de iniciar transferência

⊲ Escravo responde aos comandos do mestre

• Num barramento em pipeline, há dois tipos de transações:

comandos/requisições e respostas

transação = requisição→ processamento→ resposta

UFPR DInf BCC 634

Arquitetura II — entrada e sáıda 2007-1

Barramento Śıncrono

ppp

ppp

pp
pppppppppppp

ppppppppppppppppppp
ppp

pp pp

qq qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
q qq

qqq qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
q qq qqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq
q

qqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
q

ppppppppppppppppppp
ppp

pp
pppppppppppp

end1 end2 dado1 dado2

clock

ciclo:CPU wait

tempo de acesso à memória

wr

dados

wait

ender

perif/mem

UFPR DInf BCC 639

Arquitetura II — entrada e sáıda 2007-1

Barramento Śıncrono vs Asśıncrono

• Barramento Śıncrono

∗ maior velocidade de operação→maior vazão

∗ projeto elétrico complexo e restrições fortes na temporização

∗ maior desempenho porque não tem realimentação

sinais percorrem barramento em somente um sentido:

mestre→ escravo

• Barramento Asśıncrono

UFPR DInf BCC 638

Arquitetura II — entrada e sáıda 2007-1

Método de Comutação do Barramento

• Barramento com comutação de circuito circuit switched

∗ similar a um telefonema

∗ posse do barramento é mantido até que transação completa

∗ protocolo mais simples

∗ latência dos dispositivos afeta utilização do barramento

• Barramento com comutação de pacotes packet switched

∗ similar ao envio de uma carta

∗ barramento é liberado após envio do comando

outro mestre pode utilizar barramento

até que resposta seja emitida

∗ protocolo mais complexo mas permite segmentação

∗ circuito de controle mais complexo,

mas utilização do barramento é maior

UFPR DInf BCC 637

Arquitetura II — entrada e sáıda 2007-1

Split Transaction Bus

pppppppppppppp
pppppppppppppp
pppppppppppppp

pppppppppppppp
pp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppp

pppppppppp
pppppppppppppp
pppppppppppppp
ppppppp pppppppppppppp

pppppppppppppp
pppppppppppppp

pppppppppppppp
pp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppp

pppppppppp
pppppppppppppp
pppppppppppppp
pppppppppppppppppppppp

pppppppppppppp
pppppppppppppp

pppppppppppppp
pp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppp

pppppppppp
pppppppppppppp
pppppppppppppp
pppppppp pppppppppppppp

pppppppppppppp
pppppppppppppp

pppppppppppppp
pp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppp

pppppppppp
pppppppppppppp
pppppppppppppp
pppppppp

ppp pppppppppppppppppp
pppppppppppppppppp
pppppppppppppppppp
ppp ppp pppppppppppppppppp

pppppppppppppppppp
pppppppppppppppppp
ppp ppp pppppppppppppppppp

pppppppppppppppppp
pppppppppppppppppp
ppp ppp pppppppppppppppppp

pppppppppppppppppp
pppppppppppppppppp
ppp

pp pppppppppppppppppp
pppppppppppppppppp
ppppppppppppppppppp
pp ppp pppppppppppppppppp

pppppppppppppppppp
ppppppppppppppppppp
pp pp

ppppppp ppp pppppppppppppppppp
pppppppppppppppppp
ppppppppppppppppppp
pp ppp ppppppppppppppppppp

pppppppppppppppp

ppp ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppp ppp pppppppppppppppppp

pppppppppppppppppp
pppppppppppppppppp
ppp ppp ppppppppppppppppppp

ppppppppppppppppppp
ppppppppppppppppppp
ppp ppp pppppppppppppppppp

pppppppppppppppppp
pppppppppppppppppp
ppp

ppppppppppppppppppppppppp ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppp ppppppppppppppppppppppppppppppppppp ppppppppppppppppppp

pppppppppppppppp ppppppppppppppppppppppppppppppppppp

ppp pppppppppppppppppp
pppppppppppppppppp
pppppppppppppppppp
ppp ppp pppppppppppppppppp

pppppppppppppppppp
pppppppppppppppppp
ppp ppp pppppppppppppppppp

pppppppppppppppppp
pppppppppppppppppp
ppp ppp pppppppppppppppppp

pppppppppppppppppp
pppppppppppppppppp
ppp ppp pppppppppppppppppp

pppppppppppppppppp
pppppppppppppppppp
ppp

pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp ppp
ppp

pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pp

pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pp
ppppppppppppppppppppppppppppppppppp ppppppppppppppppppppp

ppppppppppppppppppp pppppppppppppppppppp
ppppp ppp pppppppppppppppppp

pppppppppppppppppp
ppppppppppppppppppp
pp ppp ppppppppppppppppppp

pppppppppppppppppppppppppppppppppppp
ppppp pppppppppppppppppppppppppppppppp ppppppppppppppppppppppppppppppppppp pppppppppppppppppp

pppppppppppppppppp
ppppppppppppppppppp
pp ppp pppppppppppppppppp

pppppppppppppppppp
ppppppppppppppppppp
pp ppppppppppppppppppppppppp

pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pppppppppppppp pp

ppppppppppppppppppppppppp pppppppppppppppppppp
pppppppppppppppppppppppp

pppppppppppppppp ppppppppppppppppppppppppppppppppppp ppppppppppppppppppp
pppppppppppppppp pp pppppppppppppppppppp

ppppp ppppppppppppppppppppppppp pppppppppppppppppppp
pppppB CA D

M[A+2]M[A] M[B]

D00-D32

E04-E26

eVal

dVal

M[A+1] M[A+3]
M[C]

M[C+1]
M[C+2]

M[C+3]

• Barramento é liberado após envio do comando

outro mestre pode usar barram até que resposta seja emitida

• protocolo: pended packet switched

• maior utilização do barramento

• pacotes com identificador de transação

UFPR DInf BCC 642

Arquitetura II — entrada e sáıda 2007-1

Barramento Asśıncrono

Transação de Endereçamento

pp pp

pp

pp

pp

pp pp

rr rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrr rr rrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrr

rr rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrr rr rrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rr rrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrr rr
rrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrE

endAceito

endPronto

ppppppppppp
pp ppppppppppp ppppppppppp ppp
ppppppp ppppppppppp

pp ppppppppppp ppppppppppp pppp
ppppppp

ppppppppppp
pp ppppppppppp ppppppppppp ppppppppppp
ppppppppp

pppppppppppppp
pp pppppppppppppp ppppppppppp
ppppppppppppppppp

pp pppppppppppppp ppppppppppp
ppp

ppppppppppp
pp ppppppppppp ppppppppppp ppppppppppp
ppppppppp

ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppp
ppp
ppp ppppppppppp

ppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
pppppppppppppppppppppp

ppppppppppp ppppppppppp
ppppppppppp ppppppppppp

ppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppp
pppp

ppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
pppppppppppppppppppppp

ppppppppppp ppppppppppp
ppppppppppp ppppppppppp

ppp

ppppppppppp ppp
pppp

ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppp
pppp

rr rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
r

transação lenta

1

transação rápida

3

2

3

2

1

Seqüência de eventos

1: mestre inicia transação enderPronto ց
escravo responde com enderAceito ց

2: mestre responde com enderPronto ր
3: escravo completa transação com enderAceito ր

UFPR DInf BCC 641

Arquitetura II — entrada e sáıda 2007-1

Barramento Śıncrono vs Asśıncrono

• Barramento Śıncrono

• Barramento Asśıncrono

∗ menor velocidade de operação→menor vazão

∗ projeto elétrico/temporal mais simples

∗ pior desempenho porque tem realimentação

sinais percorrem todo o barramento em dois sentidos:

mestre(comando)→ escravo ; escravo(resposta)→mestre

∗ a cada evento, sinais devem ser sincronizados aos

relógios internos dos dispositivos

→ relógios 6=s em dispositivos distintos (freqüência e fase)

UFPR DInf BCC 640

Arquitetura II — entrada e sáıda 2007-1

Pergunta

Qual o tipo de barramento que permite maior ńıvel de sobreposição

de comunicação (através do barramento)

com computação (pela CPU e/ou pelos dispositivos)?

a) barramento śıncrono

b) barramento asśıncrono

c) split transaction śıncrono

d) split transaction asśıncrono

e) nenhum dos acima

UFPR DInf BCC 645

Arquitetura II — entrada e sáıda 2007-1

Resposta

Num sistema de E/S, a CPU é o mestre ou o escravo no barramento?

a) mestre

b) escravo

c) mestre e escravo

d) mestre ou escravo, dependendo se transação é leitura ou escrita

e) nenhuma das acima

UFPR DInf BCC 644

Arquitetura II — entrada e sáıda 2007-1

Pergunta

Num sistema de E/S, a CPU é o mestre ou o escravo no barramento?

a) mestre

b) escravo

c) mestre e escravo

d) mestre ou escravo

e) nenhuma das acima

UFPR DInf BCC 643

Arquitetura II — entrada e sáıda 2007-1

Processamento de E/S (ii)

• E/S controlada por programa

• Acesso Direto à Memória Direct Memory Access = DMA

∗ Processador inicializa controlador de DMA com

endereço inicial,

tamanho,

tipo da transferência

∗ controlador de DMA dispara transferência de um bloco

e gera interrupção após completar transferência

∗ bom para volumes grandes e periféricos gulosos

• Processadores de E/S dedicados

UFPR DInf BCC 648

Arquitetura II — entrada e sáıda 2007-1

Processamento de E/S (i)

• E/S controlada por programa

∗ CPU gerencia explicitamente todas as transferências

loop: load→ store

∗ pode causar enorme desperd́ıcio de tempo de CPU

∗ não é muito usado há casos especiais interessantes

⊲ aplicações embutidas de baixo custo

⊲ SO verifica todos dispositivos lentos de uma vez

• Acesso Direto à Memória

• Processadores de E/S dedicados

UFPR DInf BCC 647

Arquitetura II — entrada e sáıda 2007-1

Resposta

Qual o tipo de barramento que permite maior ńıvel de sobreposição

de comunicação (através do barramento)

com computação (pela CPU e/ou pelos dispositivos)?

a) barramento śıncrono

b) barramento asśıncrono

c) split transaction śıncrono

d) split transaction asśıncrono

e) nenhum dos acima

As transações divididas permitem maior superposição

entre as transações dos diversos pares mestre-escravo...

UFPR DInf BCC 646

Arquitetura II — entrada e sáıda 2007-1

Comunicação com Processadores de E/S

Ińıcio/controle das operações

• Periféricos mapeados como memória

• Periféricos acessados com instruções especiais

∗ instruções especiais iniciam operações de E/S in, out

∗ instruções são previlegiadas

executam somente em modo supervisor

∗ dif́ıcil de modelar dispositivos em linguagem de alto ńıvel

UFPR DInf BCC 651

Arquitetura II — entrada e sáıda 2007-1

Comunicação com Processadores de E/S

Ińıcio/controle das operações

• Periféricos mapeados como memória

∗ acesso em faixa de endereços de E/S para disparar operação

∗ dispositivos no mesmo espaço de endereçamento que a memória

∗ faixa de endereços de E/S são protegidos pelo SO

∗ endereços não podem ser carregados nas caches (em geral)

∗ dispositivo modelado por estrutura de dados

→ programação simples

• Periféricos acessados com instruções especiais

UFPR DInf BCC 650

Arquitetura II — entrada e sáıda 2007-1

Processamento de E/S (iii)

• E/S controlada por programa

• Acesso Direto à Memória

• Processadores de E/S dedicados

∗ controladores capazes de executar ‘programas’ de E/S

podem ser quase tão sofisticados quanto a CPU

∗ podem ser de uso geral ou dedicado

∗ e.g. canais de E/S da IBM

UFPR DInf BCC 649

Arquitetura II — entrada e sáıda 2007-1

Proteção de E/S

• Instruções de E/S são previlegiadas

⊲ somente o SO pode executar instruções de E/S

• Dispositivos mapeados em memória são protegidos

contra acessos em modo usuário,

e seus endereços/valores não são armazenados em cache

⊲ somente o SO pode acessar áreas de E/S mapeadas em memória

• Código do SO verifica cada chamada de sistema por usuários

⊲ se operação é permitida, então é executada

UFPR DInf BCC 654

Arquitetura II — entrada e sáıda 2007-1

Gerenciamento de E/S

• SO gerencia recursos de E/S
⋆ serializa requisições para recursos

compartilhados

⋆ aloca espaço em disco, etc

• aplicativos invocam serviços do SO

chamadas de sistema

• SO converte requisições em

invocações de drivers
⋆ driver contém programa espećıfico para

dispositivo→ comandos, registradores, etc

• driver comanda dispositivo
⋆ operações espećıficas para dispositivo ou

barramento

pp
pppp pp

pppp pp
pppp

pp
pppp pp

pppp pp
pppp

pp
pp

pppp pp
pppp

pp
pppp pp

pppp pp
pppp

aplicativo

SO

M Virt

chamadas de sistema

operações de E/S

driver

operações com M F́ıs

hardware

UFPR DInf BCC 653

Arquitetura II — entrada e sáıda 2007-1

Comunicação com Processadores de E/S

Notificação de término das operações

• E/S por programa polling

⊲ processador fica em loop até que bit de status mude

⊲ verificações periódicas

⊲ latência elevada

• Interrupção

⊲ quando operação completa, interrompe processador

⊲ troca de contexto para tratar evento

⊲ baixa latência

UFPR DInf BCC 652

Arquitetura II — discos 2007-1

revisão – Concorrência entre E/S e Computação

E/S concorre com computação de maneiras complexas

pp
pppppp pp

pppppp

pp
ppp

pp
ppp

pp
pppppp

ppppppppppppppppppppppppp
ppppppppppppppppppppppppp

ppppppppppppppppppppppppp
ppppppppppppppppppppppppppp
ppppppppppppppppppppppppppp

pppppppppppppppppppppppppppp
pppppppppppppppppppppppppppp

pppppppppppppppppppppppppppp
ppppppppppppppppppppppppppp
pppppppppppppppppppppppppp

P 3P 1

req de E/S interrupção

P 2 P 1

req de E/S

pronto

usuário

SO

E/S pronto

Ttarefa = Tcpu + TE/S− Tconcorr

UFPR DInf BCC 657

Arquitetura II — discos 2007-1

Entrada e Sáıda

• Desempenho

• Tipos e Caracteŕısticas de Dispositivos

• Arquitetura do Sistema de E/S

• Discos

⊲ Mecanismo, componentes de gravação e de posicionamento

⊲ Controlador

⊲ RAID – Sistemas de Discos de Alto Desempenho

fonte:
[RW94] An introduction to Disk Drive Modeling,

Ruemmler & Wilkes, IEEE Computer 27(3):17-28, Mar 1994

UFPR DInf BCC 656

Arquitetura II — discos 2007-1

resumo – Sistemas de E/S

• Ttarefa = Tcpu + TES − Tconcorr

• Hierarquia de barramentos — desempenho

des(CPU-cache)≫ des(cache-mem)≫ des(E/S)

• Tipos de barramento:
⋆ comutação de circuitos × comutação de pacotes

⋆ śıncrono × asśıncrono × split transaction

• Processamento de E/S
⋆ por programa

⋆ acesso direto a memória

⋆ canais de E/S

• Mapeamento do espaço de endereçamento

∗ como memória × como E/S

• Notificação de término: interrupção × polling

UFPR DInf BCC 655

Arquitetura II — discos 2007-1

Discos – organização

rr
rrr

rr

rrrrrrrrrrrrrrrrrrrrrrr
rrr

rr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrr

rrr
rrrrrrr

rrr
rrrrrrr

rrr
rrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrr
rrrrrrr

pp pp pp

pp
pppp
pppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppp pp

rrr
rrrrrrr

ppp

ppp

ppp

ppp

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrrrrrrrrr

DMA

cache

acionador

fila de
requisições

discos

barramento
SCSI

Ruemmler & Wilkes, Computer Mar94

mecanismo

controlador

controlador

UFPR DInf BCC 660

Arquitetura II — discos 2007-1

Discos Magnéticos – Parâmetros T́ıpicos

Caracteŕıstica ḿın máx

diâmetro [polegadas] 1,0 * 3,5

capacidade formatada [GB] 1 >100

discos/pratos 1 20

trilhas por superf́ıcie 6.000 25.000

setores por trilha 100 600

bytes por setor 512 4.096

velocidade [rpm] 3.600 15.000

cache [MB] 0,125 ≥4

taxa transferência [MB/s] 2,5-5 27-40

* tamanho t́ıpico (+popular) em 2000

UFPR DInf BCC 659

Arquitetura II — discos 2007-1

Discos Magnéticos

ww

pppppppppppppppppp
pppppppppppppppppp
pppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppppp

ppppppppppppppppppppp
pppppppppppppppppppppp

ppppppppppppppppppppppp
ppppppppppppppppppppppppp

ppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppp
ppp

ppp
pp

ppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppp
pppppppppppppppppppppppp
ppppppppppppppppppppppp
pppppppppppppppppppppp
ppppppppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppp
pppppppppppppppppp
ppppppppppppppprrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr

rr
rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrpppppppppppppppppp

ppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppppp

pppppppppppppppppppppppp
ppppppppppppppppppppppppppppppp

pp
ppppppppppppppppppppppppppppp

pppppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppp
pppppppppppppppppppppppppppppppppp

pppppppppppppppppppp
pppppppppppppppppppppppppppp

ppp
pppppppppppppppppppppp
ppppppppppppppppppp
pppppp pppppppppppppppppp

pppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp

ppppppppppppppppppppp
pppppppppppppppppppppppp

ppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppp

ppp
pp

ppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppp

pppppppppppppppppppppppp
pppppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppp
pppppppppppppppppp
ppp

y

ppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppppppppppppppppp

ppppppppppppppppppppppppp
pppppppppppppppppppppppppp

ppppppppppppppppppppppppp
pppppppppppppppppppppppppp

pppppppppppppppppppppppppp
ppppppppppppppppppppppppp

pppppppppppppppppppppppppp
pppppppppppppppppppppppppp

ppppppppppppppppppppppppp
pppppppppppppppppppppppppp

pppppppppppppppppppppppppp
ppppppppppppppppppppppppp

pppppppppppppppppppppppppp
pppppppppppppppppppppppppp

ppppppppppppppppppppppppp
pppppppppppppppppppppppppp

pppppppppppppppppppppppppp
ppppppppppppppppppppppppp

pppppppppppppppppppppppppp
pppppppppppppppppppppppppp

ppppppppppppppppppppppppp
pppppppppppppppppppppppppp

pp
uuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuu

braço eixo
cilindrocabeça

prato

setor trilha

braço

pivot

cabeça

Ruemmler & Wilkes, Computer Mar94

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rr

rr
rrr

rrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrppppppppppppppppppp

ppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppp

ppp
pp

ppp
ppp

pp
ppppppppppppppppppppppppppppp

ppppppppppppppppppppp
ppppppp

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rrr

rrr
rr

rrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rr
rr

rr
rrr

rrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrr

ppppppppppppppppppp
ppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppp
ppp

pp
pp

ppp
pp

ppppppppppppppppppppppppppppp
ppppppppppppppppppppp
pppppppp

ppppppppppppppppppp
ppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppp
ppp

pp
pp

ppp
pp

ppppppppppppppppppppppppppppp
ppppppppppppppppppppp
ppppppp

ppp
ppp
ppppp

pp
pp
ppppppp

ppp
pp

pp
ppppppp

pppppppppppppppppp
pppppppppppppppppppppppppppppppp

ppp
ppp
ppppppp

pp
ppp
ppp

ppp
ppppp

pp
pppppp

ppp
ppp

UFPR DInf BCC 658

Arquitetura II — discos 2007-1

Mecanismo – componentes de posicionamento (ii)

• Densidade é tão alta que noção de cilindro é quase irrelevante

• busca: aceleração ; curso ; desaceleração ; estabilização

• recalibrar posição a cada 15-30 min, durante 500-800 ms

• acompanhamento de trilhas

⊲ troca de cabeças→ reposicionar braço (≈ 0.5-1.5 ms)

⊲ troca de trilha→ estabilizar braço (≈ 1-3 ms)

⊲ controlador tenta leitura otimista assim que chega na trilha

pode fazer escrita otimista?

(≈ 0.75 ms até estabilizar para escrever)

UFPR DInf BCC 663

Arquitetura II — discos 2007-1

Mecanismo – componentes de posicionamento (i)

• Densidade é tão alta que noção de cilindro é quase irrelevante

• busca consiste de

⊲ aceleração até atingir 1/2 Vmáx

⊲ Vmáx em distâncias longas

⊲ desaceleração até trilha desejada

⊲ estabilização da cabeça sobre a trilha (1-3 ms)

⊲ seeks longos: T ∝ distância (Vmáx)

⊲ seeks médios: T ∝
√

distância

• recalibrar posição a cada 15-30 min, durante 500-800 ms

• acompanhamento de trilhas

UFPR DInf BCC 662

Arquitetura II — discos 2007-1

Mecanismo – componentes de gravação

• Diâmetro: 1.0, 1.3, 2.5, 3.5 ,8 polegadas

• densidade linear de gravação: 100 Kbpi (bits/inch)

• densidade de trilhas: 20 Ktpi

• efeito combinado: densidade por área cresce 60% aa

• velocidade 3.600, 7.200, 10.000, 15.000 cresce 12% aa

• uma cabeça ativa por vez, taxa de leitura ≥ 100 Mbps

• conteúdo de um setor

⊲ número do setor;

⊲ espaço;

⊲ informação do setor com Cód Det Corr Erros;

⊲ espaço;

⊲ · · ·

UFPR DInf BCC 661

Arquitetura II — discos 2007-1

Controlador (ii)

• Funções do controlador SCSI

• operação do controlador custa 0.3-1 ms (caindo lentamente)

eletrônica segue Lei de Moore mas funcionalidade cada vez mais complexa

• interface com barramento

⊲ transferências em modo śıncrono, na vel máxima do barramento

⊲ pode operar com split transactions (latências enormes)

⊲ ∃ buffer entre mecanismo e barramento por causa das diferenças

de velocidade

• buffer usado como cache

UFPR DInf BCC 666

Arquitetura II — discos 2007-1

Controlador (i)

• Funções do controlador SCSI

⊲ mediar acessos ao mecanismo

⊲ executar sistema de acompanhamento de trilhas

⊲ transferir dados entre disco e cliente

⊲ gerenciar buffers/cache

• operação do controlador custa 0.3-1 ms (caindo lentamente)

eletrônica segue Lei de Moore mas

funcionalidade mais complexa com o tempo

• interface com barramento

• buffer usado como cache

UFPR DInf BCC 665

Arquitetura II — discos 2007-1

Mecanismo – leiaute dos dados

• Disco visto pelo SO como vetor linear de blocos (256-1024 bytes)

• controlador mapeia vetor nos setores f́ısicos 1D ; 3D

V[i] ; d[setor, trilha, superf́ıcie]

• #bits cresce ≈ linearmente com comprimento da trilha

zoneamento: número de setores depende do raio

∃ 3-50 zonas com mesmo número de setores / zona

• deslocamento de setores nas trilhas:

setor0 de cada trilha deslocado para esconder

tempo de reposicionamento track skewing

• trilhas/setores sobressalentes: referências a setores danificados

são re-mapeadas para setores/trilhas de reserva
⋆ na formatação – pula endereço da trilha com defeito slip sparing

⋆ em uso – re-mapeia endereço do setor/trilha para sobressalentes

UFPR DInf BCC 664

Arquitetura II — discos 2007-1

Operação de Discos

• Comandos

⊲ Latência/atraso no controlador + tempo na fila (OS)

⊲ 0,5ms se não encontra na cache, 0,1ms se encontra na cache

• Seek/busca movimentação do braço entre trilhas/cilindros

⊲ move a cabeça até a trilha desejada

⊲ tempo depende da posição inicial da cabeça

⊲ valores t́ıpicos médios entre 5-12ms

• Latência rotacional

⊲ espera até que setor desejado passe sob a cabeça (≈1/2 volta)

⊲ na média, 0.5/rpm → 0,5/(7200rpm/60spm)=4,2ms

• Transferência de dados

⊲ taxa de transferência entre 2 e 40 MByte/s

UFPR DInf BCC 669

Arquitetura II — discos 2007-1

Controlador – cache (escrita)

Cache pode corromper sistema de arquivos se faltar energia

• controlador avisa que completou operação após escrever na cache

• isso deve ser evitado na escrita de metadados

• se cache tem bateria, problema desaparece o que fazer no boot?

• ganhos adicionais

⊲ dados na cache sobre-escritos antes de gravados no disco

⊲ controlador pode otimizar escrita de vários blocos

⊲ mesmos problemas que fila de escrita – RAW, WAW

• como cache do disco interfere com buffer cache do Unix?

Cache com fila de comandos: controlador pode otimizar operações

porque conhece geometria do disco

UFPR DInf BCC 668

Arquitetura II — discos 2007-1

Controlador – cache (leitura)

Poĺıticas da cache: read-ahead ≈ busca antecipada

• usa × ignora dados em acerto parcial?

• ignora cache em requisições grandes? segmentação dos acessos

• mantém × descarta bloco após transferência?

• on-arrival read-ahead: assim que chegar na trilha, lê trilha toda

• read-ahead agressivo: atravessa trilhas e/ou cilindros

• read-ahead conservador: pára no final de trilha/cilindro

• cache associativa: particionar cache para 6=s seqüências

entrelaçadas

• como cache do disco interfere com buffer cache do Unix?

UFPR DInf BCC 667

Arquitetura II — discos 2007-1

Tendências

Capacidade ր 100% aa (2x / 1.0 anos)

Taxa de Transferência ր 40% aa (2x / 2.0 anos)

Rotação+posicionamento ց 8% aa (0.5x / 10 anos)

MB/$ ր 100% aa (2x / 1.5 anos)

UFPR DInf BCC 672

Arquitetura II — discos 2007-1

Desempenho (cont)

Localidade:

discos exibem localidade

→ em “acessos locais”

tempo de busca (seek) cai em 1/3

Cache:

buffer em memória (Unix buffer cache)

e na unidade de disco

→ latência cai para hit+transferência

distância

trilhas fração

0 24%

15 23%

30 8%

45 4%

60 3%

75 3%

90 1%

105 3%

120 3%

135 2%

150-165 (3+2)%

180-195 (3+3)%

unix time-sharing
UFPR DInf BCC 671

Arquitetura II — discos 2007-1

Desempenho

• Tempo médio de acesso

= tempo médio de movimentação do braço (seek)

+ latência rotacional média

+ tempo de transferência

+ tempo do controlador

• Exemplo: 7200 rpm, 10MByte/s

tempo médio de movimentação do braço: 10ms

tempo do controlador: 0,5ms

tempo para ler bloco de 4Kbytes (uma página)

10ms + 0,5/(7200rpm/60spm) + 4KB/10MB/s + 0,5ms

10ms + 4,2ms + 0,4ms + 0,5ms = 14,65ms

UFPR DInf BCC 670

Arquitetura II — discos 2007-1

Matrizes de Discos (ii)

• Endereçamento independente

• Listras de blocos pequenos fine-grain striping

⊲ |bloco| = um bit, um byte, ou um setor

⊲ #discos∗|bloco| define menor quantidade de dados acesśıvel

⊲ balanceamento de carga perfeito: 1 requisição atendida por vez

⊲ taxa efetiva de transferência ≈ N vezes melhor que um disco só

⊲ tempo de acesso pode aumentar,

a não ser que discos sejam sincronizados

• Listras de blocos grandes coarse-grain striping
⋆ paralelismo na transferência de grandes volumes de dados

⋆ concorrência para transferências pequenas

⋆ balanceamento de carga pela aleatoriedade

• Granularidade escolhida em função da aplicação e tipo de carga

UFPR DInf BCC 675

Arquitetura II — discos 2007-1

Matrizes de Discos (i)

• Endereçamento independente

⊲ software/usuário distribui os dados

⊲ balanceamento de carga entre discos pode ser problemático

→ é dif́ıcil de sincronizar acessos em paralelo

• Listras de blocos pequenos fine-grain striping

• Listras de blocos grandes coarse-grain striping

• Granularidade escolhida em função da aplicação e tipo de carga

UFPR DInf BCC 674

Arquitetura II — discos 2007-1

Matrizes de Discos

Conjunto de

discos individuais:

cada disco com seu

braço/cabeça

Distribuição

dos dados:

endereçamento

independente

listras de

blocos pequenos

listras de

blocos grandes
independente

A1

A2

A3 B3

B2

B1

B0 C0

C1

C3

C2

granularidade

fina

B0 B0

B1 B1

A1

A2

A3

A0

A1

A2

A3

granularidade
grossa

A0

A2 A3

B0 B1

A1A0

A0

UFPR DInf BCC 673

Arquitetura II — discos 2007-1

Redundant Arrays of Inexpensive Disks – RAIDs

• Conjuntos de discos pequenos e baratos resultam em

alto desempenho e alta confiabilidade

D = número de discos de dados no conjunto

V = número de discos de verificação no conjunto

• Ńıvel 1: discos espelhados (D=1, V=1)

⊲ desperd́ıcio é elevado

• Ńıvel 2: código de detecção de erros (D=10, V=4)

⊲ mesmo tipo de código de detecção de erros usado com DRAMs

⊲ todos os bits do conjunto são lidos

⊲ agrega bits atualizados com bits que permanecem;

recomputa a paridade

⊲ re-escreve todo o conjunto, incluindo a verificação

UFPR DInf BCC 678

Arquitetura II — discos 2007-1

Mecanismos de Redundância

• Falhas em discos são parcela grande de falhas de hardware

→ striping aumenta o número de arquivos perdidos por falha

• Replicação dos dados

espelhamento dos discos

→ permite leituras em paralelo

→ escritas devem ser sincronizadas

• Proteção com paridade

→ usar disco para manter a paridade

UFPR DInf BCC 677

Arquitetura II — discos 2007-1

Matrizes de Discos (iii)

• Endereçamento independente

• Listras de blocos pequenos fine-grain striping
⋆ |bloco| = um bit, um byte, ou um setor

⋆ #discos∗|bloco| define menor quantidade de dados acesśıvel

⋆ balanceamento de carga perfeito: 1 requisição atendida por vez

⋆ taxa efetiva de transferência ≈ N vezes melhor que um disco só

⋆ tempo de acesso pode aumentar, a não ser que discos sejam sincronizados

• Listras de blocos grandes coarse-grain striping

⊲ paralelismo na transferência de grandes volumes de dados

⊲ concorrência para transferências pequenas

⊲ balanceamento de carga pela aleatoriedade

• Granularidade escolhida em função da aplicação e tipo de carga

UFPR DInf BCC 676

Arquitetura II — discos 2007-1

RAID 4/5 – Blocos de Paridade

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
pppppppppppppppppppppppppp
ppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
pppppppppppppppppppppppppp
ppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
pppppppppppppppppppppppppp
ppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
pppppppppppppppppppppppppp
ppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
pppppppppppppppppppppppppp
ppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
pppppppppppppppppppppppppp
ppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
pppppppppppppppppppppppppp
ppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
pppppppppppppppppppppppppp
ppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
pppppppppppppppppppppppppp
ppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
pppppppppppppppppppppppppp
ppp

pppppppppppppppppppppppppppppppppppp ppppppppppppppppppppppppp
ppppppppppp

4

8

0

16

20
. . .

5

9

1

13

17

21
. . .

6

10

2

14

18

22
. . .

7

11

3

15

19

23
. . .

P1

P2

P0

P3

P4

P5
. . .

4

8

0

12

P4

20
. . .

5

9

1

P3

16

21
. . .

6

P2

2

13

17

22
. . .

P1

10

3

14

18

23
. . .

7

11

P0

15

19

P5
. . .

RAID 4 RAID 5

12

H&P QA Fig-7.19

UFPR DInf BCC 681

Arquitetura II — discos 2007-1

Redundant Arrays of Inexpensive Disks – RAIDs

• Ńıvel 5: paridade distribúıda com blocos entrelaçados

⊲ paridade é distribúıda pelos discos no conjunto

⊲ atualizações distintas de paridade vão para discos distintos

• Ńıvel 6: matriz bi-dimensional

⊲ matriz de dados é bi-dimensional,

com paridade nas linhas e nas colunas

⊲ permite recuperação de duas falhas

UFPR DInf BCC 680

Arquitetura II — discos 2007-1

Redundant Arrays of Inexpensive Disks – RAIDs

• Ńıvel 3: paridade com bits entrelaçados (D=4, V=1)

⊲ disco com falha é identificado facilmente pelo controlador

⊲ não é necessário código especial para descobrir disco em falha

• Ńıvel 4: paridade com blocos entrelaçados

⊲ usado com blocos grandes

⊲ similar ao RAID 3, mas pode efetuar mais de um acesso com

poucos dados a cada vez

⊲ escrita deve atualizar disco com dados e paridade

UFPR DInf BCC 679

Arquitetura II — redes de interconexão 2007-1

resumo – Discos

• Tempo médio de acesso

= tempo médio de movimentação do braço (seek)

+ latência rotacional média

+ tempo de transferência

+ tempo do controlador

• Cache no controlador para tirar proveito de localidade
⋆ falta de energia durante escrita de metadados corrompe sist de arquivos

⋆ mesmos problemas que fila de escrita (riscos RAW a WAW)

• RAID – usar discos baratos para

aumentar desempenho – striping

e

melhorar confiabilidade – paridade

UFPR DInf BCC 684

Arquitetura II — discos 2007-1

RAID – Atualização “Pequena”

Qual é o número de operações de leitura/escrita nos discos individuais

para efetuar escrita de poucos dados (= atualização pequena)?

pppppppppppppppppp
pppppppppppppppppppp

ppppppppppppppppppppppppp
pp
ppppppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppp
pp
ppppppppppppppppppp
ppppp

pppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppppppppp

pp
ppppppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppp
ppp
pppppppppppppppppppp
ppppp

pp
pp

pp
pppp

pp
pppppppp

pp
ppppppppp

ppp
ppppppppp

ppp

D0’ D0 D1 D2 D3 P

4 escr3 escr

D0 D1 D2 D3 P

xor

xor

2 lernovo
RAID4 / RAID 5

1 ler

H&P QA Fig-7.18

UFPR DInf BCC 683

Arquitetura II — discos 2007-1

RAID – Atualização “Pequena”

Qual é o número de operações de leitura/escrita nos discos individuais

para efetuar escrita de poucos dados (= atualização pequena)?

pppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppppppppp

pp
pppppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppp
ppp
ppppppppppppppppppp
pppppp

pp
pppppppp ppp

ppppppppp

ppp
ppp

ppp

ppp
ppp

pp
ppppppppp

D0’

novo

D0 D1 D2 D3 P

5 escr4 escr

D0 D1 D2 D3 P

xor

RAID3

1 ler 3 ler2 ler

H&P QA Fig-7.18

UFPR DInf BCC 682

Arquitetura II — redes de interconexão 2007-1

Modelo de comunicação

pp

pp

máquina A

máquina B

• Quem transmite?

• quando transmite?

• como interpreta mensagem?

• como garante que mensagem chegou ao destino?

• como garante que mensagem está correta?

• protocolo determina as respostas

UFPR DInf BCC 687

Arquitetura II — redes de interconexão 2007-1

Modelo de rede

w w w

pp

ppp
ppppppppppppppppppppppppp

pppppppp

ppppppppppppppppppppppppp
ppppppppppppppppppppppppp

pppppppp

rede de interconexão

nó

interface HW

interface SW

enlace

nó

interface HW

interface SW

enlace

nó

interface HW

interface SW

enlace

UFPR DInf BCC 686

Arquitetura II — redes de interconexão 2007-1

Redes e Clusters

• Protocolos

• Escopo, Tipos de Redes, Meios F́ısicos

• Espaço de projeto

⊲ topologias

⊲ comutação

⊲ controle

⊲ sincronicidade

• Roteamento

• Controle de Tráfego

UFPR DInf BCC 685

Arquitetura II — redes de interconexão 2007-1

Parâmetros de Desempenho

ppp

pp

pp pp
pp

pp pp
pp pp pp

pp

pp pp
pp

ppp

pp pp
pp

pp pp
pp

pp pp
pp

pp

pp

tempo
de vôo [bytes / larg de banda]

transmissão

tempo de

[bytes / larg de banda]
transmissão

tempo de

latência de transporte

latência total

recepção

overhead de
transmissão

rem

dest

overhead de

UFPR DInf BCC 690

Arquitetura II — redes de interconexão 2007-1

Anatomia de uma mensagem

ender fonte nome de máquina

ender destino

processo fonte nome de processo ou porta

processo destino

tipo de msgm {req, rsp, ack, crtlFluxo}

núm seqüência seqüenciamento, duplicações

controle de fluxo buffer overflow/underflow

checksum detecção de erros

carga o que realmente interessa

UFPR DInf BCC 689

Arquitetura II — redes de interconexão 2007-1

Protocolos

Protocolo deve contemplar:

• endereçamento→máquinas + processos

• proteção entre processos na mesma máquina

• tipos de mensagem: request, reply, acknowledgement

• entrega confiável

⊲ conteúdo alterado? checksum

⊲ mensagem perdida? retransmissão + temporizadores + buffers

• minúcias:

⊲ ordem dos bytes

⊲ duplicação de mensagens

⊲ ordenação de mensagens

⊲ controle de fluxo (6=s velocidades de/entre fonte e destino)

UFPR DInf BCC 688

Arquitetura II — redes de interconexão 2007-1

Largura de banda efetiva

ppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppp
pp

ppp
pp

ppp
pp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppp

ppp
pp

ppp
ppp

pp
ppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

pp
pppppppppppppppppppppppp

pp
pppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp ppp

ppppppppppppppppppppppppp ppp
ppppppppppppppppppppppppp ppp

ppppppppppppppppppppppppp ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp

ppppppppppp ppppppppp
pp ppppppppppp

ppppppppppp ppppppppp
pp ppppppppppp

ppppppppppp ppppppppp
pp ppppppppppp

pppppppppppppp pppppp
ppppp ppppppppppp

ppppppppppp ppppppppp
pp ppppppppppp

ppppppppppp ppppppppp
pp ppppppppppp

pppppppppppp ppppppppppp
ppppppppppp ppppppppppp

ppppppppppp ppppppppppp
ppppppppppp ppppppppppp

pppppppppppppppppppppp pppppppp
ppp ppppppppppp ppppppppppp

ppppppppppp ppppppppppp pppp
ppppppp ppppppppppp ppppppppppp pp

ppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp
ppppppppppp ppppppppppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp pppppppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp pppppppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp pppppppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp

ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp

ppppppppppp ppppppppp
pp ppppppppppp

ppppppppppp ppppppppp
pp ppppppppppp

ppppppppppp pppppppp
ppp ppppppppppp

ppppppppppppppp ppppp
pppppp ppppppppppp

ppppppppppp ppppppppp
pp ppppppppppp

ppppppppppp pppppppp
ppp ppppppppppp

ppppppppppppppp ppppp
pppppp ppppppppppp

ppppppppppp ppppppppp
pp ppppppppppp

ppppppppppp ppppppppp
pp ppppppppppp

pppppppppppppp ppppppp
pppp ppppppppppp

ppppppppppp pppppppppp
p ppppppppppp

ppppppppppp pppppppppp
p ppppppppppp p

pppppppppp ppppppppppp
ppppppppppp ppppppppppp

ppppppppppp ppppppppppp
ppppppppppp ppppppppppp

ppppppppppppppppppp ppppppppppp pp
ppppppppp ppppppppppp ppppppppppp

ppppppppppp ppppppppppp pppppppppppppp
pppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp

ppppppppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp pppppppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppppppppp ppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp ppp

ppppppppppppppppppppppppp ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp ppppp
pppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp
pppppppppppppppppppppppppp

pppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppppppppp
ppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppppppppppppppp

ppppppp ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp

pppppppppppppppppppppppppp
pp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp ppppppppppppppppppppppppp

ppp ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppppppp
ppp

ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp ppppp

pppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp pppp
ppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp ppppp

pppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppppppppp
ppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppppppppppp

ppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppp
pp ppppppppppppppppppppp

ppppppppppppppppppppp
ppppppppppppppppppppp

pppppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp ppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp ppp

ppppppppppppppppppppppppp

ppp
ppppppppppppppppppppppppp

0.1

1

10

100

1000

10000

4M1M256k64k16k4k1k2566416

banda ef

tamanho [bytes]

ovh=25, bw=100
ovh=250, bw=100
ovh=25, bw=1000

ovh=250, bw=1000
ovh=25, bw=10000

ovh=250, bw=10000

moral da estória: overhead DEVE ser pequeno
UFPR DInf BCC 693

Arquitetura II — redes de interconexão 2007-1

Largura de banda efetiva

• em redes de pequeno diâmetro, tempo de vôo pode ser ignorado

• em rede de longa distância, overheads de TX e de RX podem ser

ignorados

• latência total pode ser simplificada

latência total ≈ overheads + |mensagem| / largura de banda

• largura de banda efetiva entregue pela rede é

larg de banda efetiva = |mensagem| / latência total

UFPR DInf BCC 692

Arquitetura II — redes de interconexão 2007-1

Equação do desempenho

latência total

= overhead transmissão proc 100% ocupado com envio

+ tempo de vôo veloc da luz + atrasos hw

+ |mensagem| / largura de banda [bits / bits/s]=[s]

+ overhead recepção proc 100% ocupado recebendo

• largura de banda medida no fio (inclui cabeçalhos) [bit/s]

• tempo de vôo é aprox 20cm/ns + atrasos nos repetidores [s]

• ovhead TX inclui tempo nos componentes de SW e HW [s]

• ovhead RX geralmente maior que de TX (+interrupção) [s]

• tamanho da mensagem inclui cabeçalhos [bit]

UFPR DInf BCC 691

Arquitetura II — redes de interconexão 2007-1

Espaço de Projeto

• Critérios de desempenho

⊲ latência – tempo de viagem de uma mensagem

⊲ largura de banda – quanto tráfego a rede pode tratar

⊲ conectividade – # de vizinhos imediatos

⊲ custo – rede representa qual fração do custo de HW

⊲ confiabilidade – caminhos redundantes

⊲ funcionalidade – combinação de msgns, tolerância a falhas

UFPR DInf BCC 696

Arquitetura II — redes de interconexão 2007-1

Meios F́ısicos

• Flat cable

• par trançado

• cabo coaxial

• fibra ótica

⊲ mono-modo

⊲ multi-modo

⊲ multi-côr

• ondas de rádio

UFPR DInf BCC 695

Arquitetura II — redes de interconexão 2007-1

Escopo e Tipos de Redes

escopo tipo

interna ao CI crossbar, completamente conectada

motherboard barramento

System Area Network barramento, anel, malha, cubo SAN

Local Area Network barramento, anel LAN

Wide Area Network malha esparsa, ponto-a-ponto WAN

UFPR DInf BCC 694

Arquitetura II — redes de interconexão 2007-1

Topologias – Redes com Conexão Estática

• Redes constrúıdas com conexões diretas entre os nós da rede

• padrão de conexões fixado na construção da rede

• grau de um nó d: número de enlaces ligados ao nó

• diâmetro da rede D: caminho mais curto maximal entre ∀ 2 nós

• largura de um canal w: número de bits no canal/enlace

• diâmetro da bisecção: menor diâmetro da rede com 2 metades =s

channel bisection width b: ḿınimo número de canais na

bisecção

wire bisection width B = bw: reflete densidade da fiação

UFPR DInf BCC 699

Arquitetura II — redes de interconexão 2007-1

Meio Compartilhado vs Comutado

Meio compartilhado (Ethernet em cabo coaxial)

pp pppppppppppppppppppppppppppppp
ppppppppppp pp pppppppppppppppppppppppppppppp

ppppppppppp pp pppppppppppppppppppppppppppppp
ppppppppppp

pp ppppppppppppppppp
ppppppppp

pppppppppppppp pppppppppppppp pppppp
pppppppp
pppppppppppppp
ppppppppppppppppppp
ppppp
ppppppppppp
pppppppppppppp
pppppppppppppp
p

pp pppppppppppppppppppppppppppppp
ppppppppppp

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rr

Meio comutado (Ethernet comutada)

pp

pp

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrr

ppppppppppppppppppppppppppppppppppp pppppppppppppppppppppp
ppppppppppppp

ppppppppppppppppppppppppppppppppppp pppppppppppppppppppppp
pp pppppppppppppppppppppp

ppppppppppppp

ppppppppppppppppppppppppppppppppppp pppppppppppppppppppppp
ppppppppppppp

UFPR DInf BCC 698

Arquitetura II — redes de interconexão 2007-1

Espaço de Projeto (cont)

• Parâmetros de projeto

⊲ topologia – estática × dinâmica com sub-classes

⊲ modo de operação – śıncrono × asśıncrono

⊲ estratégia de comutação – circuitos, re-despacho, cut-through

⊲ estratégia de controle – centralizado × distribúıdo

• produto cartesiano destes 4 parâmetros define espaço de projeto

UFPR DInf BCC 697

Arquitetura II — redes de interconexão 2007-1

Topologias (iii) – Redes com Conexão Estática

• Árvore binária – N=2k-1 nós em k ńıveis d ≤3 D=2(k−1)

• estrela – árvore de dois ńıveis d={1, N−1} D=2

• árvore gorda – diâmetro dos canais aumenta próximo da raiz

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

..
....
.....
....
....
.....
....
.....
....
....
.....
....
.....
....
....
.....
....
.....
....
....
.....
....
.....
....
.....
....
....
.....
....
.....
....
...

..
....
.....
....
....
.....
....
.....
....
....
.....
....
.....
....
....
.....
....
.....
....
....
.....
....
.....
....
.....
....
....
.....
....
.....
....
...

..
....
.....
....
....
.....
....
.....
....
....
.....
....
.....
....
....
.....
....
.....
....
....
.....
....
.....
....
.....
....
....
.....
....
.....
....
...

..
....
.....
....
....
.....
....
.....
....
....
.....
....
.....
....
....
.....
....
.....
....
....
.....
....
.....
....
.....
....
....
.....
....
.....
....
...

...

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

qqq

qqq

qqq

qqq

rrr

rrr

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

árvore binária
d≤3 D=2(k-1)

estrela

d=1,N-1 D=2 d≤3 D=2(k-1)

árvore gorda

16w

w

4w

UFPR DInf BCC 702

Arquitetura II — redes de interconexão 2007-1

Topologias (ii) – Redes com Conexão Estática

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qq

qq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qq

qq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qq
qqq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
q qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qq

qqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
q qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qq

qqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqq
qq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qq
qqq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qq

qqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qq

qqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqq
qq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qq
qqq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqq
qq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqq
qqq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qqq

qqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qq
qq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqq
qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qq
qqq

qqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq
q

ppp
ppp

ppp
ppp

ppp

ppp

ppp

pp

pp

ppp

ppp

ppp

ppp

ppp

pp

ppp

1 2 3 4 5 6 70

arranjo linear d=2 D=7

0 1 2

3

456

7

anel bidir d=2 D=4
anel unidir d=2 D=8

0 1 2

3

456

7

d=7 D=1
(quase) completamente conectado

UFPR DInf BCC 701

Arquitetura II — redes de interconexão 2007-1

Topologias (i) – Redes com Conexão Estática

• Linear – N nós conectados por N − 1 enlaces

não é um barramento, enlaces podem ser bi-direcionais

d=2 D=N -1 (elevado para N grande)

• anel – N nós conectados por N enlaces

enlaces uni-direcionais

d=2 D=N

enlaces bi-direcionais

d=2 D=⌊N/2⌋
• barrel shifter – anel com enlaces adicionais para vizinhos

a uma distância que é potência de 2: i ⇀↽ j se |j − i| = 2r

N=2n d=2n-1 D=n/2

• completamente conectado – cada nó é ligado a todos outros nós

d=N -1 D=1

UFPR DInf BCC 700

Arquitetura II — redes de interconexão 2007-1

Topologias (vi) – Redes com Conexão Estática

• Cubos: n-cubo k-ário – interliga N nós,

via enlaces com k nós/enlace, em cubo com dimensão n

N = kn , k =
n
√

N , n = logk N

}

} }

}

} }

}}

}

} }

}

} }

}}

}

} }

}

} }

}}

pp

pp

pp

pp

pp

pp

pp

pp

pppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppp

ppppp pp
ppppppppppppppppppppppppp

ppppppppppppppppppppppppp
ppppppppppppp pp

ppp ppppppppppppppppppppppppppppppp
ppp pppppppppppppppppppppp

ppppppppppppppppppppppp
pppppppppppppppppp

pp

pp

pp

pp

dimensão 4
4 enlaces/nó

dimensão 3
3 enlaces/nó

quando k = 2 rede é hipercubo

UFPR DInf BCC 705

Arquitetura II — redes de interconexão 2007-1

Topologias (v) – Redes com Conexão Estática

Anel (1D, k=4 n=1)

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqq....

...
....
....
...
....
.....
...
....
...
....
....
...

....
...
....
....
...
....
.....
...
....
...
....
....
...

....
...
....
....
...
....
.....
...
....
...
....
....
...

....
...
....
....
...
....
.....
...
....
...
....
....
...

........
...
..
..
..
..
.
.
..
.
.
..
.
..
..
..
..
..
.
..
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
..
..
....
..
.
..
.
.
..
..
.
..
..
...
..
..
.
...
...
...
......
.

.

..

..
...
..
..
.
..
..
.
.
..
.
..
....
..
..
.
..
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
..
..
..
..
..
.
..
.
.
..
.
.
..
..
...............

Malha (2D, k=4 n=2)

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qq
qqqqqqqqqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
...
....
....
...
....
....
....
....
...
....
...
....

....
...
....
....
...
....
....
....
....
...
....
...
....

....
...
....
....
...
....
....
....
....
...
....
...
....

....
...
....
....
...
....
....
....
....
...
....
...
....

...
....
....
...
....
...
.....
....
...
....
....
...
....

...
....
....
...
....
...
.....
....
...
....
....
...
....

...
....
....
...
....
...
.....
....
...
....
....
...
....

...
....
....
...
....
...
.....
....
...
....
....
...
....

....
...
....
....
...
....
.....
...
....
....
...
....
...

....
...
....
....
...
....
.....
...
....
....
...
....
...

....
...
....
....
...
....
.....
...
....
....
...
....
...

....
...
....
....
...
....
.....
...
....
....
...
....
...

...
....
...
....
...
....
.....
...
....
....
...
....
....

...
....
...
....
...
....
.....
...
....
....
...
....
....

...
....
...
....
...
....
.....
...
....
....
...
....
....

...
....
...
....
...
....
.....
...
....
....
...
....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
..
...
...
...
...
...
...
...
...........................

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
..
...
...
...
...
...
...............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
...
..
...
...
...
...............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
..
...
...
...
...
...
...
...
...........................

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

......................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

.....................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.....................

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.....................

......................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....................

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.............................
...
..
...
...
...
...
...
...
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

................................
..
...
...
...
...
...
...
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

................................
...
...
...
...
...
..
...
...
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.............................
...
..
...
...
...
...
...
...
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
..
...
...
...
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
...
...
...

..
..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..

...
..
...
...
..
...
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..
..
.

Cubo (toróide 3D, k=4 n=3)

ppppppppppppppppppp
ppp
pppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
ppp
pppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
ppp
pppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
ppp
pppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
ppp
pppppppppppppp ppppppppppppppppppp

ppp
pppppppppppppp ppppppppppppppppppp

ppp
pppppppppppppp

ppppppppppppppppppp
ppp
pppppppppppppp

ppppppppppppppppppp
ppp
pppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp ppppppppppppppppppp

pp
ppppppppppppp ppppppppppppppppppp

pp
ppppppppppppp

ppppppppppppppppppp
ppp
pppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp ppppppppppppppppppp

pp
ppppppppppppp ppppppppppppppppppp

pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
pp
ppppppppppppp

ppppppppppppppppppp
ppp
pppppppppppppp

ppppppppppppppppppp
ppp
pppppppppppppp

.

..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

..............

..
.
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
.

.

.

.

..

.

.

.

.

.

.

.

..............

.

..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

..............

..

..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..

.

.

.

.

.

.

.

.

.

.

.

.

..............

.

..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

...............

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

..............

..

..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

..

.

..............

..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..

.

..

.

.

.

.

.

.

.

.

.

..............

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.

.

.

..

.

.

.

.

.

.

.

..............

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.

.

.

.

.

.

..

.

.

.

.

..............

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

..

.

..............

..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

..

..............

..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
.

.

.

.

.

.

.

.

.

.

.

.

.

..............

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

..

.

..............

..
.
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..

.

.

.

..

.

.

.

.

.

.

.

..............

..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..

..

.

.

.

.

.

.

.

.

.

.

..............

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

..

.

..............

..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

..

..............

..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..

..

.

.

.

.

.

.

.

.

.

.

..............

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

..

.

..............

..

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

..

..............

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...
....
...
.....
...
....
...
.

...
....
...
.....
...
....
...
.

...
....
...
.....
...
....
...
.

...
....
...
.....
...
....
...
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

....
...
....
....
....
...
....

....
...
....
....
....
...
....

....
...
....
....
....
...
....

....
...
....
....
....
...
....

....
...
....
....
....
...
....

....
...
....
....
....
...
....

....
...
....
....
....
...
....

....
...
....
....
....
...
....

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

....
...
....
.....
...
...
....

...
....
...
.....
...
....
...
.

...
...
....
....
....
...
....
.

...
....
...
.....
...
....
...
.

...
....
...
.....
...
....
...
.

...
....
...
.....
...
....
...
.

...
....
...
.....
...
....
...
.

....
...
....
....
....
...
....

....
...
....
....
....
...
....

....
...
....
....
....
...
....

....
...
....
....
....
...
....

...
...
....
....
....
...
....
.

...
...
....
....
....
...
....
.

...
...
....
....
....
...
....
.

...
...
....
....
....
...
....
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...
....
...
.....
...
....
...
.

....
...
....
....
....
...
....

...
....
...
.....
...
....
...
.

...
....
...
.....
...
....
...
.

...
....
...
.....
...
....
...
.

...
....
...
.....
...
....
...
.

...
....
...
.....
...
....
...
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

....
...
...
.....
....
...
....

...
...
....
....
....
....
...
.

....
...
....
....
....
...
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............................
...
..
...
...
...
...
..
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............................
...
..
...
...
...
...
..
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............................
...
..
...
...
...
...
..
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............................
...
..
...
...
...
...
..
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............................
...
...
...
..
...
...
...
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............................
...
...
...
...
...
...
...
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

...................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
...
...
...
..
...
...
...
............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
...
..
...
...
...
............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
...
..
...
...
...
............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
...
..
...
...
...
............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
...
..
...
...
...
...
..
.............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
..
...
...
...
...
..
.............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
..
...
...
...
...
..
.............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
..
...
...
...
...
..
.............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
...
...
...
...
...
............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
...
...
...
...
...
...
...
............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
...
...
...
...
...
...
...
............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
...
...
...
...
...
...
...
............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
...
...
..
...
...
...
...
............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
..
...
...
...
...
............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
..
...
...
...
...
............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
...
...
..
...
...
...
...
............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.............................
...
...
..
...
...
...
...
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

UFPR DInf BCC 704

Arquitetura II — redes de interconexão 2007-1

Topologias (iv) – Redes com Conexão Estática

• Arranjo Linear é uma malha k = 1 (1D) com N=n nós

d=2 D=N -1 ppppppppppppppppppp
pppppppppppppppppppppppppp

ppp
ppppppppppppppppppp
pppppppppppppppppppppppp

pppppppppppppppppppppppppp
ppp
pppppppppppppppppppp
pppp ppppppppppppppppppp

pppppppppppppppppppppppppp
ppp
ppppppppppppppppppp
ppppp ppppppppppppppppppp

pppppppppppppppppppppppppp
ppp
pppppppppppppppppppp
pppp10 2 3

• Malha – rede k-dimensional com N=nk nós

d=2k (nós internos) D=k(n−1)

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqq
qqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qqq
qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qqq
qqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqq
qqq
qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qqq
qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq

qqq
qqqqqqqqqqqqqqq

• toróide – malha n× n com conexões nas extremidades

d=4 D=2⌊n/2⌋

UFPR DInf BCC 703

Arquitetura II — redes de interconexão 2007-1

Topologias – Redes com Conexão Dinâmica

• barramento

⊲ conexão entre mestre e escravo definida a cada transação

• crossbar

⊲ é a rede mais cara→O(n2) comutadores

⊲ é a rede mais eficaz i, j ∈ {0..n}, i 6= j ⇒ Pi ⇀↽ Pj

{
{

{

{

{

c
b
a

d

1 432

ligação aberta

ligação fechada

• redes multi-estágio (ômega, delta, ...)

⊲ custo menor que crossbar→O(n log n) comutadores

UFPR DInf BCC 708

Arquitetura II — redes de interconexão 2007-1

Conexão Estática – Custo vs Desempenho

Rede com 64 nós

topologia bissecção portas enlaces

barramento 1 1 1

anel (1D) 2 2 128

toróide (2D) 16 4 192

hipercubo 32 6 256

totalmte conect 1024 255 2080

UFPR DInf BCC 707

Arquitetura II — redes de interconexão 2007-1

Conexão Estática – Custo vs Desempenho

rede d grau D diâm #enl bissec #nós

arranj linear 2 N-1 N-1 1 N

anel (1D) 2 ⌊N/2⌋ N 2 N

totmte conect N-1 1 N(N-1)/2 (N/2)2 N

árvore binária 3 2(h-1) N-1 1 h=⌈lg2N⌉
malha 2D 4 2(r-1) 2N-2r r r=

√
N

toro 2D 4 2⌊r/2⌋ 2N 2r r=
√

N

hipercubo n n nN/2 N/2 n=lg2N

n-cubo k-ário 2n n⌊k/2⌋ nN 2kn−1 N=kn

UFPR DInf BCC 706

Arquitetura II — redes de interconexão 2007-1

Comutação

• Comutação

⊲ re-despacho (store-and-forward)

Lrd ∝ núm comutadores · |msgm|
⊲ cut-through – se cabeçalho bloqueado, comutador engole msgm

Lct ∝ f(núm comutadores) + |msgm|/banda · tempoTX

⊲ wormhole – se cabeçalho bloqueado, msgm bloqueia caminho

Lwh
∼= Lct se rede sem tráfego

Li & McKinley, A survey of wormhole routing techniques in direct

networks, Computer 26(2),1993

UFPR DInf BCC 711

Arquitetura II — redes de interconexão 2007-1

Topologias (i) – Redes com Conexão Dinâmica

caracteŕıstica barramento multiestágio crossbar

latência ḿınima constante O(logkn) constante

banda / proc O(w/n)..O(w) O(w)..O(nw) O(w)..O(nw)

complex cabeam O(w) O(nw logk n) O(n2w)

complex comut O(n) O(n logk n) O(n2)

conectividade 1→ 1 † ‡
barramento: n proc, largura w

multi-est: nxn MIN, kxk comutadores de largura w

crossbar: nxn largura w

† algumas permutações e broadcast se rede livre

‡ todas permutações, uma de cada vez

UFPR DInf BCC 710

Arquitetura II — redes de interconexão 2007-1

Topologias – R Conexão Dinâmica - rede Delta

pp

pp ppp

ppp

ppp ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
pppppppppppp

ppppppppppppppppppppppppp
ppppppppppppppppppppppppp

pppppppppppppppppppppppppp
ppppppppppppppppppppppppp

pppppppppppppppppppppppppp
pppppppppppppppppppppppppp

ppppppppppppppppppppppppp
pppppppppppppppppppppppppp

pppppppppppppppppppppppppp
pppppppppppppppppppppppppp

ppppppppppppppppppppppppp
pppppppppppppppppppppppppp

pppppppppppppppppppppppppp
ppppppppppppppppppppppppp

pppppppppppppppppppppppppp
ppppppppppppppppppp

pp ppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppp
ppppppppppppppppp

ppp

ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppp
pppppppppppp

pp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppppppp
ppppppp

011

010

001

000

100

101

111

110

Janak Patel 1979

UFPR DInf BCC 709

Arquitetura II — redes de interconexão 2007-1

Estratégia de Controle

• Controle Centralizado

topologia P(bloqueios) # comutadores distância

crossbar ∝ 1/(N − 2) N2 ∝ 1

ômega >crossbar N/2 log N ∝ log N

árvore bin ? N − 1 2(h− 1)

barramento ∝ N 1 1 ?

árvore – altura h = ⌈log N⌉

• Controle Distribúıdo

⊲ anel, malha, toróide

⊲ hipercubo

⊲ fully-connected

UFPR DInf BCC 714

Arquitetura II — redes de interconexão 2007-1

Roteamento

• Roteamento

⊲ source-based – emissor define rota até destino

rota é parte da msgm

⊲ circuito virtual – negocia-se caminho antes de enviar

nome do circuito é parte da msgm

⊲ destination-based – roteadores no caminho escolhem rota

endereço destino é parte da msgm

∗ determińıstico

∗ adaptativo

∗ aleatório

UFPR DInf BCC 713

Arquitetura II — redes de interconexão 2007-1

Comutação

F

I1

I2

I3

re-despacho (comut de pacotes)

cabeçalho carga

F

I1

I2

I3

F

I1

I2

I3

comutação de circuito roteamento da minhoca

Li & McKinley, Computer 26(2) 1993

UFPR DInf BCC 712

Arquitetura II — clusters 2007-1

Ficou faltando...

• Onde é a interface com hierarquia de memória?

CPU→multiprocessador × rede→multicomputador

• há um processador adicional dedicado à tratar comunicação?

∗ como particiona as tarefas?

∗ qual o custo da comunicação entre CPU proc e CPU com?

• o que fazer em HW e o que fazer em SW?

∗ roteamento

∗ checksum

∗ ...

• proteção provida por SO × usuário

UFPR DInf BCC 717

Arquitetura II — clusters 2007-1

revisão – Redes

• Protocolo – endereços e rotas, confiabilidade, proteção

• latência total

= overhead transmissão proc 100% ocupado com envio

+ tempo de vôo veloc da luz + atrasos hw

+ |mensagem| / largura de banda [bits / bits/s]=[s]

+ overhead recepção proc 100% ocupado recebendo

• Parâmetros de projeto

∗ topologia – ligação estática × dinâmica

∗ modo de operação – śıncrono × asśıncrono

∗ estratégia de comutação – circuitos, re-despacho, cut-through

∗ estratégia de controle – centralizado × distribúıdo

• topol: ligações estáticas cubo k-ário n-dim, completam conectado

• topol: ligações dinâmicas barramento, multi-estágio, crossbar

UFPR DInf BCC 716

Arquitetura II — clusters 2007-1

resumo – Redes

• Protocolo – endereços e rotas, confiabilidade, proteção

• latência total

= overhead transmissão proc 100% ocupado com envio

+ tempo de vôo veloc da luz + atrasos hw

+ |mensagem| / largura de banda [bits / bits/s]=[s]

+ overhead recepção proc 100% ocupado recebendo

• Parâmetros de projeto

∗ topologia – ligação estática × dinâmica

∗ modo de operação – śıncrono × asśıncrono

∗ estratégia de comutação – circuitos, re-despacho, cut-through

∗ estratégia de controle – centralizado × distribúıdo

• topol: ligações estáticas cubo k-ário n-dim, completam conectado

• topol: ligações dinâmicas barramento, multi-estágio, crossbar

UFPR DInf BCC 715

Arquitetura II — clusters 2007-1

Exemplos

Beowulf 2+ Ethernet’s, sw roteia tráfego entre as 2+ interfaces

f́ısicas transparentemente à aplicação

banda ‘suficiente’, latência ≈ 100µs

Myrinet rede comutada (→multi-estágio)

banda 0,5–2Gbps, latência ≈ 2,6–3,2µs (MPI)

Infiniband barramento serial unidirecional, rede comutada, RDMA

banda 2×2Gbps (2,4,8), pode agregar 4,12 canais (2–96Gbps)

latência 160ns/comutador, ponta-a-ponta ≈ 6µs

VIA (extinto?) comunicação entre espaços de endereçamento de

usuário, com pouca intervenção do SO

banda ≥ 1Gbps, latência ≈ 10µs, Zero-copy

UFPR DInf BCC 720

Arquitetura II — clusters 2007-1

HW de rede

• problemas com padrão de comunicação complexos só atingem

bom desempenho em MPPs

• problemas trivialmente paralelos não chegam a usar toda a banda

dispońıvel (Ethernet)

• maioria dos problemas entre estes dois extremos

UFPR DInf BCC 719

Arquitetura II — clusters 2007-1

Aglomerados de PCs

• Cluster constrúıdo com PCs + rede local + GNU/Linux

• em (algumas) aplicações com granularidade grande:

∗ preço/desempenho entre 3..50× o de sistemas dedicados

(MPPs)

∗ desempenho entre 1/3..1/2 do de sistemas dedicados (MPPs)

• componentes de um nó = componentes de um PC

disco pode ser problemático xterms no DInf sem disco!!!

• já usamos labs do DInf como clusters

• referência: Cluster Computing White Paper

UFPR DInf BCC 718

Arquitetura II — clusters 2007-1

Caracteŕısticas de SOs para aglomerados

• Facilidade de gerenciamento

single system image – interface comum esconde diversidade

• estabilidade

∗ robusteza contra processos errados/maliciosos

∗ recuperação de falhas por reconfiguração dinâmica

∗ usabilidade sob carga

• desempenho, especialmente das partes cŕıticas:

escalonamento, gerenciamento de memória, arquivos e E/S,

rede

• extensibilidade dos nós, SO aberto

• escalabilidade intra-nós: depende dos nós individuais

. inter-nós: é limitada pela rede

• heterogeneidade mesmo SO em 6=s processadores

. mesmas APIs em 6=s computadores
UFPR DInf BCC 723

Arquitetura II — clusters 2007-1

Ambientes e modelos de programação

Ambientes/modelos implementados em bibliotecas e

middleware

• processos seqüenciais comunicantes (troca de mensagens)

Calculus of Communicating Systems, Robin Milner

Comunicating Sequential Processes, C A R Hoare

• Message Passing Interface ou MPI padrão de fato

• Parallel Virtual Machine ou PVM já foi o padrão

• data-parallel (SIMD) dif́ıcil de implementar c/ eficiência

• message-driven fast messages + splitC

• memória compartilhada distribúıda Shrimp

• e muitos outros...

UFPR DInf BCC 722

Arquitetura II — clusters 2007-1

Software

• ferramentas de programação

∗ linguagens – C, C++, fortran, ada ...

∗ bibliotecas – PVM (1989), MPI transformam PCs em clusters

∗ depuradores – depuração de código e de desempenho

• gerência de recursos

∗ instalação, administração

∗ escalonamento de hw e sw

∗ armazenamento

∗ diagnóstico, monitoramento, disponibilidade

• funções do SO

∗ multiplexar processos nos recursos f́ısicos resource mgmt

∗ prover abstrações úteis beautification

UFPR DInf BCC 721

Arquitetura II — clusters 2007-1

Distributed Shared Memory

• Permite compartilhamento de memória (RAM) entre todos os nós

• paradigma de programação paralela para usar mem compartilhada

entre processos de uma aplicação

• geralmente implementado em bibliotecas porque o uso normal

é programar com consistência seqüencial forte e isso resulta em

desempenho ruim

• programação com consistência relaxada é aceitável em

aplicações paralelas mas complexo demais para uso normal

UFPR DInf BCC 726

Arquitetura II — clusters 2007-1

Single System Image

• Extensões do SO que permitem compartilhamento transparente

de recursos

• 2 variantes:

∗ administração do sistema (mw?)

∗ escalonamento de tarefas + uso transparente de recursos remotos

• SSI implementado no SO implica em compartilhamento de estado

entre todos os nós de um cluster

→manter informação atualizada é caŕıssimo!!

UFPR DInf BCC 725

Arquitetura II — clusters 2007-1

Funcionalidades: SO x middleware

• SOs são complexos→ alterações afetam partes indesejadas

• funções no middleware podem ser ex-portadas para outros SOs

exemplo: memória compartilhada distribúıda (DSM) em mw

UFPR DInf BCC 724

Arquitetura II — clusters 2007-1

E/S paralela

• Problemática na carga e salvamento de arquivos de dados

• usualmente, alguns nós concentram E/S→ tornam-se gargalos

• é saudável ter algum espaço local a cada nó

UFPR DInf BCC 728

Arquitetura II — clusters 2007-1

Comunicação no ńıvel de usuário

• Aglomerados de alto desempenho não usam Ethernet mas

Myrinet, Infiniband, ou ...

• para uso ser vantajoso, adaptador de rede deve ser acessado

com pouco overhead

• todas (?) as ações de comunicação devem ocorrer em

espaço/modo

de usuário, tipicamente com DMA em modo usuário

• problema: multiplexar tráfego de vários processos

na mesma interface f́ısica de forma segura

• gerenciamento de filas de TX e RX pelo usuário

SO estabelece conexão e pega/paga interrupções circuito virtual?

∗ menos trocas de contexto e menos cópias

∗ Remote DMA (RDMA): acesso via DMA à memória de outros

nós do aglomerado→ baixa latência+overhead
UFPR DInf BCC 727

