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Abstract This work introduces a new system-level diagnosis model and an algorithm based on this 

model: Hi-Comp (Hierarchical Comparison-based Adaptive Distributed System-Level 
Diagnosis algorithm). This algorithm allows the diagnosis of systems that can be represented by 
a complete graph. Hi-Comp is the first diagnosis algorithm that is, at the same time, 
hierarchical, distributed and comparison-based. The algorithm is not limited to crash fault 
diagnosis, because its tests are based on comparisons. To perform a test, a processor sends a 
task to two processors of the system that, after executing the task, send their outputs back to the 
tester. The tester compares the two outputs; if the comparison produces a match, the tester 
considers the tested processors fault-free; on the other hand, if the comparison produces a 
mismatch, the tester considers that at least one of the two tested processors is faulty, but can not 
determine which one. Considering a system of N nodes, it is proved that the algorithm’s 
diagnosability is (N–1) and the latency is log2N testing rounds. Furthermore, a formal proof of 
the maximum number of tests required per testing round is presented, which can be O(N3). 
Simulation results are also presented. 

Keywords: Distributed Diagnosis, System-Level Diagnosis, Comparison-Based Diagnosis. 

 

1. Introduction 

The basic goal of system-level diagnosis is to 
determine the state of all units of a given system [1]. 
Each unit may be either faulty or fault-free. Fault-free 
units perform tests over other units to achieve the 
complete diagnosis. System-level diagnosis has been 
applied to different fields, such as network fault 
management and circuit fault detection. The model and 
algorithm presented in this paper can be employed to 
detect changes in servers that keep replicated data, such 
as Web or file servers. 

A number of different system-level diagnosis models 
[2] have been presented in the literature. The first system-
level diagnosis model, the PMC model, was introduced in 
[3]. In the PMC model, system diagnosis hinges on the 
ability of units to test the status of other units. A unit can 
be either faulty or fault-free and its state does not change 

during diagnosis. Each change on the state of a node is 
called an event. In this model, a test involves controlled 
application of stimuli and observation of the 
corresponding responses. The set of all test outcomes is 
called the syndrome. The model assumes that fault-free 
units always report the state of the units they test 
correctly, while faulty units can return incorrect results 
[4, 1, 3]. The minimum number of units that must be 
fault-free for diagnosis to be possible is called the 
diagnosability. 

Many algorithms based on the PMC model have been 
proposed. In the adaptive algorithms nodes decide the 
next tests based on results from previous tests [5], the 
distributed algorithms allow the fault-free nodes in the 
system to diagnose the state of all nodes [6], and in [7] a 
hierarchical algorithm is presented. 

Previously published hierarchical adaptive distributed 
algorithms are restricted to crash fault diagnosis and they 
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assume that a faulty unit simply stops and never responds 
to a test [8, 9, 10]. In [10] the algorithm Hi-ADSD with 
Timestamps is presented. Instead of the state diagnosis 
performed by the other hierarchical algorithms, Hi-
ADSD with Timestamps performs event diagnosis. This 
algorithm groups the units of the systems into sets of N/2 
units called clusters. When a tester tests a fault-free unit 
it gets diagnostic information about the tested unit entire 
cluster. Each unit of a system running Hi-ADSD with 
Timestamps keeps a timestamp for the state of each other 
unit in the system, so a tester may get diagnostic 
information about a certain unit from more than one 
tested unit without causing any inconsistencies. 

The way tests are performed in the PMC model 
suffers from several limitations that have caused other 
testing methods to be considered, like probabilistic 
diagnosis [11] and the comparison-based models 
presented below. 

The comparison-based models, proposed initially by 
Malek [12], and by Chwa and Hakimi [13], have been 
considered to be a practical approach for fault diagnosis 
in distributed systems. In these first comparison-based 
models, it was assumed that system tasks are duplicated 
on two distinct units in the system and their outputs are 
compared by a central observer. This central observer is a 
reliable unit that cannot suffer any event. The observer 
performs diagnosis using the comparisons’ outcomes. 

Maeng and Malek present an extension of the 
Malek’s comparison-based model, known as the MM 
model [14]. This model allows comparisons to be carried 
out by the units themselves, i.e., the comparisons are 
distributed. The unit that performs the comparison must 
be distinct from the two units that produce the outputs. 
Sengupta and Dahbura present a generalization of the 
MM model in [15], known as the generalized comparison 
model, which allows the tester unit to be one of the units 
which produce the outputs. In both the MM model and 
the generalized comparison model, although the 
comparisons are distributed, the comparisons’ outcomes 
are still sent to a central observer, and only the central 
observer performs the diagnosis. 

In [16], Blough and Brown present a distributed 
diagnosis model based on the comparison approach, the 
so-called Broadcast Comparison model. In this model, a 
distributed diagnosis procedure is used, which is based 
on comparisons of redundant task outputs and has access 
to a reliable broadcast protocol. In the Broadcast 
Comparison model, tasks are assigned to pairs of distinct 
units. These units execute the task and send their outputs 
to all fault-free units in the system employing a reliable 
broadcast protocol. Each fault-free unit in the system 
receives and compares the two outputs eventually 
achieving the complete diagnosis. Note that comparisons 

are performed on every fault-free unit, including the 
processors that execute the task. The main purpose of this 
model is to reduce the latency and the time in which one 
node must remain in a given state, not the number of tests 
or comparisons executed. 

Wang [17] presents the diagnosability of hypercubes 
[18, 19] and the so-called enhanced hypercubes [20], 
considering a comparison-based model. The enhanced 
hypercube is obtained by adding more links to the regular 
hypercube. These extra links increase the system’s 
diagnosability. Each processor executes tests on other 
processors by comparing tasks outputs. This model 
allows the tester to be one of the processors that have the 
tasks outputs compared. 

Araki and Shibata [21] present the diagnosability of 
butterfly networks [22] using the comparison approach. 
Two comparison schemes for generating syndromes on 
butterfly networks are proposed. One is called one-way 
comparison, and the other is called two-way comparison. 
Tests involve sending the same task to two processors. 
Then the comparison of these two task outputs is 
performed by a third processor. The diagnosability of a k-
ary butterfly network considering the one-way 
comparison scheme is k–2 and the diagnosability of the 
two-way scheme is 2(k–2). 

Fan [23] presents the diagnosability of crossed cubes 
– a hypercube variant, but with lower diameter – under 
the comparison-based diagnosis model. The 
diagnosability of crossed cubes with n ≥ 4 processors  
is n. 

In this paper, we present a new distributed 
comparison-based model for system-level diagnosis. An 
algorithm based on this model is presented, the 
Hierarchical Comparison-Based Adaptive Distributed 
System-Level Diagnosis (Hi-Comp) algorithm. This 
algorithm uses a similar hierarchical testing strategy as 
the one employed by Hi-ADSD with Timestamps. As Hi-
Comp is comparison-based, it is not limited to permanent 
fault diagnosis, like the hierarchical distributed 
algorithms based on the PMC model. The diagnosability 
of the algorithm is presented, as well as formal proofs of 
the algorithm’s latency and maximum number of tests 
required. 

The rest of work is organized as follows. In section 2 
we present the new model. Section 3 introduces the new 
algorithm. Section 4 presents the formal proofs for the 
algorithm’s latency, maximum number of tests and 
diagnosability. In section 5 simulation results are 
presented and section 6 contains the conclusion. 
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2. The Distributed Comparison Model 

In the new model, a system S is represented by a 
graph G=(V,E), where V is a set of vertices and E is a set 
of edges. Each vertex in the graph corresponds to a node 
of the system and the edges correspond to the 
communication links. In this model links do not become 
faulty. Nodes of the system can be either faulty or fault-
free and changes in the state of nodes, from faulty to 
fault-free or vice-versa, are called events. 

System S is fully connected, i.e., there must exist a 
communication link between any pair of nodes in the 
system. Therefore, graph G is a complete graph, i.e., 

Vi ∈∀ e Vj ∈∀ , Eji ∈∃ ),( . 

A fault-free node tests other nodes of the system to 
identify their states. A test is performed by sending a task 
to two distinct nodes of the system. After executing the 
task, each node sends the task output to the tester. After 
receiving the two outputs, the tester compares the 
outputs. If the comparison produces a match the tester 
considers the two tested nodes as fault-free. If the 
comparison produces a mismatch the tester considers that 
at least one of the two tested nodes is faulty, but cannot 
conclude which one. To assure that the comparison 
outcomes are correct, the following assumptions are 
made over the system: 

1. A fault-free processor comparing outputs 
produced by two fault-free nodes always produces 
a match. 

2. A fault-free processor comparing outputs 
produced by a faulty node and any other node, 
faulty or fault-free, always produces a mismatch. 

3. The time for a fault-free node to produce an 
output for a task is bounded. 

To guarantee that assumption 2 is satisfied, two faulty 
nodes must produce different outputs for a same task. 

A multi-graph [24], M(S), is defined to represent the 
way that tests are executed in the system. M(S) is a 
directed multi-graph defined over graph G, when all 
nodes of the system are fault-free. The vertices of M(S) 
are the nodes of system S. Each edge in M(S) represents 
that a node is sending a task to another node, i.e., there is 
an edge from node i to node j when node i sends a task to 
node j. Furthermore, if node i sends a task to be executed 
by nodes j and k, then there is an edge from node i to 
node j identified by (i,j)k and there is an edge from node i 
to node k identified by (i,k)j. So, if there is an edge (i,j)k  
from node i to node j then there must exist an edge (i,k)j  
from node i to node k. As an example consider figure 1a, 
as node 1 sends tasks to node 2, to node 3 and to node 4, 
the edges are: (1,2)3, (1,3)2, (1,2)4, (1,4)2, (1,3)4 e (1,4)3, 

and all edges are from node 1 to the other nodes. Edge 
(1,2)3 indicates that node 1 sent a task to node 2 and the 
output of this task will be compared with the output 
produced for this same task by node 3, therefore the edge 
(1,3)2 must also be in the graph. 

 

(1,4)3
(1,4)2

(1,2)3

(1,2)4

(1,3)2

(1,3)4

(b)(a)  
Figure 1. a) Multi-graph M(S). b) Graph T(S). 

 

The model uses a graph T(S), defined over multi-
graph M(S), to depict the tests executed by fault-free 
nodes, the Tested Fault-Free graph. In this graph, there 
is an edge from node i to node j when there is at least one 
edge from node i to node j in M(S). Figure 1b shows the 
graph T(S) for the multi-graph M(S) presented in figure 
1a. 

The diagnostic distance between node i and node j is 
defined as the shortest distance between node i and node 
j in T(S), i.e. the shortest path between node i and node j. 
For example, in figure 1b the diagnostic distance between 
node 1 and node 3 is 1, because the shortest path between 
these two nodes has one edge. 

 

3. The Hierarchical Comparison-
Based Algorithm 

In this section the new Hierarchical Comparison-
Based Adaptive Distributed System-Level Diagnosis (Hi-
Comp) algorithm is presented. This algorithm is based on 
the model presented in section 2. 

The algorithm employs a testing strategy represented 
by T(S) graph. T(S) is a hypercube when all nodes in the 
system are fault-free. Figure 2 shows the graph T(S) for a 
system of 8 nodes. 
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Figure 2. T(S) for a system of 8 nodes. 

 

The Tested Fault-Free graph of node i, Ti(S), is a 
directed graph defined over T(S) and shows how the 
diagnostic information flows in the system. There is an 
edge in Ti(S) from node a to node b if there is an edge in 
T(S) from node a to node b and the diagnostic distance 
between node i and node a is shorter than the diagnostic 
distance between node i and node b. Figure 3 shows 
T0(S) for a system of 8 nodes. For instance, there is an 
edge from node 1 to node 3 in this figure, because the 
diagnostic distance between node 0 and node 1 is shorter 
than the distance between node 0 and node 3. 

Nodes with diagnostic distance 1 to node i are called 
sons of node i. In figure 3 the sons of node 0 are nodes 1, 
2 and 4. 

A testing round is defined as the interval of time that 
all fault-free nodes need to obtain diagnostic information 
about all nodes of the system. An assumption is made 
that after node i tests node j in a certain testing round, 
node j cannot suffer an event in this testing round. 

The testing strategy groups the nodes into clusters 
like the Hi-ADSD with Timestamps algorithm [10]. Each 
cluster has N/2 nodes. A function, based on the 
diagnostic distance, defines the list of nodes about which 
node i can obtain diagnostic information through a given 
node p. Figure 3 depicts the cluster division for a system 
of 8 nodes in T0(S). The clusters are: (a) nodes {1, 3, 5, 
7}, (b) nodes {2, 3, 6, 7} e (c) nodes {4, 5, 6, 7}. 

 

(b)(a) (c)
 

Figure 3. Cluster division for a system of 8 nodes in T0(S). 

 

3.1 Hi-Comp: Description 

In Hi-Comp tests are made by sending a task to two 
distinct nodes that execute this task and send the outputs 
to the tester. This algorithm diagnoses events and states. 

Initially, node i sends a task to its sons in pairs. For 
example, for a system of 16 nodes shown in figure 4, 
node 0 sends a task to nodes 1 and 2; then it sends 
another task to nodes 4 and 8. When the quantity of sons 
is odd, the last node is tested with the previous one. For 
example, for a system of 8 nodes shown in figure 2, node 
0 sends a task to nodes 1 and 2; then it sends another task 
to nodes 2 and 4. 

 

 
Figure 4. System with 16 nodes. 

 

When node i diagnoses that two nodes are fault-free, 
by comparing the outputs produced by these nodes, node 
i obtains from these nodes diagnostic information about 
the entire clusters to which each of the tested nodes 
belongs. 

In this algorithm it is possible that node i receives 
diagnostic information from node j through two or more 
nodes p and p’, because a node can belong to more than 
one cluster, as shown in figure 3. Thus, it is necessary to 
guarantee that node i has always the most recent 
diagnostic information about the other nodes. In order to 
allow nodes to determine the order in which events were 
detected, the algorithm employs timestamps [10, 25]. 

When node i receives diagnostic information about 
node j through node p, node i compares its own 
timestamp about node j with node p’s timestamp about 
node j, if the comparison indicates that node p’s 
information is more recent then node i updates its own 
diagnostic information; otherwise, node i rules the 
information received from node p out. 

When node i executes a comparison of outputs and 
this comparison indicates a mismatch, node i classifies 
the state of the two nodes as undefined, because it is not 



Luiz C. P. Albini, Elias P. Duarte Jr.  A Generalized Model for Distributed 
and Roverli P. Ziwich Comparison-Based System-Level Diagnosis 

 5

possible to determine which node is faulty and which is 
fault-free. At this point, if node i has already identified 
any fault-free node, it tests this fault-free node with the 
two undefined nodes in question, each in turn. If an 
output comparison indicates a match then node i 
classifies the tested node as fault-free, changing from 
undefined to fault-free, otherwise node i classifies the 
tested node as faulty, changing from undefined to faulty. 
Meanwhile, if node i has not yet diagnosed any fault-free 
node, these two nodes stay as undefined until node i 
diagnoses a fault-free node that could be used to diagnose 
the undefined ones. 

If node i tests all its sons as undefined, it must test the 
sons of its sons in Ti(S), and so on until it has tested all 
nodes. The last node is tested with all nodes in the 
system. If any comparison indicates a match, the tester 
classifies these nodes as fault-free, and the tester may 
then determine the state of all other nodes of the system, 
either by receiving diagnostic information about these 
nodes, or by testing the undefined nodes with the fault-
free ones. 

If, after testing the last node, no fault-free node was 
found, the tester assumes itself as  
fault-free and tests all nodes with itself. Now, if a 
comparison indicates a mismatch, the tester classifies this 
node as faulty; if a comparison indicates a match, the 
tester classifies the tested node as fault-free. 

 

3.2 Hi-Comp: Specification 

The new algorithm works over three sets: the set of 
undefined nodes: U, the set of faulty nodes: F and the set 
of fault-free nodes: FF. These sets have some properties: 

∅=∩ FU , ∅=∩ FFU , ∅=∩ FFF and 

VFFFU =∪∪ . Each node of the system keeps 
these three sets, the contents of which can vary from 
node to node. By the end of a testing round set U is 
always empty. 

When node i compares the outputs of a task 
performed by nodes p and p’ and this comparison 
indicates a match, node i identifies the two tested nodes 
as fault-free. Node i puts the tested nodes in the set FF 
removing them from the set to which they belonged. 
When node i identifies one fault-free node, node i gets 
from this node diagnostic information about the whole 
cluster to which the fault-free node belongs. Each cluster 
contains N/2 nodes. Furthermore, as information is 
timestamped, node i must test if the received information 
is newer than its own information. If the received 
information is newer, node i must update its own 
information; otherwise, node i simply rules the received 
information out. In other words: 

 
send_task(p,p'); 
IF (output(p) == output(p')) 
THEN 
   U = U - {p}; 
   U = U - {p'}; 
   F = F - {p}; 
   F = F - {p'}; 
   FF = FF + {p} + {p'}; 
 
   GET diagnostic information from p; 
 
   IF (diagnostic information is newer) 
   THEN update local diagnostic information; 
 
   GET diagnostic information from p'; 
 
   IF (diagnostic information is newer) 
   THEN update local diagnostic information;  

 

If node i’s comparison indicates a mismatch when 
comparing p’s and p’’s outputs, node i classifies these 
nodes as undefined. Node i puts these nodes in set U 
removing them from the set to which they belonged. In 
other words: 

 
send_task(p,p'); 
IF (output(p) != output(p')) 
THEN 
   FF = FF - {p}; 
   FF = FF - {p'}; 
   F = F - {p}; 
   F = F - {p'}; 
   U = U + {p} + {p'};  

 

Before node i puts a node p in set U, node i must test 
node p with all nodes Uk ∈ . If all these comparisons 
indicate mismatches node i puts node p in set U. In other 
words: 

 
send_task(p,p'); 
IF (output(p) != output(p')) 
THEN 
   REPEAT for all k in U 
      send_task(p,k); 
   UNTIL (k == last node in U); 
   IF (no comparison between p and k indicates a ma tch) 
   THEN 
      FF = FF - {p}; 
      F = F - {p}; 
      U = U + {p}; 
 
   REPEAT for all k in U 
      send_task(p',k); 
   UNTIL (k == last node in U); 
   IF (no comparison between p' and k indicates a 
match) 
   THEN 
      FF = FF - {p'}; 
      F = F - {p'}; 
      U = U + {p'}; 

 

Considering the comparisons between node p and 
node Uk ∈ , when one of these comparisons produces a 
match, the tester can classify nodes p and k as fault-free, 
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and all the other nodes U∈  as faulty. In other words: 

 
send_task(p,p'); 
IF (output(p) != output(p')) 
THEN 
   REPEAT for all k in U 
      send_task(p,k); 
   UNTIL (output(p) == output(k) OR (k == last node  in 
U); 
   IF (output(p) == output(k)) 
   THEN 
      U = U - {p}; 
      F = F - {p}; 
      FF = FF + {p}; 
      U = U - {k}; 
      FF = FF + {k}; 
      F = F + U; 
   ELSE 
      FF = FF - {p}; 
      F = F - {p}; 
      U = U + {p}; 
 
   REPEAT for all k in U 
      send_task(p',k); 
   UNTIL (output(p') == output(k) OR (k == last nod e in 
U); 
   IF (output(p') == output(k)) 
   THEN 
      U = U - {p'}; 
      F = F - {p'}; 
      FF = FF + {p'}; 
      U = U - {k}; 
      FF = FF + {k}; 
      F = F + U; 
   ELSE 
      FF = FF - {p'}; 
      F = F - {p'}; 
      U = U + {p'}; 

 

When a node Uk ∈ is identified as fault-free by 
node i, node i gets the N/2 items of diagnostic 
information about the tested node’s cluster. 

If after node i tests its sons, set U is empty and there 
are some nodes about which node i does not have 
diagnostic information, node i must test these nodes with 
one node previously identified as fault-free in this testing 
round. 

If after node i tests its sons, set FF is empty, i.e. all 
sons of node i are classified as undefined, node i must 
test the sons if its sons, and so on until a comparison 
indicates a match, or node i tests the last node in Ti(S). 

If node i tests the last node in Ti(S), node i must send 
tasks to this node and all nodes Uk ∈ , one by one. In 
other words: 

 
REPEAT for all k in U 
   send_task(p,k); 
UNTIL (output(p) == output(k) OR (k == last node in  U); 
IF (output(p) == output(k)) 
THEN 
   U = U - {p}; 
   F = F - {p}; 
   FF = FF + {p}; 
   U = U - {k}; 

   FF = FF + {k}; 
   F = F + U; 
ELSE 
   FF = FF - {p}; 
   F = F - {p}; 
   U = U + {p}; 

 

If after testing all nodes in Ti(S), set FF remains 
empty, node i assumes itself as fault-free and tests all 
nodes Uk ∈  with itself. Mismatches indicate that node 
k is faulty and matches indicate that node k is fault-free. 
In other words: 

 
REPEAT for all k in U 
   send_task(i,k); 
UNTIL (output(i) == output(k) OR (k == last node in  U); 
IF (output(i) == output(k)) 
THEN 
   U = U - {k}; 
   FF = FF + {k}; 
   F = F + U; 
ELSE 
   U = U - {k}; 
   F = F + {k}; 

 

Thus, by the end of a testing round, every fault-free 
node has set ∅=U  and all the nodes either in F or FF, 
i.e. VFFF =∪ . 

The algorithm in pseudo-code is given below. 

 
Algorithm running at node i: 
 
TO_TEST = {ALL NODES}; 
U = EMPTY; F = EMPTY; FF = EMPTY; 
 
REPEAT FOREVER 
 
  REPEAT 
   p = next_pair_to_test; p' = next_pair_to_test; 
   result = send_task_and_compare(p,p'); 
 
   IF (result == 0) /*p and p' are tested fault-fre e */ 
   THEN 
    U=U-{p, p'}; F=F-{p, p'}; FF=FF+{p, p'};  
    TO_TEST=TO_TEST-{p, p'}; 
    GET N/2 items of diagnostic information  
            from p and p'; 
    FOR each peace of information 
      COMPARE timestamps; 
      UPDATE local diagnostic information if necess ary; 
 
   ELSE        /* test p and p' are tested undefine d */ 
    IF (FF != EMPTY) 
    THEN 
      result = send_task_and_compare(p, node_of_FF) ; 
      IF (result == 0) 
      THEN 
       F=F-{p}; U=U-{p}; FF=FF+{p}; 
       GET N/2 items of diagnostic information from  p; 
       FOR each peace of information 
        COMPARE timestamps; 
        UPDATE local diagnostic information  
               if necessary; 
      ELSE 
       U=U-{p}; FF=FF-{p}; F=F+{p}; 
      END_IF; 
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      result = send_task_and_compare(p', node_of_FF ); 
      IF (result == 0) 
      THEN 
       F=F-{p'}; U=U-{p'}; FF=FF+{p'}; 
       GET N/2 items of diagnostic information from  p'; 
       FOR each peace of information 
        COMPARE timestamps; 
        UPDATE local diagnostic information  
               if necessary; 
      ELSE 
       U=U-{p'}; FF=FF-{p'}; F=F+{p'}; 
      END_IF; 
 
    ELSE      /* FF == EMPTY */ 
      REPEAT 
       k = select_new_node_from(U); 
       result = send_task_and_compare(p,k); 
       IF (result == 0) 
       THEN 
        F=F-{p}; U=U-{p}; U=U-{k}; FF=FF+{k};  
        FF=FF+{p}; F=F+U+{p'}; U=EMPTY; 
       END_IF; 
      UNTIL (U == EMPTY) OR (k == last_node_from(U) ); 
 
      IF (U != EMPTY) 
      THEN 
       REPEAT 
        k = select_new_node_from(U); 
        result = send_task_and_compare(p',k); 
        IF (result == 0) 
        THEN 
          F=F-{p'}; U=U-{p'}; U=U-{k}; FF=FF+{k};  
          FF=FF+{p'}; F=F+U+{p}; U=EMPTY; 
        END_IF; 
       UNTIL (U == EMPTY) OR (k == last_node_from(U )); 
       U=U+{p}; 
 
       IF (result == 1) 
       THEN 
        U=U+{p'} 
       END_IF; 
      END_IF; 
    END_IF; 
  UNTIL (test == ok) or (node_to_test == last_node) ; 
 
  IF (TO_TEST != EMPTY) 
  THEN 
   m = select_node_from(FF); 
   REPEAT 
    n = select_node_from(TO_TEST); 
    result = send_task_and_compare(m,n); 
    IF (result == 0) 
    THEN 
      F=F-{n}; U=U-{n}; TO_TEST=TO_TEST-{n}; FF=FF+ {n}; 
    ELSE 
      FF=FF-{n}; U=U-{n}; TO_TEST=TO_TEST-{n}; F=F+ {n}; 
    END_IF 
   UNTIL (TO_TEST == EMPTY); 
  END_IF 
 
  IF (|U| = N-2)   /* Last Node from TFFi */ 
  THEN 
   l = last_node_from_TFFi; 
   REPEAT 
    k = select_new_node_from(U); 
    result = send_task_and_compare(l,k); 
    IF (result == 0) 
    THEN 
      F=F-{l}; U=U-{l}; U=U-{k}; FF=FF+{k}; FF=FF+{ l};  
      F=F+U; U=EMPTY; 
    END_IF; 
   UNTIL (U == EMPTY) OR (k == last_node_from(U)); 
 
   IF (U != EMPTY) 
   THEN 
    U=U+{l}; 
   END_IF; 
  END_IF; 

 
  IF (|U| = N-1)   /* Tester itself */ 
  THEN 
   REPEAT 
    k = select_new_node_from(U); 
    result = send_task_and_compare(i,k); 
    IF (result == 0) 
    THEN 
      U=U-{k}; FF=FF+{k}; F=F+U; U=EMPTY; 
    ELSE 
      U=U-{k}; F=F+{k}; 
    END_IF; 
   UNTIL (U == EMPTY); 
  END_IF; 
 

 

4. Hi-Comp: Latency and Maximum 
Number of Tests 

In this section, the formal proofs of the latency and 
maximum number of tests required by the new algorithm 
are presented. 

 

Theorem 1. A system running the Hierarchical 
Distributed Comparison-Based algorithm is  
(N–1)-diagnosable. 

Proof: 

First consider a system with only one fault-free node 
and N–1 faulty nodes. By definition, the fault-free node 
tests all nodes combining them in pairs and, as none are 
determined to be fault-free, the tester continues executing 
tests comparing all nodes with itself and achieves the 
complete diagnosis of the system, identifying the state of 
all nodes as faulty. 

Now, consider a system with more than one fault-free 
node. Each of these fault-free nodes executes tests until it 
finds two other fault-free nodes, one of which can be the 
tester itself. When the tester finds two fault-free nodes, it 
obtains diagnostic information from these fault-free 
nodes. By getting diagnostic information from the tested 
fault-free nodes and, considering the information 
obtained by its own tests, the tester achieves the complete 
and correct diagnosis of the system. 

However, if a situation such as shown in figure 5 
happens, i.e. if node a could obtain diagnostic 
information about node c from node b and node b obtains 
diagnostic information about node c from node a, then 
both, node a and node b, would not achieve the complete 
diagnosis of the system. 

 



Luiz C. P. Albini, Elias P. Duarte Jr.  A Generalized Model for Distributed 
and Roverli P. Ziwich Comparison-Based System-Level Diagnosis 

 

 8

 
Figure 5. Nodes a and b exchange information  

about node c. 

 

This situation never happens because if node a 
receives information about node c from node b, the 
diagnostic distance between nodes a and c must be larger 
than the diagnostic distance between nodes b and c; 
analogously for node b to receive diagnostic information 
about node c from node a, the diagnostic distance 
between nodes b and c must be larger than the distance 
between nodes a and c. 

Concluding, even if there is only one fault-free node, 
this node is capable of correctly achieving the complete 
diagnosis of the system, so the algorithm is  
(N–1)-diagnosable.  □ 

 

Theorem 2. All fault-free nodes running Hi-Comp 
require, at most, log2N  testing rounds to achieve the 
complete diagnosis of the system. 

Proof: 

Consider a new event on node a. By the definition of 
testing round, all nodes with diagnostic distance equal to 
1 to node a, i.e. all sons of node a, diagnose this event in 
the first testing round after the event. 

Now, in the second testing round after the event, the 
nodes with diagnostic distance equal to 2 to node a 
diagnose the event, either by getting diagnostic 
information from nodes with diagnostic distance equal to 
1 to node a, or by directly testing node a, if all nodes 
with diagnostic distance equal to 1 to node a are faulty. 

Consider that node i is fault-free and has diagnostic 
distance equal to d to node a. Assume that node i 
diagnoses the event at node a in at most d testing rounds. 

Now consider a node j with diagnostic distance equal 
to d+1 to node a. By the definition of diagnostic distance, 
any node with diagnostic distance equal to d+1 to node a 
is a son of a node with diagnostic distance equal to d to 
node a. So node j is son of a node i. By the definition of 
testing round, a node must test all its sons in each testing 
round, so node j tests node i in all testing rounds, then 
node j can take at most one testing round to get new 
information from node i. 

As node i diagnoses node a’s event in at most d 
testing rounds, and node j takes at most one testing round 

to get new diagnostic information from node i, node j can 
take at most d+1 testing rounds to diagnose the node a’s 
event. 

 Therefore, for node j diagnoses an event that 
happened in node a, with diagnostic distance equal to 
d+1 between then, node j can take at most d+1 testing 
rounds. 

Concluding, if the diagnostic distance between two 
nodes is x one of these nodes may take up to x testing 
rounds to diagnose an event at the other node. 

By the hypercube’s definition [18] the largest 
diagnostic distance between two nodes is log2N. 
Therefore the algorithm’s maximum latency is log2N  
testing rounds.   □ 

Figure 6 illustrates theorem 2. In the first testing 
round after an event at node a, the sons of node a 
diagnose the event. In the second testing round the nodes 
that are sons of node a’s sons diagnose the event, either 
by getting information from the sons of node a or by 
testing node a directly. After d testing rounds, node i 
with diagnostic distance equal to d to node a diagnose the 
event. Finally the node with the largest diagnostic 
distance to node a, log2N, diagnoses the event, in at most 
log2N testing rounds. 

 

 
 

Figure 6. Illustration of TFFa. 

 

Theorem 3. The maximum number of tests required 
by all fault-free nodes in one testing round is O(N3). 

Proof: 

Initially, consider only one fault-free node in the 
system and N–1 faulty nodes. To complete the diagnosis 
of the system, the fault-free node sends tasks to the faulty 
nodes combining then in pairs, so the number of tests 
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executed is the combination of N–1 in pairs: 2
1−NC . 

However these tests are not enough for the fault-free 
node to achieve the complete diagnosis, so the fault-free 
node assumes that it is itself fault-free and sends tasks to 
itself and each one of the other nodes, i.e. it executes N–1 
more tests. Thus the total number of tests required by one 

fault-free node is: 
2

)1(
2

2
1

NN
NCN

−=−+− . 

Now consider two fault-free nodes. The maximum 
number of tests required by these two fault-free nodes is 
at most two times the maximum number of tests required 
for one fault-free node. The number of tests executed in 

this case is: 

2
*2

22

222 NNNNNN −=−+−
. 

For three fault-free nodes, the theoretical maximum 
number of tests required is three times the maximum 
number of tests required for one fault-free node: 

2
*3

2 NN −
. 

By considering N fault-free nodes in the system, the 
theoretical maximum number of tests is, at most, N times 
the maximum number of tests required for one node: 

22
*

232 NNNN
N

−=−
, that is O(N3). � 

 

 It is known that as more nodes are fault-free less 
tests are required to complete the diagnosis, because the 
fault-free nodes can get diagnostic information from 
other fault-free nodes. For example, when all N nodes are 

fault-free, each node executes 
2

2Nlog
 tests, which are 

smaller than 
2

2 NN −
. Although the worst case is 

extremely rare it is O(N3). □ 
 

5. Simulation Results 

In this section experimental results obtained with Hi-
Comp’s simulation are presented. The simulations were 
conducted using the discrete event simulation language 
SMPL [26]. Nodes were modeled as SMPL facilities, and 
each node was identified by a SMPL token number. 
Three types of events were defined: test, fault and repair. 

Results of two experiments are presented. The first 
experiment shows the worst case of the latency, whose 

results confirm theorem 1. In the second experiment we 
investigated the maximum number of tests for different 
numbers of fault-free nodes, from 1 node to N–1 nodes; 
this experiment shows the difference between the 
simulated maximum number of tests required and the 
theoretical maximum presented in theorem 2. 
 

5.1 Algorithm’s Latency 

To illustrate the algorithm’s latency two experiments 
are presented: the first one considers the diagnosis of one 
event. In this experiment all nodes are fault-free, then an 
event happens in one node. In the second experiment, we 
consider the diagnosis of N–1 simultaneous events, 
initially only one node is fault-free, then one event 
happens in each faulty node and all nodes of system 
become fault-free, the experiment shows how the node 
that was fault-free from the beginning diagnoses all 
events. 
 

5.1.1 Diagnosis of 1 Event 

The purpose of this experiment is illustrate the 
amount of testing rounds needed for one event to be 
diagnosed by all the other N–1 fault-free nodes, in a 
system of 16 nodes. 

 

 
Figure 7. System of 16 nodes with one event. 

 

  By the definition of testing round, each node 
running the algorithm must obtain diagnostic information 
about all nodes of the system in each testing round, i.e., a 
node k is tested, at least, by all nodes of which node k is 
son in each testing round. 

Thus in the first testing round after an event on node 
k, all nodes of which node k is son diagnose this event. In 
the second testing round after the event, the information 
about the event is passed to the testers of the sons of node 
k and the information flows through TFFi graph. 
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Testing Round Amount of Nodes that 

Diagnoses the Event 
1 4 
2 6 
3 4 
4 1 

Table 1. Number of nodes that diagnoses an event per testing round in a 
system of 16 nodes. 

 

This experiment was conducted over the system of 16 
nodes shown in figure 7. The event happens in node 15 
and the information about this event must be passed on 
until node 0 receives the information. Table 1 shows the 
amount of nodes that diagnose the event in each testing 
round. In the first testing round after the event, 4 nodes 
diagnoses the event, in the second round 6 nodes, in the 
third round other 4 nodes and in the fourth round only 1 
node diagnoses the event. 

 

5.1.2 Diagnosis of N–1 Simultaneous Events 

In this experiment only node 0 is fault-free and all 
other nodes are faulty; this system is shown in figure 8. 
Node 0 knows the state of all nodes, when at once an 
event happens at each faulty node and they all become 
fault-free. 

 

 
Figure 8. 16 nodes system with N–1 faulty nodes. 

 

In the first testing round after the events, node 0 
diagnoses the events that occurred at its sons, as all the 
other nodes do. In the second testing round node 0 
diagnoses the events that occurred at the sons of its sons 
through its sons, and son on until the entire system is 
diagnosed. 

Table 2 shows the amount of events node 0 diagnoses 
per testing round. 

 
Testing Round Amount of Nodes 

1 4 
2 6 
3 4 
4 1 

Table 2. Amount of nodes that node 0 diagnoses per testing round, in a 
system of 16 nodes with 15 simultaneous events. 

 

So, in log216 = 4 testing rounds after the events, node 
0 correctly diagnoses all events. 

 

5.2 Maximum Number of Tests 

The purpose of this experiment is to show the 
maximum number of tests performed by different 
amounts of fault-free nodes in one testing round. In this 
experiment, all arrangements of fault-free nodes were 
analyzed and the ones with the largest number of tests per 
testing rounds were picked, from 0 to N fault-free nodes. 
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Figure 9. Number of tests executed in the system. 

 

In figure 9 the continuous line depicts the number of 
tests executed in the system for the different amounts of 
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fault-free nodes; the dashed line shows the theoretical 
worst case of the number of tests according to theorem 3. 
As shown in the figure, the real number of tests required 
is smaller than the theoretical maximum number of tests 
predicted in theorem 3. 

 

 
Figure 10. The situation with the maximum  

quantity of tests. 

 

As shown in figure 10 the largest amount of tests 
occurs when there are only four fault-free nodes in the 
system. In Hi-Comp a node executes tests in the system 
until it finds two fault-free nodes. Nodes were arranged 
as shown in figure 10; this situation forces all fault-free 
nodes to execute the largest number of tests to find two 
fault-free nodes. For example, node 0 needs to test all 
nodes between nodes 1 and 14, sending tasks to each pair 
of nodes in this interval, until tests the pair formed by 
nodes 1 and 14. All fault-free nodes repeat this situation, 
raising the number of tests to its maximum. 

This results confirm the suspicion that the maximum 
number of tests in the system is less than O(N3). 

 

6. Conclusion 

This paper presented the distributed comparison-
based model in which the Hi-Comp (Hierarchical 
Comparison-based Adaptive Distributed System-Level 
Diagnosis) algorithm is based. This is the first 
hierarchical, distributed and comparison-based algorithm. 

Nodes running comparison-based diagnosis 
algorithms execute tests by comparing tasks results. In 
Hi-Comp nodes must test other nodes to achieve the 
complete diagnosis. A tester sends a task to two nodes. 
Each of these nodes executes this task and sends its 
output to the tester. The tester receives and compares the 
two outputs; if the comparison produces a match, the 
tester assume that the two nodes are fault-free; but, if the 
comparison produces a mismatch, the tester considers 

that, at least one of the two nodes is faulty, but cannot 
identify which one. 

When a fault-free node is tested, the tester obtains 
diagnostic information about the entire cluster of the 
tested node. Clusters contain N/2 nodes. To allow nodes 
to determine the order in which events were detected, the 
algorithm employs timestamps. 

The new algorithm’s latency is log2N testing rounds. 
A testing round is defined as the period of time that all 
fault-free nodes need to obtain diagnostic information 
about all nodes of the system. 

The maximum number of tests in the system is O(N3) 
tests per testing round. The algorithm is N–1-
diagnosable, i.e., if there are up to N–1 faulty nodes in 
the system, the fault-free nodes still achieve the complete 
correct diagnosis. 

A practical tool for faulty management of computer 
networks applications based on the Hi-Comp algorithm is 
one of the main objectives for future work. 
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