
Chameleon: The Performance Tuning Tool for MapReduce
Query Processing Systems

Edson Ramiro Lucsa Filho1, Ivan Luiz Picoli2, Eduardo Cunha de Almeida2, Yves Le Traon1

1 University of Luxembourg

{edson.lucas,yves.letraon}@uni.lu
2Federal University of Paraná

{ilpicoli,eduardo}@inf.ufpr.br

Abstract. Chameleon is a tuning advisor to support performance tuning
decision-making of MapReduce administrators and users. In MapReduce query
processing, a query is translated into a set of jobs, i.e., query plan. For adminis-
trators, Chameleon can be a powerful tool for observing query plan workloads
and their impact in large-cluster machine setups in terms of computing resource
consumptions. For users, Chameleon provides a set of functionalities to tune
query plans and observe performance improvements while testing different tun-
ing knobs. Chameleon embeds a tuning mechanism based on a hash index to
map jobs to tuning knobs. The hash index allows users defining specific tuning
knobs for jobs, while a clustering algorithm is responsible for finding jobs with
similar resource consumptions to receive the same tuning. In this demonstration
we outline the functionalities of Chameleon and allow users interacting with it
by sending and tuning queries for auditing performance improvements.

1. Introduction
In the last years, we have seen the rise of MapReduce Query Processing Sys-
tems that translate SQL-like queries into Map Reduce programs, such as Hive
[Ashish Thusoo 2009], DryadLINQ [Isard et al. 2007], Pig [Gates et al. 2009], and Shark
[Xin et al. 2013]. The advantage of these systems is that they make declarative programs
leveraging the MapReduce benefits. For instance in Hive, every incoming query is trans-
lated into a set of jobs to be executed in distributed machines, where a job is a program
with a set of query operators, the performance tuning knobs and data input. This set of
jobs represents the query execution plan in the form of a Directed Acyclic Graph (DAG).

In these systems, performance tuning knobs are either defined in a central config-
uration file or included into the job source-code (similar to SQL hints). However, in either
ways, the same tuning configuration is propagated to all jobs within the DAG, forbidding
users to define specific tuning knobs for each job. The propagation of the same tuning can
be treacherous, since distinct query operators and varied input data sizes lead to different
usages of computing resources (the TableScan operator requires disk bandwidth, the Sort
operator requires memory). Therefore, performance of MapReduce queries depends on
specific tuning configuration for each job. Instead of coarse-grained tuning, at the level
of a query, we promote a fine-grained tuning, with specific tuning knobs per job. The

http://www.inf.ufpr.br/erlfilho/chameleon.mp4

29th SBBD – Demos and Applications Session – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

paper:38

203

Figure 1. The Chameleon architecture and its integration with the MapReduce
Ecosystem.

Figure 2. K-means updating the tuning knobs in the Chameleon Hash Index.

issue we address in this paper is the tool-environment for materializing such fine-grained
tuning.

Chameleon is a tuning advisor to MapReduce Query Processing Systems. Its main
goal is supporting MapReduce users to make performance tuning decisions. Chameleon
uses a tuning mechanism based on a hash index. The index key is a canonical represen-
tation of a job in the form of a bitmap. The index values represent the tuning knobs.
Chameleon implements the K-means unsupervised machine learning algorithm to clus-
ter jobs with equivalent resource consumptions and update the tuning knobs. Clusters
are computed from the resource consumption statistics of the execution log files. Once a
new job gets its key, it is automatically mapped to a tuning setup. Chameleon does not
calculate the actual tuning, rather than, it reuses precomputed tuning (from users or third
party MapReduce tuning systems) and optimize queries upfront the execution. Indeed,
Chameleon allows ad-hoc jobs receiving proper tuning without monitoring or sampling
executions. In this demonstration we outline the functionalities of Chameleon and allow
users interacting with it by sending and tuning queries for auditing performance improve-
ments.

2. Architecture
Figure 1 illustrates the Chameleon architecture interacting with the MapReduce Query
Processing Ecosystem. The architecture has six modules, described as follows:

• Code Parser (CP) is responsible for reading the source-code of each job and creat-
ing a canonical representation for it (i.e., the hash index key). Initially, Chameleon

29th SBBD – Demos and Applications Session – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

204

Figure 3. Dashboard: The history list of executed queries.

assumes that the resource consumptions of different jobs can be said equivalent if
they implement equivalent query operators. Then, a key maps jobs to specific
tuning knobs. After clustering, the keys will be used to update the tuning knobs.
Let τ be the query operators and the domain of τ be the list of operators
{op1, . . . , opm}. A key κ is a one-to-one mapping (M : τ → {< b1, . . . , b|τ | >
|bi ∈ {0, 1}, i = 1, . . . , |τ |}). The key is represented as a bitmap, called κ, with
a bit turned on or off accordingly to the existence of the operator in the source
code. For instance, let us say that a job j0 implements only the TableScan op-
erator, than, τ0 = {TableScan} and, for instance, |τ | = 5. The calculated key
for this job is κ0 = {00001}, where the bit for the TableScan operator has been
switched to 1 in τ0. The number of query operators supported by the index is rep-
resented by τ . This number can be incremented as news programs are parsed. The
query systems are evolving and new operators can be mapped without additional
definitions, adding a new operator to the key and incrementing |τ |.
• The Clustering module performs the K-means algorithm over the execution statis-

tics gathered at the log files. Clustering is the foundation of the Chameleon tuning.
K-means creates clusters for jobs with similar usage of computing resources. Once
jobs in the same cluster present similar resource consumptions, they are allowed
to receive the same tuning setup. Users may interact with K-means by setting
1 to 65 computing resources traced in the log files used. In addition, users can
configure the execution of the K-means algorithm to update clustering informa-
tion. The refresh time configuration refers to the periodicity to perform K-means.
The number of classes configuration refers to the number of clusters created. The
clustering execs configuration defines how many times the K-means algorithm is
performed within the refresh time.
• Code Mapper (CM) maps keys to clusters. For this, Chameleon computes the

occurrences of keys per cluster. The algorithm is straightforward, the key maps
to the cluster in which it appears the most. Figure 2 illustrates the keys matching
the tuning knobs in the hash index. For instance, lets say jobs 1, 3 and 6 share the
same key {0111001}, but in different clusters (#A and #D). Their key will map
to cluster #D with two occurrences. This means, key {0111001} will receive the
tuning knobs from cluster #D. The goal is allowing upcoming jobs reusing pre-
computed tuning setup. Once a new job gets its key, it is mapped to a cluster and
automatically receives the tuning setup from such cluster. In this way, Chameleon
can reuse precomputed tuning (from users or third party MapReduce tuning sys-
tems) and optimize queries upfront the execution.
• Log Parser (LP) periodically reads the query log files traced by the MapReduce

Query Processing Ecosystem in order to extract execution statistics; for instance,

29th SBBD – Demos and Applications Session – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

205

Figure 4. Dashboard: Query analysis interface.

Tuning Knobs Range of Values
io.sort.mb 70-250
io.sort.factor 7-10
io.sort.record.percent 0.05-0.5
io.sort.spill.percent 0.80-0.99
io.file.buffer.size 4096-131072
mapred.child.java.opts Xmx512m - Xmx1g

Xms256m - Xms512m
mapred.job.shuffle.merge.percent 0.66-0.99
mapred.reduce.parallel.copies 5-10

Table 1. List of the Hadoop tuning knobs.

the number of bytes that was processed at the map and reduce phases.
• Workload Database (WDB) is the internal information database that hosts the

hash index and tuning knobs computed by third party as depicted by Table 1. It
also hosts the information required to perform K-means, such as: the statistics
from the log files and the clusters.
• The Dashboard module provides the Chameleon web interface with three tabs.

The Chameleon Settings tab is reserved to setup the internal configurations, such
as: database connection, path to the MapReduce Query Processing Ecosystem,
and K-means setup. The Queries tab, illustrated in Figure 3, summarizes the
execution history. After selecting one of the queries for tuning, as we illustrate
in Figure 4, the Dashboard module presents the query plan with its internal jobs
and source-codes, and the tuning knobs applied. As illustrated in Figure 5, the
Workload Report summarizes the workload characteristics of each cluster. Once

29th SBBD – Demos and Applications Session – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

206

Figure 5. Dashboard: The workload analysis interface.

the users know the workload characteristics, they are able to define specific tuning
parameters for each cluster.

3. Demonstration overview
We will present the Chameleon functionalities, allowing users to interact with it by send-
ing queries via HiveQL command line interface and setting different tuning setups to
observe performance improvements. Users will also interact with Chameleon via web
interface to analyze the execution workloads. The current implementation of Chameleon
supports the Apache Hive 0.11.0 and Apache Hadoop 1.2.1. The demonstration agenda
is organized, as follows:

1. Start Chameleon Internal Modules We will launch the Chameleon modules that
will be up and running in background during the demonstration. We will present
a brief description of the Chameleon configuration files, including the K-means
setup.

2. Query submission: The Apache Hive will have pre-loaded data of the TPC-H
database. We will provide the 22 TPC-H queries written in HiveQL, but users will
be able to submit any query via Hive Command Line Interface to see the function-
alities of Chameleon. Users will observe Chameleon tuning each job generated by
queries followed by the proper execution.

3. Dashboard: Users will be able to access the Dashboard and interact with the
Queries tab to see the execution history of jobs. They will be able to interact with
any submitted query by checking the query source-code, the query DAG with its
internal jobs and the tuning knobs applied to each job. At this point, users will be
able to interact with the Workload Report tab to analyze the charts and tables that
describe the clusters and their workload.

29th SBBD – Demos and Applications Session – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

207

Figure 5 depicts the clusters and their execution statistics. Users will visualize a
combination of statistics used by the K-means algorithm and their respective val-
ues. The header plots the statistics chosen by the user in the Chameleon settings,
where each column represents one of the statistics. The column values are the
average statistic values computed by K-means. The last column represents how
many jobs have been clustered. Users will visualize the Statistics chart, which
drills down to the execution statistics of each cluster. This chart is a tool to check
the ongoing workload in the MapReduce Query Processing Ecosystem. For in-
stance, the number of bytes read and written by the HDFS.

4. Tuning Query: Users will be invited to redefine the tuning parameters for each
cluster or import them from third party tuning systems. Then, users will be able to
re-execute the same query via Hive Command Line Interface in order to observe
performance improvements.

4. The Take-Away Message
Chameleon is a tuning advisor to support performance tuning decision-making of MapRe-
duce users and administrators. For users, Chameleon provides a set of functionalities to
tune query plans and observe performance improvements while testing different tuning
knobs. Chameleon does not calculate the actual tuning, rather than, it reuses precomputed
tuning (from users or third party MapReduce tuning systems) and performs intra-query
optimization upfront the execution. It also enables jobs from different queries sharing
the same tuning. For administrators, Chameleon can be a powerful tool for observing
query workloads and their impact in large-cluster machine setups in terms of computing
resource consumptions.

References
Ashish Thusoo, J. S. S. (2009). Hive- A Warehousing Solution Over a Map-Reduce

Framework. Proceedings of the VLDB Endowment.

Gates, A. F., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S. M., Olston, C.,
Reed, B., Srinivasan, S., and Srivastava, U. (2009). Building a high-level dataflow sys-
tem on top of Map-Reduce: the Pig experience. Proceedings of the VLDB Endowment,
2(2):1414–1425.

Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D. (2007). Dryad: distributed data-
parallel programs from sequential building blocks. ACM SIGOPS Operating Systems
Review, 41(3):59.

Xin, R. S., Rosen, J., Zaharia, M., Franklin, M. J., Shenker, S., and Stoica, I. (2013).
Shark: SQL and rich analytics at scale. In Proceedings of the 2013 international
conference on Management of data - SIGMOD ’13, page 13, New York, New York,
USA. ACM Press.

29th SBBD – Demos and Applications Session – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

208

