Proteum - A Tool for the Assessment of Test Adequacy for C
Programs
User’sguide

Version 1.1 -C
18/3/96

Marcio Eduardo Delamaro
José Carlos Maldonado

Protewm 1.1

Abstract

This technical report presents the main features ofeBm Program Testing Using
Mutants), a testing tool that suppoitutation Analysis criterion. Proteum can be
configured for testing programs in many procedural programiaimguages. This guide
reports the versiof.1 - C that works with the C language on SUN workstations, under
OPENWINDOWS environment. Proteum has been developébhigérsity of Sdo Paulo
(USP), Sao Carlos, SP, Brazil [DEL93] and used in tegcand researching activities at
USP and at SERC/Purdue University.

Acknowledgment

The authors whish to show their appreciation’ to PAgdfitya P. Mathur for the valuable
corrections and improvements done to this report. Tthoas also thank Ms. Shirley
Shrum for the revision of this report.

Table of Contents.

1 - Introduction
2 - Environment
3 - Testing Sessions
3.1 - Creating a New Test
3.2 - Retriving a Test
3.3 - Saving a Session
4 - Exiting Proteum
5 - The Test Case Set
5.1 - Inserting Test Cases
5.2 - Querying a Test Set
5.3 - Deleting Test Cases
5.4 - Importing Test Cases
5.4.1 - Importing from Proteum Session
5.4.2 - Importing from POKE-TOOL
5.4.3 - Importing from ASCII Files
6 - Working with Mutants
6.1 - Generating Mutants
6.2 - Executing Mutants
6.3 - Analysing Mutants
6.4 - Selecting Mutants
6.4.1 - Selecting Mutants by Mutation Operator
6.4.2 - Selecting Mutants by Block
7 - Test Status
8 - Creating Reports
8.1 - Test Case Report
9 - Configuring Proteum

23
23
23
24
24
26

1 - Introduction.

This guide presents the main features of Protelmgfam Testing Using Mutants), a

testing tool that supportd utation Analysis criterion [DEM78]. A previous knowledge
of mutation testing is assumed. The reader may ref¢DEM78, WON93] for basic

principles of mutation testing.

Proteum can be configured for testing programs in manyegwoal programming
languages. This guide reports the verdidn- C that works with the C language on SUN
workstations, under OPENWINDOWS environment.

In Proteum a test is guided by test sessions. In easlosdhe tester can create a
program test, interrupt it and resume it later. Thusfiteestep is to create a program
test. A program test is identified by the filenametlod source program under test,
flename of the executable program, names of functionde tested, a compilation
command to create the executable file from the solilecand a name that identifies the
test and used for saving/retrieving a testing sessioaddlition, the tester can choose a
“type” for the program test. It can benarmalor aresearchtest. These two types differ
in the way mutants are executed. We get back to this point later in this section.

Once a test has been created, the tester can begkimgvon it. In particular one
can save the current session to guarantee that tHe deme will not be lost, can quit
Proteum and can retrieve the same or another tesg g name given at the time of its
creation.

The central tasks in a test are to define a testsegfenerate a set of mutants and
to execute these mutants against the test set. Te=t can be inserted in the test set in
one of two ways. When creating test cases interdgtiProteum asks the tester for the
initial parameters (command line parameters) and, dfter parameters have been
provided, Proteum begins executing the program under Tést. tester interacts with
the program and can provide run time inputs to the progrdime tester can see the
outputs of the program during execution and decide whetherutipeits are as expected
or not. If not, an error is found and the tester mighnt to correct the program under
test. Otherwise, input and output data are saved by Praaadnconstitute a test case.
Currently, only keyboard inputs and tty outputs are supported.

Test cases may also be inserted into a test setfiflesmProteum uses data stored
in files as run time inputs and executes the program uadeph this data, generating the
corresponding outputs. Again, inputs and outputs are storedeas @ase. Proteum can
import three types of files: plain ASCII files, POKEDDL" test files and other Proteum
test case files.

Test cases may be deleted or disabled. Deleting aasstphysically removes it
from a test set. Disabling does not remove a tes bas logically excludes it from the
test set. When executing mutants, the disabled te=s$ eas not used. Disabled test cases
can be re-enabled allowing the tester to try differteist sets without re-entering test
cases.

POKE-TOOL is a data-flow and control-flow based structural testing tool.

The generation and execution of mutants is done in plesway. First, the tester
selects the mutant operators to be used. Proteum pravikgsof 71 mutation operators
divided into 4 classes: Statement, Operator, Varialld, @onstant mutation operators
(see [AGA89]). For each operator, the tester can sptwf percentage of mutants to be
generated. Proteum randomly generates only the spgodiegnt of mutants. Mutants
can be generated incrementally thereby allowing tbiettebe divided into different steps.
In each step a small set of mutants may be generatethdter execution and easy
analysis. The decision as to which mutant operatrsetect is a tradeoff between the
cost of executing the mutants and quality of test set décision is based on the test
requirements.

Once the tester requests Proteum to evaluate a tegtregtum builds, compiles,
executes each mutant, and compares its behavior \aitlotithe program under test. The
comparison of outputs is based on: outputs, return code arekécution time. Only the
outputs written to “stdio” and "stderr” are considereddomparison. The return code is
used to differentiate mutants that have the same outpubmarmal termination. The
execution time is used to distinguish mutants that enter an infinite loop and are
aborted to terminate their execution.

There are two ways Proteum executes mutants. Oneused,when the test type
is “Normal,” is to execute each mutant from the fiestt case until it is killed or, if no test
case Kills it, execute it until the test set is exhedistin case the test type is “Research”
each mutant is executed against all test cases, regaodledether the mutant has been
kiled or not. This approach enables extra data gatheFiar example it is possible to
analyze which operators are less efficient — thoseltave their mutants more easily killed
— or counting the number of test cases that killed thatants. This method of executing
mutants certainly is not a practical way to evaluast sets but may be useful for research
aimed at establishing guidelines and cost effective strategies for industrial applications.

After executing the mutants, the tester has an evaiuafithe test set. Proteum
displays summary statistics about the current testoses$3or instance, the total number of
mutants, the number of live mutants, the number of alerm mutants and the mutation
score are a few of the several useful statistics displayed.

Mutation score is a measure of test set adequacy. Atangeer of live mutants,
implying a low mutation score, is generally attributectiow quality test set. In addition,
some of the live mutants may be equivalent to the pnognader test, and hence cannot
be killed. Such mutants do not contribute to the adequstysét. However, the current
test set may be improved by adding test cases aimedirgf ke mutants. In Proteum, it
is a tester’s task to decide whether a mutant is eqaotvalenot. Proteum displays the
original and the mutated program, the mutant, and alltwstéster to mark it as
equivalent if that be the case. The tester caniatistactively execute the mutant and try
different data in order to Kkill it; this data is notened in the test set unless explicitly
requested for insertion by the tester.

Proteum provides a report about the effectivenessabf st case. The tester
can select what information is desired in the rep&ur instance, the number of mutants

executed using the test case; number of kiled mutanssifedd by the cause; number of
live mutants; the input and output.

The remainder of this report explains details of the operation of Proteum.

2 - Environment

The directory where Proteum is installed, elgsr/bin/proteum must contain the
following files:

Executables:
proteu
tcase_ex

Tables:
chave.c (C keywords)
tabsin.c (C syntactic table)

Proteum must be invoked from a command window (congotmaoltool) in the
Openwindows environment. Before invoking Proteum you neeset the directory where
Proteum is installed.by setting the environment v&iRIROTEUMHOMEThe following
UNIX command may be executed to set the environmenabla (assuming that the
directory is/usr/bin/proteum

setenv PROTEUMHOME /ustr/bin/proteum

Having set the location of Proteum, type the comniasdbin/proteum/protetio
invoke Proteum. On startup Proteum shows the screen as in Figure 2.1.

3 - Testing Sessions

As mentioned earlier, Proteum’s operation is basetbsimg sessions. A program
test may be started, interrupted and resumed from the giojoped. To begin a session
Proteum needs to be informed of parameters that identégt session. It can be a new or
an interrupted session. TReogram Tesbutton in the main menu can be used to inform
Proteum about the name of the session. A new progrsimst started by choosing the
optionNew or an old one is resumed by choosing the optaad (see Figure 3.1).

M=) PROTEUM — PROgram TEsting Using Mutants — ¥ 1.1 — C 7

{ Program Test) { Testcase v) (Mutants =) { Reports v { Properties) { Status) { Quit)

Figure 2.1 - Main Menu

PEOTEUM
) { Test case

Figure 3.1 - Starting a test session.

3.1-CreatingaNew Test

Selection of theNewoption pops up the panel which provides parameters of atesw
(see Figure 3.2). These features determine, among others, the program to be tested.

-~ Create Mew Program Test

Directory: Szapacurafusers/Eswslfmedsfexempla

Program Test Mame: myprogl

Source Program: mYyprog.c

Executable Program: myprog

Compilation Comand: cc mypreg.c —o myprog,

Tvpe: ITest I Research |

Functions: | all | select [maln |E|

[Confirm} { Cancel)

Figure 3.2 - Creating a New Test

Directory:

In this field enter the name of the directory in whibe program test is to be built.
This directory must already contain the source file #vel corresponding executable
program file. In this directory, referred to as "workediory”, Proteum creates the work
files described below. If this directory does not gx@soteum gives a warning and does
not accept the name.

Program Test Name:

This field contains the name that identifies a sesision. Often one may not care
to select the source file name or executable fileenéonidentify a test session. When
testing a program in different ways, for instance wh&ng different sets of mutants, one
needs to select different names for a test session.

For example, suppose that in a test session progrgmogis to be tested and is
to be built from the filemyprog.c(Figure 3.3). One may name this sessiomggsrogl In
this case, Proteum creates the following files in the work directory:

myprogl.PTM
This file has general information about the test glediby the tester at the

time of creation of a test session.

myprogl.TCS
myprogl.lOL
These files together contain the test set used in test sesgorg

myprogl.IND
myprogl.MUT
These files together contain the mutants used in test sesgo0g.

myprogl.L|
This file has a simplified representation of the soufie - called
Intermediate Languagethat is used by Proteum in the generation of mutants.

myprogl.c
This file is created bgpp the UNIX C preprocessor. Proteum uses this
file in a test session and not the original sourceniygi(0g.g.

#include <stdio.h>

main()

{

int a, b;

scanf("%d %d", &a, &b);
if (a > b)
printf("\n%d is greater than %d", a, b);

else
if (a<Db)
printf("\n%d is less than %d", a, b);
else
printf("\n%d is equal to %d", a, b);
return O;
}

Figure 3.3 - Programyprogram.c

Source Program:

This is the name of the source file. It must haeediffix.c. and it must be in the
working directory. If this file does not exist, Protegives a warning and does not accept
the name. To test programyprogabove, one must suppigyprog.cas the name of the
source program.

Executable Program:

This is the name of the file containing the execetdblg.,myprog. It must be in
the same directory where the source file is locatéd. does not exist, Proteum issues a
warning.

Compilation Command:

This field contains the system command to createeleeutable program from
the source program. This field allows the use of anypider and any compiling and
linking option. There is just one restriction: the seufie name and executable file name
must be used at least once in the compilation command.

Proteum uses this field to create executable programm fle mutants it
generates. This is done by replacing the source filer®y the mutant source file name;
the executable file name is replaced by mutant exeeufédblname. Proteum interprets
the commandc myprog.c -0 mypro@gscc <source file> -0 <exec. file>

Link options and other file names may also be used tt the executable
program. For example&c myprog.c yourprog.o -Imath -o myprega valid command,; it
creates the executable fil@yprogby compilingmyprog.cand linking it with the object file
yourprog.o and with the librarlibmath.a

Type:

Two types of test sessions may be selectedtor Research UsingTest causes
Proteum to behave in a conventional manner whilewi® and killing the mutants.
Thus, when a mutant is killed by a test case, it isemetuted on any remaining test cases.
Using Researchcauses Proteum to execute each mutant on all test pagardless of
whether a mutant is dead or alive. UsiRgsearchalso allows cross reference data
gathering about test sets, aimed at the minimizatiotesf sets mutation operator
effectiveness analysis.

Functions:

This allows the selection of functions or subprogrambé tested. Thus, parts of
a source file may be selected for mutation. Afleoption allows mutating the entire
program. TheSelect option allows a tester to select one or more fonestior mutation.
In the case of selective mutation Proteum examinesolurce file and presents a list of
functions found. One may then select functions from this list.

Once all the fields have been filled one cli€ksnfirmto complete the test session
creation process. Th@ancel button may be clicked to cancel the creation ofsh te
session.

If a test session with the same name is alreadyenmorking directory, Proteum
issues a warning. The existing test session candmvatten. This situation is shown in
Figure 3.4.

Executable Program: myprog

Compilation Comand: <C myprog.c —o myprog,

Type: |Test | Research |

Functions: | &ll | select [maln |@

Cancel

Program Test Already Exists,

@Ca%e_ljl] [Owerwrite)

Figure 3.4 - Confirming a New Program Test

3.2- Retrieving a Program Test

The Load option is used to retrieve an already creatd tkn this case (illustrated in
Figure 3.5), Proteum requests for the directory whereetesession was created and the
name of the session.

«—H Load Program Test

Directory: /xapacurajusers/ESwSl/med/exemply

Program Test Name:

(Confirm) (Cancel)

Figure 3.5 - Retrieving a Program Test

When a test session is resumed Proteum makes a cofiywairla files of that
session. This allows one to abandon a working sesgitout saving the operations

performed during the session, thereby retaining the sede that prevailed at the
beginning of the current session.

During a test session, if a request is made to retaeva@d test session or create a
new one, Proteum completes the current session andsatloe to save or abort the
current session (see Figure 3.6). If optidort is selected, Proteum restores the backup
files created at the beginning of the session. S&eeoption confirms all operations thus
updating the test state and terminating the session. CHmeel button aborts the
load/create operations and the current test session is retained.

Backup files are created in the work directory and shiaeg prefix with the
names of the original files; the last character is replaced by the % symbol as follows:

myprog.PT%
myprog.TC%
myprog.l 0%
myprog.IN%
myprog.M U%

3.3 - Saving a Session.

Operations done during a test session are saved usisguwbeoption from the menu in
Figure 3.1. This operation forces Proteum to copy the updedek files to the backup
files. Thus, even if one selects thbort option when exiting a test session, the state of the
test session until the le&Savels retained.

PROTEUM — PROgram TEsting Using Mutants -V 1.1 -

{ Program Test v) (Testcase w) (Mutants v) (Reperts w) { Properties)

There is a Program in Testing,

@Sg&e)] { Abort) (Cancel)

Figure 3.6- Choosing to Abort or to Save a Test Session

4 - Exiting Proteum

To exit Proteum one may select the Quit button inntlaé menu or in the frame menu
(see Figure 4.1). In both cases Proteum verifies lietlsean ongoing test session. If yes
then Proteum prompts with tisave/Abort/Cancehenu.

Window ‘
@ — Dgram TI
Close

{ Program Test v) Eull Size Mutants

Maove

Resize
Back
Refresh

CIre

Figure 4.1 - Exiting Proteum

Some operations cannot be done at the same timexBowple, one can not quit
Proteum during mutant execution. The correct procedureisncise is to stop mutant
execution or wait until mutant execution terminates and then quit Proteum.

5-TheTest Set

In addition to the program under test, the test set andmsucreated are items that
characterize a test session in Proteum.

Proteum provides four operations to manipulate test cabksse operations are
showed in Figure 5.1Add to insert new test casegjew to view existing test cases;
Deleteto delete test cases; amdportto get test cases from different sources.

10

IEI PEOTEUM — PREOgram TESsting

(Program Test v) (i 7) (Mutants 7) (

Wiew
Delete
[mport =

Figure 5.1 - Working with Test Cases

5.1- Inserting Test Cases

To insert test cases Proteum needs program paranfatetshe data that the program
gets from system command line is provided. For exampletheé command below,
programcd is called with parametérsr/bin

cd /usr/bin

After obtaining the initial parameters Proteum begkecating the program under
test. The tester may now interact with the prograch supply the data it needs during
execution. The output generated by the executing prografeoisshown on the screen.
Proteum captures and stores the input supplied during prograntiereand the output
that the program has produced. Together, the input and output dne program
execution constitute a test case. Only text input/ouspatallowed; mouse input and
graphic output are not supported by Proteum. It is the kestsponsibility to evaluate
the correctness of the output. If the output is incortieen the program contains at least
one fault and needs to be corrected.

To implement the steps described above, Proteum firsepi® a panel (Figure
5.2) where the initial parameters are provided. Iftdst case does not need initial
parameters, the panel may be exited, keeping it emptginiply striking the<return>
key.

11

(=] PROTEUM — PROgram TEsting Using Mutants — ¥ 1
(Program Test w) (Testcase v) (Mutants w) (Reports w) (Propertic

= Parameters for Interactive Execution

Parameters:

Figure 5.2 - Supplying the Initial Parameters

Next, a TTY subwindow is started where the testeraats with the program. In
this subwindow, the name of the program under test arathasory that one may abort
the test case insertion uskGTRL><C> are shown.

Figure 5.3 shows an example. Notice that at the topeofTTY subwindow no
initial parameters were given. The remaining parhefwindow shows programyprog
waiting for input from the tester. At the end of exémutthe tester can determine if the
results presented are correct or not. Based on thieatness assessment the tester may
choose to confirm or to cancel the insertion of the test case as illustrated in Figure 5.4.

=) PROTEUM — PROgram TEsting Using Mutants —¥ 1.1 — C Y
{Program Test v) { Testcase v) { Mutants v) { Reports w) (Properties) (Status)
OO0 annnnnnnaann
Executing: myprog
Fress <CTRL-C> to abort.
[ICICICT0I0ICICICICICICICICICICICICIMIMIIII0IMN
]
L o

Figure 5.3 - Inserting a New Test Case

12

Program Test w) (Testcase w) (Mutants v) (Reports w) (Properties) (Status)

[DONIOI00000n0nn
Executing: myprog
Press <CTRL-C> ta

[onnonnononnnnn

2

Confirm Test Case ?
eh menor que 2

Return Code: 0

Figure 5.4 - Confirm/Cancel Test Case Insertion

5.2- QueryingaTest Set.

Test cases inserted may be viewed usingv/ibe/ option in the test case menu. Proteum
presents a panel (Figure 5.5) showing the items that éeatigh test case. First field, on
the top left corner is the test case number. Usirgfigld, the tester may access any test
case, by entering its number. If the number typed stgrehan the last test case number,
the last one is shown.

The tester may also walk through the test set usinguph@nd down arrows.
Proteum will show the next or the last test case.

Other fields in the panel present information aboutst tase. The field labeled
Parametergresents the initial parameters of a test casdd BEixec. Timeshows the CPU
time (in hundreds of seconds) consumed by the currentdsst This value is used to Kkill
a mutant by timeout. Some mutants, when executingemn an infinite loop. Proteum
monitors the amount of CPU time spent by each mutHirnthis time exceeds a multiple of
the CPU time spent by the original program executingstimee test case, Proteum Kkills
this mutant considering it to be in an infinite loop.

13

—H View Test Case

Test Case: 1 i [Z) Enabled

Parameters:

Exec. Time (1/100 Seconds): 13 Return Code: 0

The windows below show the Input and Output Logs.

12

1 eh menor que 2

[|}—————1 [|l———————=[T [*]]

Figure 5.5 - Seeing a Test Case

The Return Codeas seen in the example, is the value that indidaeesause of
program termination. A tester may consider it an aidic of execution success or failure.
This is yet another item used to analyze the behafiarutants. The mutant return code
need not be the same as the return code generated hehéest was executed on the
program under test. If the test case and the mutantehaeemal termination, Proteum
considers their return codes as matching.

Subwindows below the panel show the inputs and outputsiat&sbevith a test
case. The first subwindow shows the data typed whetesher inserted the test case and
the second shows the data generated (output) by the prodgPambeum compares this
output with the output of the mutant to decide whether the mutant is dead or alive.

At the top right corner there is a mutually exclusige Wwith two optionsEnable
andDisable Choosing the second disables the current test dasisabled test case is
not used in the execution of mutants. Any mutant alrédidg only by this disabled test
case will become live. Disabling a test case doeglalgte it from the test set. In fact a
test case may be enabled after it has been disablagl theiEnable option as shown in
Figure 5.6.

14

o=1H View Test Case

Test Case: 1, L]

Parameters:

Exec. Time {17100 Seconds): 13

The windows below show the Input and Qutput Logs.

12

(<] T=][]

Figure 5.6 - Disabling a test case

5.3 - Deleting Test Cases
Test cases may be deleted using Bredete option (see Figure 5.1) from the panel in
Figure 5.7. A range of test cases may be marked for deletion.

Il Delete Test Case

From: 1, FAS I | i

(Confirm) (Cancel)

Figure 5.7 - Deleting Test Cases

After one or more test cases have been deleted, éhmining cases are
renumbered. For example, a test set with 10 test sasambered from 1 to 10; deleting
test cases numbered from 4 to 7, you get a set witlcassts renumbered from 1 to 6.
Thus, test case 8 prior to deletion becomes test catterddeletion, test case 9 becomes
5, and so on.

Once a test case has been deleted, it cannot beveetri To be able to use a
deleted test case one must insert it again into the test set.

15

5.4 - Importing Test Cases

Proteum is able to import test cases from three ssufcem other Proteum
sessions; from a POKE-TOOL test; and from an AS@I f Figure 5.8 shows these
options. Importing test cases allows a tester touatala test set that may have been
created in other testing activities, perhaps using other testing tools.

— PROgram TEsting Usin
%) (Mutants) [Repor

Proteum
POKE-TOCL
asCl

Figure 5.8 - Importing Test Cases

5.4.1 - Importing from a Proteum Session

One may want to test the same program with the sastesét but with different features;

for example, using different mutation operators. In shtisation there is no need to insert
the same test cases for each session. Insteadstingexest set, created using another
session, may be imported.

Proteum requests the directory and the session namemnene tests cases are to
be imported. Test cases are added to the existingdest she current session. An
example is shown in Figure 5.9.

~H Import Proteum Test Case

Directory: /xapacurausers/ESwSl/med/exemply

Program Test Name:

(‘Confirm) (‘Cancel)

Figure 5.9- Importing Test Cases from Proteum

16

5.4.2 - Importing from POKE-TOOL

POKE-TOOL supports structural testing using the following control aada flow
criteria: all-nodes, all-edges aRdtential Uses Criteria [MAL91, CHA91]. The process
to import test cases from POKE-TOOL process is alrtitsstsame as that for importing
from Proteum. The difference is that Proteum needsitov the directory name where
the test set is stored. Figure 5.10 shows the panedltbais to import test cases from
POKE-TOOL.

~H Import POKE-TOOL Test Case

Directory: /xapacura/users/ESwS|/med/exemply

(Confirm) (Cancel)

Figure 5.10 - Importing Test Cases from POKE-TOOL

5.4.3 - Importing from ASCI| Files
Test cases may be imported from ordinary ASCII fil&se contents of the ASCII file are
used as a test. The output is obtained by executing the program under test.

Each ASCII file represents one test case. As in Eigutl, the file name and a
range of numbers is provided by the tester. For exarhples file name itest caseand
the numbers in the panel are from 1 to 10, Proteum ulessnamedtestcasel
testcasep.... andtestcasel@ import test cases.

l= Import ASCIl Test Case

Directory: /xapacurafusers/ESwSl/med/exemply

File:

From: 1 [a]#: To: 1 [a]w

(Confirm) (Cancel)

Figure 5.11 - Importing Test Cases from ASCII Files

17

6 - Working with Mutants
Figure 6.1 shows the operations provided by Proteum onrdifgesenting mutants. It is
through these operations that test sets are evaluated.

Generate

Wiew

Equivalents
Execute

Select L=

Figure 6.1 - Working with Mutants

6.1 - Generating Mutants

By selecting optionGenerate a tester selects the mutants to be generated. More
precisely, one may select the mutation operators to be applied on a program under test.

Figure 6.2 shows a panel with the choice of one of fiautation operator classes.
Once a class is selected, Proteum presents thei@istr¢F5.3) of operators in that class.
For each operator two values are shown: the numbewtdnts already generated, and
their percentage. |If, for some operator, the mutaresadready generated, i.e. the
percentage is different than zero, these values arensimogray and cannot be modified.
In the case the percentages are zero, the generatcenfage for each operator may be
specified.

=] PROTEUM
{ Program Test w) { Testcase w) { Mutants ©

PROgram TE

= Mutants Generation

Classes: [E] Statement Mutations

(Cenerate || Statement Mutations

Operator Mutations

Variable Mutations

Constant Mutations

Figure 6.2 - Mutation Operators Classes

18

-~ Statement Mutations
SBRC — break Replace ment by continue 0 8] [a]w
SERn — break Out to Nth Level 0 0 [a]
SCRE — continue Replacement by break 0 0 [a]e
SCRn — continue QOut to MNth Level 0 8] [a] =
SDWD — do—while Replacement by while 0 0 [a]
SGLE — goto Label Replacement 0 0 []
SMYE — Move Brace Up and Down 8] 0 [a]
SRSE — return Replaceme nt 0 0 [a]

—

Figure 6.3- Choosing Generating Percentages

On top of the operator’s panel there is a place whdeltl@alue for all operators
in a class can be provided. Changing this value andrdi¢kie buttorApply Default the
generating percentage of all operators (not in gray) in the class is changed.

After the generating percentages are sele@edfirm needs to be selected. This
allows Proteum to begin generating mutants. While gangratutants Proteum shows
the numbers of mutation operators being applied.

Option Generatecan be used several times. After the first time,amist can be
generated using only the operators not used before, iratopefor which the generating
percentage was 0%. This situation is shown in Figure Bldtice that operators already
in use are disabled and their generating percentages cannot be altered.

-~ Statement Mutations
EERed - breah Bapglacemant by rantingg EECOR P
GHEREa - Broak Qut fo Neh Laval Ty labw
RERE - opntinue fSeninrement by break) {a: P
$ORn - rontinay Oul e Mih Level iy lalw
SDWD — do—while Replacement by while 0 0 [a]e
SGLE — goto Label Replacement 0 0 []
SMYE — Move Brace Up and Down 8] 0 [a]
SHLE - raturs Repisopment 3 N

—

Figure 6.4 - Generating More Mutants

19

6.2 - Executing Mutants

The third option from the mutants menu allows the executf the generated mutants.
Through this option mutants are executed against enalsiedatses within a test set. If a
mutant gives different results from the program under ite® marked asdead by
Proteum; else it remaitise.

If the test session type Research(see Section 3.1), each mutant, including dead
mutants, is executed against all the enabled test ca$es one may obtain data relating
all mutants to all enabled test cases. If the mutzete been executed before inserting a
new test case, the tester needs to re-execute themebyhforcing all mutants to be
executed with the new test case.

If the type of session iBest only the live mutants are executed. For exampke: if
test set has 5 test cases and a mutant was killed tgass number 1, then it is not
executed against test cases 2 to 5. Similarly, wheawaest case is inserted only the live
mutants are executed against the new test case.

It is also possible to select a subset of mutantsetexecuted. Through tiSelect
option (Section 6.4), determine the mutants to be eedcue. theactive andinactive
mutants. The mutation score does not take into coasiderthe inactive mutants (more
details in Section 7).

Disabling a test case can affect the state of a mufBaking the example above, if
test case 1 is disabled, all the mutants killed by #s$ ¢tase are considered "live” once
again. If the test session is of typest each live mutant is executed against the
remaining test cases (numbers 2 to 5) until it is killedrdil the test set is exhausted. In
Researchmode mutants are executed with all test cases not used in previous executions.

It is important to note that maintaining integritytbé relationship between a test
set and the mutant status demands that mutants be rdexkesach time the test set is
altered. Thus, insertion, deletion, enabling, or disgldf one or more test cases must be
followed by a re-execution of the mutants.

As shown in Figure 6.5, mutant execution can be interruptedlicking the
Cancelbutton. In this case, only the executed mutants attithe of interruption are
taken into consideration while computing the mutation score.

20

EI PROTEUM — PROgram TEsting Using Mut

{ Program Test w) (Test case w) { Mutants w) { Reports v)

-~1H

Executing........ 14

Figure 6.5 - Executing Mutants

6.3 - Analyzing Mutants

Once the mutants have been executed it is possiblealgza them. For example, it is
possible to check why a mutant was killed. Similarly ovey view mutants by the mutant
number or by browsing sequentially through the set of mutants (see Figure 6.6).

Figure 6.6 shows a panel in which a mutant is presentedthétop right corner
is a list to determine the type of mutants for viewirigpr example, to view only the live
mutants, first turn off buttonBead, Equivalenand Anomalous Then, while browsing
through the mutant set, only the live mutants are ptedennactive mutants may also be
viewed by selecting theactive buttonin the list.

On the top left corner, the first field shows the mutaumber. This field
determines which mutant is to be presented. If thetsglenutant number does not exist
or its status does not agree with the types enabledatals (in the list described above),
then Proteum shows the "closest” mutant with theecbrstatus. For example, suppose
that the viewing panel exhibits mutant number 8 and bsittove and Inactive are
selected. Now one types number 15 in the mutant nunelebr ff mutant 15 is not live
the next live mutant is presented, if there is oné.thére is none, mutant number 8
continues to be shown in the panel.

The second field shows the mutant status which cdnveeDead or Anomalous
For a dead mutant the reason it was killed is also itetica Various reasons can be:
mutant output is different than that of the original pragr@ent onstdout) the return
code from the mutant is different from that of thegmal program return cod¢, or
mutant execution time exceeds, by some constantpthie original programtifneou).
If the type of the test sessiorResearchmore than one test case can kill a mutant; in this
case, the reason shown is the one associated with the first test case that killed the mutant.

The fourth field is a check box to indicate if the maitanequivalent or not.
Hence, the viewing operation is also used to mark equivaleitants. Remember that
equivalent mutants are not executed and therefore Prateesinot attempt to kill them.
For dead and anomalous mutants, this field is shown ddalnid cannot be used to mark
a mutant as equivalent.

21

In the current version of Proteum, a mutant is anomsalb it has a invalid
construction. In principle, a mutation operator should generate a syntactically
erroneous mutant but for some reasons, e.g. compiterésaone may get a mutant that
can not be successfully compiled. This rarely occursnbstbtme cases anomalous mutants
are generated.

—H View Mutant
Mutant: 5, [&[%} Types to Show: | Dead | ‘ Anomalous | | Equivalent | I Inactive
Status: Active; Alive O Eaquivalent
Operator: SRSR - return Replacement
original Program. Mutant Program.
— —
main() main()
int a,b; int a,b;
scanf("%d %d", &, &b); scanf("%d %d", &, &b);
if (a > b) if (a > b)
printf{"wnkd eh maior que %d*, a, b); return 0;
else else
if a < b) if a < b)
printf{"\n%d eh menor que %d", a, bl printf{"\n%d eh menor que %d", a, bl

EES glse
printf{"ynkd eh igual a %d", a, b);
n 0

printf{"ynkd eh igual a %d", a, b);
retur .

return 0;

Figure 6.6 - Analyzing Mutants

[T,

The next field has the name of the mutation operdiat treated the current
mutant. At the bottom there are two subwindows shgwi original source code and
the mutant source code. One may compare these ambwedhe source program was
mutated. The point in source program (or first poirtigré are more than one) where the
change occurs is (are) always shown in the subwindAi®ve these subwindows there
are two buttons both marké&tkecute Clicking these buttons starts the execution of the
original/mutant program. This way one may attempt tb &imutant by trying out
different test inputs.

6.4 - Selecting Mutants

OptionSelectenables the selection of subsets of mutants froeady} generated mutants.
It means that one may determine that some mutantsesetivated and are not to be
considered during the test session. Inactive mutantsnareexecuted and are not
considered when computing the mutation score. Theravareriteria to select mutants:
randomly selecting mutants from mutation operators (o Operatojy and selecting
the number of mutants by program block (opBgrBlocR.

22

6.4.1 - Selecting Mutants by Mutation Operators

Using the optiorBy Operator generates a panel similar to the one used when gegerat
mutants. In this panel one may select the percentagetants to be generated for each
mutation operator or for each class of mutation opesatdProteum randomly selects
mutants as per the percentage specified. For examplee ihas specified that 50% of
mutants be generated from the statement mutation mwaadt80% of the mutants from
this same class, then one obtains 40% of active mutants from this class (0.5 x 0.8 = 0.4).

Note that for a mutation operator it is not the saongenerate X% mutants and
then to select Y% or to generate Y% and then to ts&ég the resulting active set in
these two cases are not the same. This is truafofiffpr Y) is 100%; if one has selected
100% and then selected 30% one gets the same active tsehéhgets when generating
30% of mutants from a mutation operator or from the mutation operator class.

6.4.2 - Selecting M utants by Block
This feature has not been implemented in Version 1.1-C.

7 - Test Status

Option Status from the main menu provides some information aboat dinrent test
session (see Figure 7.1). The most important of tlesnmation is theMutation Scorg
which indicates the adequacy of the test set used fimgdke program under test. This
score is relative to the active mutants.

In the status panel there is a field that containsitimeber of executed mutants. It
is not necessarily the same as the number of gedarate&nts. This occurs because one
may abort mutant execution. Hence only the executecnmutare considered while
computing the mutation score. Thus, mutation score can be defined as:

#executed - #inactive - #alive - #anomalous - #equivalent
#executed - #anomalous - #equivalents

Note that the inactive mutants are subtracted fromtak&#l executed mutants.
This means that the number of inactive mutants shiowime status panel is obtained only
from the executed mutants and not from the total generated mutants.

The mutation score can vary from 0 to 1. The goal ofuhation tester is to
construct a test set that has a mutation scoreaastmel as possible. This also implies
that the number of alive non-equivalent mutants must be close to O.

23

-—H Status

Directory: Sfsapacura/users/ESwslimed/exsempla

Program Test Name: myprogl

Source Program: myprog.c

Executable Program: myprog

Compilation Comand: < <SOURCE> —o <EXEC>

Functions: =
main
||
=]
il
Type: Teste Teste Cases: 1
Total Mutants: 24 Executed Mutants: 24
Active Mutants: 24 Live Mutants: =]
Equivalent Mutants: 0 Anomalous Mutants: 0

MUTATION SCORE: 0O.E7

Figure 7.1 - Verifying Test Status

8 - Creating Reports

Another way to verify test status is through Proteueygorts. The current version of
Proteum provides only the test case report described below.

8.1- Test Case Report

Clicking the buttorReport and optioriTest Casgets a panel where to select what data is
needed in the test set report. For example, the iselantFigure 8.1 produces a simple
report shown in Figure 8.2. A complete report (Figure 8.3)bisined by selecting all
report options.

24

~H Test Cases Report

Header:
M Operators’s percentage

Body:
i Efective Test Cases Only

[MNumber of Not Executed Mutants

Number of Alive Mutants

Nurmber of Mutants by each "Causa Mortis"
Total Number of Dead Mutants
Enabled/Disabled

Parameters, Return Code, Execution Time

Input

OOo0O0O0O®ODO

Cutput

Figure 8.1 - Selecting Report Options

= frapacura/users/ESwSI/med/exemplo/myprogl. TMP
=

‘H aooooaooooannonoooaonoannonnnenn
[1 PROGRAM TESTE: myprogi esv
0 s g wore.c T

[] TOTAL MUTAMTS: 24

H EXECUTED MUTANTS: 24

H ANOMALOUS MUTANTS: O

E% ACTIVE MUTANTS: 24

E% ALIVE MUTANTS: 5

H EQUIVALENT MUTANTS: O

E% MUTATICN SCORE: 0.79

E% CPERATORS:

[Shor 5% Sobl ox oTe oox STp dom

[] SMTC 100% SSMH 100% SMTT 100% SWOD 100%

H noooooooonnonoooaonoonnonnnannn

Teste Case # 1

Number of Dead Mutants: 16
Teste Case # 2
Number of Dead Mutants: 3
=

Figure 8.2 - A Simple Report

25

~H Frapacurafusers/ESwS1/med/exemplo/ myprogl. TMP

[] EQUIVALENT MUTANTS: 0
] MUTATION SCORE: 0.79
[] COPERATORS:

0] SBRC 100% SBRn 100% SCRE 100% SCRn 100%
[] SR5R o0% SSDL 100% STRI 100% STRP 100%
[] SMTC 100% S5WH 100% SHTT 100% SWOD 100%

]
OOO0000000000000000000000001011010

Teste Case # 1
Number of Mot Executed Mutants: 0
Humber of A&live Mutants: 8
Humber of Mutants Dead by Stdout: &
Number of Mutants Dead by Retcode : 0
Number of Mutants Dead by Timeout: 0
Humber of Mutants Dead by Trap: 2
Number of Dead Mutants: 1B
Enabled
Execution Time (17100 sec.): 13
Retorn Code: O

Parameters: -
Input:
12
L

output:

1 eh menor que 2

Teste Case # 2
Humber of Not Executed Mutants: 16
Humber of Alive Mutants: S
Humber of Mutants Dead by Stdout: 1
Number of Mutants Dead by Retcode : 0
Humber of Mutants Dead by Timeout: 0
Number of Mutants Dead by Trap: 2

Figure 8.3 - A Complete Report

9 - Configuring Proteum

Option Propertiesfrom the main menu enables one to configure some cemagntal
variables used by Proteum. The panel in Figure 9.1 shows these variables.

The first field,Default Directory determines the directory in which the test will be
conducted. Every panel where a directory name is reguesigitialized to this name.
For example, théProgram Test/Loaganel (Figure 3.5) needs a directory name from
where a test are going to be loaded. When the pafistishown, theDirectory field is
filled with the default directory name. This name t@naltered. At the beginning, the
default directory is the current directory from where Proteum is invoked.

The second environmental variable is a time-out vaé@uemutant execution.
When generating a mutant, a change to the original progmaynproduce a program
(mutant) that, on some test cases, enters an énfloibp. The execution time is a
parameter used to distinguish such mutants from the origmaram. If a mutant
execution time is greater than the execution timehefdriginal program execution time
on the same test case by a fixed constant, themtizint is considered dead. The user
supplied time-out value determines this fixed constantved low time-out value can
make non-infinite looping mutants being considered deadth®nother hand, a high time-
out value will increase the total mutant execution time. The default time-out value is 5.

26

«H Properties
Default Directory: /xapacura/users/ESwSl/med/exemplg

Timeout for Mutation Execution: 5 [a]+]

(Confirm) (Cancel)

Figure 9.1 - Configuring Proteum

27

References

[AGA89] Agrawal, H., et al.- Design of Mutant Operato fthe C Programming
Language, Technical Report SERC-TR-120-P, Software EngigeBesearch Center,
Department of Computer Sciences, Purdue University, W. Lafayette, IN 47907.

[CHA91] Chaim, M.L., POKETOOL - A Tool to Support Dataw Based Structural
Test of Programs, MSc Thesis, DCA/FEE/UNICAMP, April 1991.

[DEL93] Delamaro, M.E., Proteum - A Mutation Analysiad®d Testing Environment,
MSc Thesis, ICMSC-USP, October 1993.

[DEM78] DeMillo, R.A., Lipton, R.J., Sayward, F.G., ‘s on Test Data Selection:
Help for the Practicing Programmer”, Computer, vol. 11(4) , April 1978.

[MAL91] Maldonado, J. C., Potential Uses Criteria: Aridbution to Structural Test of
Software, Ph.D. Dissertation, FEE/UNICAMP, Campinas - S. P., 1991.

[WON93] Wong, W.E., On Mutation and Data Flow, Ph.D. JifeC.S. Department,
Purdue University, Dec 1993.

28

