Introducgéao

Passagem sobre “computational lens”:

XX Introduction

design, planning, engineering, scientific discovery. and many other human endeavors.
Computer algorithms, which are methods of solving computational problems, became
ubiquitous. COMPUTATIONAL LENS

But computation is not “merely™ a practical tool. It is alSo a major scientific concept.
Generalizing from physical models such as cellular automata, scientists now view many
natural phenomena as akin to computational processes. The understanding of reproduc-
tion in living things was triggered by the discovery of self-reproduction in computational
machines. (In fact, a book by the physicist Schroedinger [Sch44] predicted the existence
of a DNA-like substance in cells before Watson and Crick discovered it and was cred- i
ited by Crick as an inspiration for that research.) Today, computational models underlie de comp.
many research areas in biology and neuroscience. Several physics theories such as QED —
give a description of nature that is very reminiscent of computation, motivating some
scientists to even suggest that the entire universe may be viewed as a giant computer
(see Lloyd [Llo06]). In an interesting twist, such physical theories have been used in
the past decade to design a model for quantien computation; see Chapter 10.

Passagem sobre demonstra¢cdes em modelos mais fracos:

PrUVE SUCTI TESUILS 15 d CENLTAL BUdL UL COMPICXILY WCOTY. -ipoqesibiiy results” s3o dificsis, mas intersssantss

How can we ever prove such a nonexistence result? There are infinitelv many
possible algorithms! So we have o mathematically prove that each one of them is less
efficient that the known alporithm. This may be possible because computation is a
mathematically precise notion. In fact, this kind of result (if proved) would fit into
a long tradition of impossibility resulis in mathematics, such as the independence of
Euclid’s parallel postulate from the other basic axioms of seometry, or the impossibility
of trisecting an arbitrary angle using a compass and straichtedoe. Such results count
among the most interesting, fruitful. and surprising results in mathemaltics.

In complexity theory, we are still only rarely able to prove such nonexistence of
algorithms. We do have important nonexistence results in some concrele computa-
tional models that are not as powerful as general computers, which are described in
Part IT of the bo ecause we are still missing good results for general compulers,
one important source o ress in complexity theory is our stunning success in inferre-
lating different complexity questigns, and the rest of the book is filled with examples of
these.

Asgim como provar inexisténcia de algoritmos & mais facil
em modelos mais simples, tambem & o caso de se provar
inexisténcia de algontmos eficientes.

Capitulo 0

Capitulo 1

Pag.9 (Tese de Church-Turing)

Surprisingly enough, it turns out there there is a e:i.;E:?;E :maiihﬂm;nqg maodel that
suffices for studying many questions about computation and its efficiency—the Turing
machine. It suffices to restrict attention to this single model since it seems able to
simulate all physically realizable computational methods with little loss of efficiency.

Secgbes 1.1e 1.2

Secao 1.3: Variagdes de Maquinas de Turing

(Alfabetos diferentes)

Overhead logaritmico para simular alfabetos maiores

Claim 1.5 Fpetvery 0 10, 1}Y — {0, 1] and time-constructible T : M — M, if f is
e in time Tin) by a TM M wsing alphabet U, then it is computable in time
4log || Tin) by a TM M wsing the alphaber {0, 1,00, ¢=). &

Moral: tamanho do alfabeto ¢ irrelevante (overhead logaritmico no tamanho do
alfabeto, o que significa constante na maioria dos casos, pois MTs tem
tamanho fixo)

Proor Sketch: Let M be a TM with alphabet I, & tapes. and state set (J that computes
the function f in T'(n) time. We describe an equivalent TM M computing [with alphabet
10,1, 0.6+, k tapes and a set ' of states. The idea behind the transformation is simple:
One can encode any member of I using log |[I'] bits.” Thus, each of M’s work tapes will
simply encode one of M's tapes: For every cell in M's tape we will have log |I"] cells in
the corresponding tape of M (see Figure 1.3).

To simulate one step of M, the machine M will (1) use log |I"| steps to read from
each tape the log |T'| bits encoding a symbol of T, (2) use its statg register to store the
symbols read, (3) use M's transition function to compute the symbos M writes and M's
new state given this information, (4) store this information in its state Wgister, and (5)

use log || steps to write the encodings of these symbols on its tapes. ou seja, guarda
a informaco
nos estados de M

M's Lape: |] la ‘] l' n | l l l ll g
s tape: [> [0t 1]o]1]o I_“_I ofaftfofefofa]r] | |C.

Figure 13. We can simulate a machine A using the alphabet [, 0.2 b, ... 2] by a machine M using
fr=. 1,0, 1] via encoding every tape cell of M using five cells of A,

One can verify that this can be carried out if M has access to registers that can
store M's state, k symbols in ', and a counter from 1 to log |I"|. Thus, there is such a
machine M utilizing no more than 4:'|Q||F|k'+| states for some absolute constant c. (In
general. we can always simulate several registers using one register with a larger state
space. For example, we can simulate three registers taking values in the sets A. B and
C, respectively, with one register taking a value in the set A « B » C, which is of size
lA[|B][CL.)

It is not hard to see that for every input x = {0, 1}"., if on input x the TM M outputs
[fix) within T'{n) steps, then M will output the same value within less than I log |T'[T{n)
steps. W 77

Mais ou menos fitas

Onverhead quadratics para simular k fitas em apenas 1 fita
Claim L6 Define a single-tape Turing machine to be a TM that has only one read-write
tape, that is used as input, work, and output tape. For every { 1 {0, 1}* — |0, 1} and
time-constructible T : M — B, if f is computable in time T(n) by a TM M using k tapes,
then it is computable in time SkTin)? by a single-tape TM M. &

Obs: quadratico para todo k

Prova:
M's 3 work tapes:
] _
e [elo BT TTTTTTTIC
nd I,
| | =
Tape 2 lr.Eul[vIlIalcl» RITTTTTTITITIC

Tm*lmlalcIh ifafefs] [TTTTTTTTIC

Encoding this in one tape of M:
1231 2:3 123 T2 381723 2

[T[Tl [e [L [T [T I

Figure 1.4. Simulating a machine M with three tapes using a machine M with a single tape.

Fita infinita nas duas direcoes

owvernead inear
Claim 1.8 Define a bidirectional TM to be a TM whose tapes are infinite in both directions.
Forevery f 2 {0, 11 — |0, 1}* and time-constructible T : M — K, if f is computable in
time T(n) by a bidirectional TM M, then it is computable in time 4T(n) by a standard
{unidirectional) TM M. &

Ms lape is infinite in both direclions:

I [[lefolalelife[ei[s] [T T

((elefels[[T T]IC
E =
\Ualmlole] [[][]C

M uscs a larger alphabet Lo represent it on a standard tape:

I:n c.'lIL-'d-.u:.-'m%L"tJI:.-'."-:': | | I I | l{

Figure 1.5. To simulate a machine M with alphabet " that has tapes infinite in both directions, we use a
machine M with alphabet I whose tapes encode the “folded” version of M's tapes.

Secédo 1.4: MAQUINAS DE TURING UNIVERSAIS

Theorem 1.9 (Efficient universal Turing machine)

There exists @ TM U such that for every x,a = [0, 1), Hix.a) = M, (x), where M,
denotes the TM represented by o.

Moreover, if M halts on input x within T steps then Wix. o) halts within CT log T steps,
where C is a number independent of |x| and depending only on M, 's alphabet size,
number of tapes, and number of states.

Proor oF RELAXED VERSION OF THEoREM 1.9 Our universal TM I{ is given an input
x.o, where o represents some TM M, and needs to output Mix). A crucial observation
is that we may assume that M (1) has a single work tape (in addition to the input and
output tape} and (2) uses the alphabet {t=, 0,0, 1}. The reason is that I{ can transform a

et SRl ole ool [eb ol TIC
{umzd in the same way ax M)
1::::: | Simulation of M™s work tape. ".,__

{umed in the same way as M)

| Descriplion of M

| Current state of M

wpe CLDTTTTTTTT]

_ll-"""\ ll-'""\

[[TTTIC

Figure 1.6. The universal TM L4 has in addition to the input and output ape, three work tapes. Cne work tape
will have the same contents as the simulated machine M another tape includes the description A {comverted
i an equivalent one-work-tape form], and another tape contains the current state of A,

{umed in the same way as M)

MT universal com contador de tempo:

Universal TM with time bound

It is sometimes useful to consider a variant of the universal TM I{ that gets a number T
as an extra input {in addition to x and &), and outputs M, (x) if and only if M, halts on
x within T steps (otherwise outputting some special failure symbol). By adding a time
counter to 4, the proof of Theorem 1.9 can be easily modified to give such a universal
TM. The time counter is used to keep track of the number of steps that the computation
has taken so far.

MTs abstraidas (Exercicio)

Remark 1.7 { Oblivious Turing machines)

With a bit of care, one can ensure that the proof of Claim 1.6 yields a TM M with the
following property: Its head movements do not depend on the input but only depend on
the input length. That is, every input x < [0, 1}* and i € M, the location of each of M’s
heads at the ith step of execution on input x is only a function of |x| and i. A machine
with this property is called oblivious, and the fact that every TM can be simulated by
an oblivious TM will simplify some proofs later on (see Exercises 1.5 and 1.6 and the

Obs: overhead logaritimico

UNIVERSALIDADE EFICIENTE

Ideia da prova

M's 3 independent tapes:

DT T EERET R TTIC
pARRNAGEDNNARDRREENIS
R e SR

ZTTTTTTEEERIEEE IR

U's 3 parallel tapes (i.c., one tape encoding 3 tapes)

SRR R TTIC

€

pANNRADEROOE
==OOc0NoEoN
L 4]

| 1

/1]

Figure 1.8. Facking k tapes of M into one tape of . We consider L6's single work tape to be composed of
k parallel tapes, whose heads move in unison, and hence we shift the contents of these tapes to simulate

independent head movement.

——J o[[l mme |uéu i~1u| [(eEsmEE
21111 Erlml ||r-‘ma|| BEEEE -

AR NCOE: DN D

Figure 1.9. Performing a shift of the parallel apes. The lefi shift of the

and that the total number of nonempty cells in &; U L; is 2
were full and L; was half-full (and so By,
By L. - oo Bioy. Liey will be halt-ull, £; will be full and B; will be empty.

R;_1 were full and E; half-full),

1.7. Proof of Theorem 1.9: Universal Simulation in (T log T-time n
Bafnps:
L FOE M R,
L L i i Zome L I:L'Ili!“l"r_lhlﬂigurﬂgﬂi RFIIRI
nonempry PP [4]2]1]ofo[o] o] #]2
D Bl - emselela] =, |
PANEEEE Ie' 1. COBGE Iﬂlﬂlﬂ"—&
«Z 11 s Imlilrlﬁlth!IW‘ni l=[L
3230415243
Afer
L, L L R, R,
- e T | |IED|| 1T :‘:'; _l1|l1'|]"=1|"|]‘-|l“|| [|R.E|R»_||R.
e soet) :3"|1"|1'-| N BEREERL

fist tape involves zones

Ro.Lp Ry .01 Rz, Lo, the right shift of the second tape involves only Rg, L, while the left shift of the third
tape imvolves zones By, Lg, Ry, L. We maintain the imeariant that each zone is either empey, hali-full, or full
121 If hefore the left shift zomes Ly

then after the shift zones

Detalhes da prova:

shall always maintain the following invariants:

+ Each of the mné;i'-is either empty, full, or half-full with non-g2 symbols. That is, the
number of symbols in zone R; that are not g1 is either 0, 2%, or 2- 2¥ and the same holds
for L. (We treat the ordinary O symbol the same as any other symbol in ', and in
particular a zone full of O's is considered full.)

We assume that initially all the zones are half-full. We can ensure this by filling half of
each zone with & symbaols in the first time we encounter it.

» The total number of non-g symbols in By U Ly is2- 2% That is, althﬂr R; is emply and I,
is full, or Ry is full and I; is empty, or they are both half-full.

+ Location 0 always contains a non-2 symbol.

(3

Performing a shift

The advantage in setting up these zones is that now when performing the shifts, we do
not always have to move the entire tape, but we can resirict ourselves to only using
some of the zones. We illustrate this by showing how f performs a left shift on the first
of its parallel tapes (see also Figure 1.9):

1. U finds the smallest iy such that Ry, is not empty. Note that this is also the smallest iy
such that Ly is not full. We call this number iy the index of this particular shift.

2. U puts the leftmost non-g1 symbol of Ry, in position 0 and shifts the remaining leftmost
2 — 1 non-g symbols from Ry into the zones Ry, ..., Ry filling up exactly half the

symbols of each zone. Note that there is exactly room m perfnfm this since all the zones
Ry, ...,Ry_1 were empty and indeed 20 — 1 = zi"

3. U performs the symmetric operation to the left of pcusmun (. That is, for j starting from
in—1 down to (.14 iteratively moves the 2 . 2/ symbols from L; to fill half the cells of L.
Finally. I{ moves the symbol originally in position 0 (modified appropriately according
to M's transition function) to Lq.

4. At the end of the shift, all of the zones Ry, Ly, ..., Ry—1, Ly,—1 are half-full, Ry, has 25
fewer non-i symbaols, and L; has 2! additional non-g symbols. Thus, our invariants are
maintained.

5. The total cost of performing the shift is proportional to the total size of all the zones
involved Ry, Ly, ..., Ry Ly That is, O(¥ L 2-2) = O(2") operations.

After performing a shift with index i the zones Lo, Rp, ..., Li—1. Ry—y are half-full,
which means that it will take at least 2! — 1 left shifts before the zones L. ... Ly
become empty or at least 2 — 1 right shifis before the rones Ry, ..., R;_) become
empty. In any case, once we perform a shift with index i, the next 2* — 1 shifis of that
particular parallel tape will all have index less than i. This means that for every one

of the parallel tapes, at most a 1/2' fraction of the total number of shifts have index

i. Since we perform at most T shifts. and the hichest possible index is log T, the total
work spent in shifting Li's & paralle] tapes in the course of simulating T steps of M is

log T T
ik - E F‘f’ = NTlogT). W
=1

