
Taking a Peek: An Evaluation of Anomaly
Detection Using System calls for Containers

Gabriel R. Castanhel, Tiago Heinrich, Fabrı́cio Ceschin, Carlos Maziero
Computer Science Graduate Program

Federal University of Paraná State
Curitiba, Brazil, 81530–015

E-mail: {grc15,theinrich,fjoceschin,maziero}@inf.ufpr.br

Abstract—The growth in the use of virtualization in the last
ten years has contributed to the improvement of this technology.
The practice of implementing and managing this type of isolated
environment raises doubts about the security of such systems.
Considering the host’s proximity to a container, approaches that
use anomaly detection systems attempt to monitor and detect
unexpected behavior. Our work aims to use system calls to
identify threats within a container environment, using machine
learning based strategies to distinguish between expected and
unexpected behaviors (possible threats).

Index Terms—Intrusion Detection, Computer Security, Con-
tainers

I. INTRODUCTION

Operating system-level virtualization, also known as con-
tainerization, is a kind of virtualization in which multiple
isolated user spaces are provided by a single kernel. Each
user space, named a container, runs an application with its
dependencies and resources, isolated from the other applica-
tions running in the same physical host. This allows multiple
containers with different structures and applications to run
side by side, sharing the same operating system kernel.

Nowadays, the popularity of this type of virtualization
raises security concerns, due to the proximity between the
applications running in a container and the host, because the
containerization layer is much thinner than a full virtualization
stack. Several attacks have been found and exploited in recent
years, such as remote code execution, privilege escalation,
tampering, among others [1].

Intrusion detection is a way to identify and prevent mali-
cious activity in a system. Resources used for such activities
are Intrusion Detection System (IDS) and Intrusion Prevention
System (IPS) [2]. Specifically, an IDS performs intrusion
identification using different techniques that can be signature-
based, which performs the comparison of signatures with a
known base of threats, or anomaly-based, in which the normal
behavior of the system is previously known and deviations
from it are classified as threats [3].

Looking only at intrusion detection targeting containers,
some differences could be pointed out. Containers are more
lightweight than virtual machines and thus easier and faster
to manage. In addition, the semantic gap between the virtual
environment and the host is very small in containers, in
comparison to traditional virtual machines [4]. This allows an

external observer to gather very detailed information about
the applications running inside a container.

An attacker could exploit different techniques to compro-
mise, gain access, or even run code in a container environ-
ment. Such attacks can be carried out from a compromised
image, running applications with unnecessary permissions
(e.g. as root), exploiting a vulnerability in the application
running the container, or an application with a misconfigured
environment [1].

This work studies and compares the effectiveness of a set of
methods in identifying malicious activities in a container. An
observer external to the container gathers detailed information
about its execution, in the form of a sequence of system
call issued by the application. This data then is used to
train classifiers to build a “normal behavior” model of each
container, and consequently allowing to identify anomalies.

In summary, this paper makes the following contributions:
• A discussion about the use of intrusion detection using

system calls in containers, and how it was implemented;
• A methodology for the identification of attacks inside a

container using machine learning, achieving high accu-
racy and precision rates for both strategies presented;

• We explore the impact of window size and system call
filtering for an intrusion detection system in a container;

• A dataset that enables the evaluation of the use of system
calls to detect threats inside a container.

The reminder of this paper is structured as follows: Section
II presents the related work; Section III presents the back-
ground; Section IV discusses the paper proposal; Section V
presents the evaluation, and Section VI concludes the paper.

II. RELATED WORK

From an attacker point of view, there are several possibili-
ties of attack to a virtualization system, such as exploiting vir-
tualization to extract private information from users, launching
Distributed Denial of Service (DDoS) attacks or escalating the
intrusion to multiple VM instances. The literature highlights
studies aimed at monitoring virtualization at different levels,
in order to identify such malicious actions [5, 6].

Intrusion detection in virtualization environments brings
some challenges. If the IDS is put inside the guest, it has
a rich view of the monitored application, but is also exposed
to attackers targeting it. On the other hand, if the IDS resides

978-1-6654-2744-9/21/$31.00 ©2021 IEEE

outside the monitored guest, is is protected against such
attacks, but its view of the guest application execution is much
poorer, due to the semantic gap [4].

However, when using container-based virtualization, the
semantic gap is greatly reduced, because all containers share
the same kernel. Thus, an IDS running directly on the host
OS is able to fully observe the behavior of processes running
in a container [4].

One of the first studies that explored the field of system call
based intrusion detection was presented by [7]. It proposed
a method that was inspired by the mechanisms and algo-
rithms used by natural immune systems. The study observed
that short sequences of system calls appeared to maintain
a remarkable consistency among the many possible sets of
system calls of the possible execution paths of a program.
This inspired the use of short sequences of system calls to
define the normal system behavior and presented a simple and
efficient way to detect anomalies, with possible applications
to real time scenarios.

For approaches based on container virtualization, it is pos-
sible to highlight [8], which presents a model for identifying
anomalies in applications running within Docker. The strategy
is to use n-grams to identify the probability of an event
occurring. The experiment achieves an accuracy of up to 97%
for the UNM dataset [9]. However, such dataset is very old
and is not representative of current applications and virtual
environments.

Still in the context of containers, [10] presents a preliminary
feasibility analysis for anomaly-based intrusion detection, fo-
cusing on Docker and LXC technologies. The article proposes
an analysis and capture architecture for system calls, the
application of the Sequence Time-Delay Embedding (STIDE)
and Bag of System Calls (BoSC) algorithms, and studies the
training process in different cases. The study trained both
algorithms with window sizes ranging from 3 to 6 system
calls, and calculated the slope of the growth curve, which
means the rate of new windows added to each classifier’s
normal behavior base after a period of time. The results
highlight a stable learning state for STIDE with windows of
size 3 and 4 and from 3 to 6 for BoSC, which means that the
best configuration obtained was using windows of size 3 and
4. The database used for validation and experimentation was
developed for the study but is not publicly available.

The study of [11], focuses on the detection of intrusion by
anomalies in container environments, applying a technique
that combines BoSC with the technique of STIDE. The
analysis of the container behavior is made after its closure,
with the aid of a table containing all the distinct system calls
with the respective total number of occurrences. The method
reads the flow of system calls by epochs, and slides a window
of size 10 through each epoch producing a BoSC for each
window, which is used to detect anomalies, which in turn is
declared if the number of disparities in the normal behavior
base exceeds a defined threshold. The classifier achieved a
detection rate of 100% and a false positive rate of 0.58% for
epoch of size 5,000 and threshold of detection of 10% the

size of epoch. The experiment database is not available.

III. BACKGROUND

This Section presents the main concepts for understanding
the work, discussing points such as anomaly detection, system
calls for IDS and containerized virtualization.

A. System calls

System calls are mechanism available for the interaction
between an application (or process) and the operating system
kernel. When a program needs to perform privileged opera-
tions, requests are made via system calls, usually because user-
level processes are not allowed to perform such operations.
This occurs for a variety of tasks such as interacting with
hardware resources, memory management, input/output pro-
cessing, network operations, file operations, and others [12].

Some of such actions should not be available to all user-
level processes, like shutdown, access to other processes’
memory areas, changing user IDs, and bypassing access
control policies. The OS kernel thus implements security
policies that determine which system calls may be called by
which user-level processes.

Due to the position in which system calls are implemented,
their observation gives rich information about the activities
performed by user-level processes. The set of system calls
found in a system is directly related to the Operating System
(OS) and the architecture used. Tools like strace and ftrace
[13, 14], allows to show the sequence of all system calls used
by a command or a running process.

Regardless of the approaches used to execute malicious
code on a system, they usually exploit the system calls
interface for performing malicious operations [15]. It is only
through this interface that a compromised application interacts
with the system services and resources. The monitoring of
system calls is a widely used technique that makes use of
this feature in common to detect suspicious behavior of
an application that may have been compromised, so that a
countermeasure is possible to minimize the problem [16].

B. Containers

Although the concept of container has only been popu-
larized in the last few years, this is a technique introduced
as early as the 1980s, to perform software “isolation” using
the chroot tool on Linux systems. Currently it is known as
an application virtualization technique for the most diverse
purposes, generally associated with popular tools like docker.
The container is a virtual environment that runs in a single OS
and allows the loading and execution of a specific application
and its dependencies contained in a virtualization of an
operating system [17]. In this way, the container gathers the
necessary components for the execution of the application,
which includes code, libraries, and environment variables,
while the host OS manages access to the hardware resources
as memory and processor, and all necessary kernel operations.

Containers promote isolation between host and guests, but
this isolation is not as strong as in full virtualization, where a

hypervisor is responsible for managing and running the guest
systems. The hypervisor is the intermediate layer between the
virtual machines and the host, responsible for the instruction
conversion and resource allocation [18].

The strong isolation provided by the hypervisor comes with
a cost, in terms of processing, memory usage, and ease of
resource sharing. Such restrictions are much lighter when
using containers [19]. As containers share same the kernel, a
single OS instance is capable of supporting multiple isolated
containers. In addition, the virtualized OS in the container
is lighter than a virtual machine, having only the resources
necessary for the execution of the application [20].

IV. PROPOSAL

Monitoring vulnerabilities at the application level is a
processor-consuming task, and it is impracticable to carry out
a monitoring from inside the container due to its restrictions
and limited resources, as well as the risk of having the IDS
exposed to the attacker [21]. Therefore, an option would be
to monitor the guest processes from the host system, using as
data the system calls they generated.

In this context, [7] introduces a window-based method of
system calls monitoring, which is simple and effective for
real-time detection. Approaches using frequency tables [21,
22], Machine Learning (ML) [23, 24] algorithms, and Markov
chains [25] also showed good results regarding detection rates.

In order to compare different possible techniques for
anomaly detection based on system calls, the proposed ap-
proach focuses on an application running in a container
environment and being observed from the host. Our goal is
to explore ML techniques to identify attacks, and understand
how the intrusion detection systems will behave with this
outside perspective. As we used a sliding window technique,
we focus on evaluating how the size of the window will impact
the results, and we make a thorough assessment of the correct
size to be used.

Figure 1 presents three approaches to collect system call
information from guest processes running inside a container.
The first strategy is to run the IDS at the host level, outside
the container (represented by App1 in Fig. 1). This protects
the IDS against a compromised container [26].

The second approach consists of using the trace application
inside the same container the application is running (repre-
sented by App2 in Fig 1), which may be harmful to the
IDS. The third approach defines a privileged container for
running the IDS (represented by App3 and App4 in Fig. 1).
The IDS container should have access rights to the processes
being monitored, to gather the system calls they issue. This
approach is interesting, because it allows to define a complete
IDS container, that can be easily deployed elsewhere.

This work used the first approach to collect data, using
the strace tool to collect all the interactions between the
guest process and the kernel. We collected enough information
to build a base of normal behaviors, containing sequences
of system calls that represent the normal functioning of the

Infrastructure

Host Operating System

strace

pid 1

App4

bins/libs

pid 3pid 2 pid 4

App3
(strace)

bins/libsbins/libs

strace
App2

App1

bins/libs

Container Engine

Fig. 1: Approaches to monitor a guest application.

application, and also sequences that represent it under an
attack or malicious behavior, to evaluate the proposal.

V. EVALUATION

We built a prototype of our proposal, to verify whether
monitoring a guest application from outside the container is
effective, and also to assess the algorithms used to detect
anomalies in the stream of system calls issued by an applica-
tion. A labelled dataset of normal behavior and attacks was
also generated and is publicly available1.

The experiments were run in a Linux host using Docker
as the virtual environment. The application selected for the
tests was Wordpress, a web application that runs over the
Apache web server. This choice is due to its popularity among
web applications, and due to the existence of a wide set
of vulnerabilities. The extensive use of third-party plugins
and personalized themes opens the door to security flaws
involving Cross-site scripting (XSS), SQL injection, Remote
Code Execution (RCE), among others.

The application configuration was adjusted to reduce the
amount of threads and child processes forked by the Apache
server, in order to have a cleaner and more consistent stream
of system calls issued by the application. collected syscall
information contains their names, parameters, and return
values.

The dataset built contains fifty traces, half from normal
behavior that consist of expected interactions with the appli-
cation (five different interactions), and the other half anoma-
lous behavior consisting of attacks (five different attacks
focusing in XSS and RCE). They are: WordPress store
XSS via the wp-admin [27], CSV import/export allowing
unauthenticated PHP code execution, file manager allowing
allows the upload and execution of PHP code [28], bypass
extensions to upload PHP shells [29], and file uploading from
unauthenticated users.

1The dataset and the code used in the experiments can be found in
https://github.com/gabrielruschel/hids-docker

Two groups of tests were developed: in the first case all
system calls were used, without applying any type of filtering.
For the second case, system calls were classified into threat
levels, and the least dangerous ones were discarded.

For the data processing, a sliding window approach was
used, rebuilding the trace with a window of size n. In
total, seven different window sizes were tested using four
algorithms, these being K-Nearest Neighbors (KNN) with a
k = 3, Random Forest (RF), Multilayer Perceptron (MLP),
and AdaBoost (AB), all of them with the default scikit-learn
parameters [30]. For the training phase, the dataset was split
in 50/50 for training/testing, and ten executions were run for
each classifier, changing the random seed used in the split
phase to generate different sets, to avoid overfitting issues.

The efficiency of each algorithm was evaluated using four
metrics: precision, recall, f1-score, and accuracy. Precision
represents the ratio between correctly predicted detections and
all detections that have occurred, where high values represent
a low occurrence of false positives. Recall, on the other
hand, represents the fraction of detections identified within all
possible detections. F1-score combines the values of precision
and recall into a single result, which indicates the overall
quality of the model.

The sections V-A and V-B discuss the experiments carried
out and the results obtained, and Section V-C presents an
evaluation of the window size, considering the impact for
intrusion detection.

A. Using all system calls

The first set of experiments consists of using all the
system calls issued by the application. Each system calls is
represented by a unique numeric identifier. Table I presents
the results obtained with ten executions, with no filtering. In
general the results seem adequate, with precision and accuracy
above 90% for all window sizes and classifiers. The difference
between the classifiers are quite small, with a f1-score and
recall number not having a relevant difference between each
algorithm.

Looking only at the window size in Table I, some points
can be highlighted: (1) window sizes 3 and 5 present the
most “unstable” values in relation to the other window sizes;
(2) the difference between the results is small for windows
sizes between 7 to 15, which indicates that they could present
a good trade-off between detection time and classification
performance; and (3) Random Forest and AdaBoost present
the best overall results.

B. Using filtered system calls

The work [31] proposed a security classification for system
calls, in which each syscall is labelled with a threat level,
meaning how dangerous that system call can be to the system
if misused. Proposed levels range from 1 to 4, where level
1 represents system calls that allow complete control of the
system; level 2 represents system calls that can be used for
Denial of Service (DoS) attacks; level 3 system calls can be
used to subvert the responsible process; finally, level 4 system

TABLE I: Ten executions considering all calls (without filter).

Classifier Metric Window Size
3 5 7 9 11 13 15

KNN
precision 84.5 90.4 90.3 88.5 91.8 90.4 87.9
recall 63.1 71.3 74.0 76.2 76.5 77.7 79.4
f1-score 71.4 79.7 81.3 81.8 83.4 83.5 83.3
accuracy 90.1 92.9 93.4 93.4 94.1 94.0 93.8

RF
precision 99.1 98.7 98.7 98.8 98.8 98.7 98.7
recall 58.5 70.1 73.0 74.4 75.6 76.7 77.5
f1-score 73.6 82.0 83.9 84.9 85.7 86.3 86.9
accuracy 91.8 94.0 94.6 94.9 95.1 95.3 95.4

MLP
precision 91.3 89.1 90.7 92.2 91.6 90.0 90.5
recall 54.3 64.5 67.0 68.2 69.0 69.9 70.5
f1-score 68.1 74.8 77.1 78.4 78.7 78.6 79.2
accuracy 90.1 91.5 92.2 92.7 92.7 92.6 92.8

AB
precision 99.1 98.7 98.7 98.8 98.8 98.7 98.7
recall 58.5 70.1 73.0 74.4 75.6 76.6 77.5
f1-score 73.6 82.0 83.9 84.9 85.7 86.3 86.8
accuracy 91.8 94.0 94.6 94.8 95.1 95.3 95.4

calls are classified as harmless. The calls classified as low
threat by the article can be found in Table II, which represents
part of the structure defined by [31].

TABLE II: System calls classified as harmless. Obtained from [31].

4

I oldstat, oldfstat, access, sync, pipe, ustat, oldstat, read-
link, readdir, statfs, fstatfs, stat, getpmsg, lstat, fstat,
oldname, bdflush, sysfs, getdents, fdatasync

II getpid, getppid, getuid, getgid, geteuid, getegid, acct,
getpgrp, sgetmask, getrlimit, getrusage, getgroups,
getpriority, sched getscheduler, sched getparam,
sched get priority min, sched rr get interval,
capget, getpid, getsid, getcwdm getresgid, getresuid

III get kernel syms, create module, query module

IV times, time, gettimeofday, getitimer

V sysinfo, uname

VI idle

VII break, ftime, mpx, stty, prof, ulimit, gtty, lock, profil

This “harmless” group consists of system calls that return
some value or attribute on a specific file, as in the case of
the stat syscall and its variations, or about system resources
like getpid, getuid, gettimeofday, for example. This group of
calls is not used for manipulating files, memory, nor executing
commands or programs, and does not make changes to the
system, so they can be classified as harmless in relation to
system security.

Based on the system calls presented in Table II, they are
filtered out from the system call stream and not taken into
consideration. Despite discarding system calls of only one
of the 4 threat levels, the volume of data being analyzed
was divided by two compared to the previous experiment.
This means that the training and the decision made by the
classifiers will be faster, i.e., an attack will be detected faster.

Table III presents the results using the filtered system calls.

a Online scenario. Results using fewer system calls (representing an online/real
scenario) presents worse results than using the full traces (offline scenario).

b Overall scenario. Results changing the proportion of system calls from 0% to
100% (full trace) in both scenarios (filtered and raw data).

Fig. 2: Comparing online and offline solutions. Results using the offline approach (almost the full trace) present much better results than the online
approach (with few system calls).

The results show improvements in relation to the classification
using all system calls presented in Table III. However, it is
important to highlight that f1-score presented a growth, which
demonstrates a better adequacy of the results concerning all
the classifiers. The classifiers that presented the best perfor-
mance were Random Forest and AdaBoost. Considering that
Random Forest is computationally cheaper than AdaBoost,
we consider that it is the best option for this classification
problem. AdaBoost and Random Forest have similar results,
although they have different strategies to train the models; the
only similarity between them is the use of decision trees as
base classifiers.

TABLE III: Ten executions with call filtering (with filter).

Classifier Metric Window Size
3 5 7 9 11 13 15

KNN
precision 88.5 96.4 95.9 95.5 96.4 95.8 97.0
recall 71.4 82.0 85.1 86.1 86.8 87.5 88.0
f1-score 78.6 88.6 90.2 90.5 91.3 91.5 92.3
accuracy 89.7 94.4 95.1 95.2 95.6 95.7 96.1

RF
precision 99.1 99.1 99.2 99.3 99.2 99.2 99.2
recall 68.1 81.9 85.2 86.1 87.0 87.8 88.5
f1-score 80.7 89.7 91.7 92.2 92.7 93.1 93.5
accuracy 91.4 95.0 95.9 96.2 96.4 96.6 96.8

MLP
precision 92.1 94.6 95.0 96.6 95.4 96.2 96.2
recall 64.1 77.9 81.9 82.2 82.9 83.5 83.8
f1-score 75.5 85.4 87.9 88.8 88.7 89.4 89.6
accuracy 89.1 93.0 94.1 94.6 94.4 94.8 94.9

AB
precision 99.1 99.1 99.2 99.3 99.2 99.2 99.1
recall 68.1 81.9 85.2 86.1 87.0 87.8 88.5
f1-score 80.7 89.7 91.7 92.2 92.7 93.1 93.5
accuracy 91.4 95.0 95.9 96.2 96.4 96.6 96.8

C. Window size impact

To verify the impact of the size of the sliding window on
an intrusion detection system, a new set of experiments was
performed. This test focuses on growing the window size in
small portions in order to analyse the behavior of the intrusion
detection system. The window change steps are relative to the

size of the smallest trace in our dataset, in this case 594 (i.e.,
a trace with 594 system calls). The traces have an average
size of 8, 646 system calls, with the biggest trace having a
size of 27, 171 system calls.

These tests are directly related to online/offline approaches.
An online strategy tends to use sliding windows for real-
time attack detection, generally using small-sized observation
windows to detect them as soon as possible. An offline
approach tends to explore a large volume of data, and can
explore all the trace size (i.e., it would detect an attack only
after it happens).

Two experiments were defined. The first one consists of
growing the window between 0% and 4% in small steps of
0.5%, representing a growth size of about 1-2 system calls
each time. Both experiments were conducted using only the
Random Forest classifier, given that it was the best one in
the previous experiments. We tested these experiments with
the filtered and raw versions of our dataset. Figure 2a shows
the results of this evaluation, demonstrating a rapid growth
in the f1-score for the very first three lowest window values.
Despite the difference between the observations filtering or
not the system calls, the growth always occurs. However, the
strategy of filtering the syscalls provides a f1-score above 90%
using only 1% of the trace size (which consists of 6 system
calls).

Finally, Figure 2b shows the results when growing the
window size from 0% to 100% by 10% steps. This repre-
sents a growth of about 59-60 system calls each step. The
global scenario shows the impact of system call filtering and
demonstrates that online approaches can be carried out, since
using only 10% of the trace it is possible to obtain an adequate
f1-score, which does not tend to vary significantly with the
growth of the window size, up to 100% of the trace size.

VI. CONCLUSION

In this article, the feasibility of anomaly intrusion detection
on a containerized application, using the analysis of sequences
of system calls. It evaluated the impact of varying the sliding
window sizes on different methods of anomaly detection;

and also evaluated a pre-filtering of the system calls used
in the anomaly detection, discarding system calls considered
as harmless for system security.

It was possible to identify an improvement in results
after performing the filtering of system calls evaluated as
harmless. Although this improvement was small, it showed
to be an interesting point to be studied and evaluated. As this
experiment was inspired by the syscall classification made
by [31], a new threat assessment of system calls also remains
for future work, since the work does not cover all calls present
in modern systems. In addition, some classifiers obtained good
results, even when not pre-filtering the system calls.

The study highlights the possibility of using system calls
to identify threats within containers; it presented good results
even using a smaller set of system calls, allowing the imple-
mentation of an online anomaly detector. Thus, considering
the growing number of applications using containers, our
approach could be implemented to protect them against many
type of attacks.

As a future work, new feature extraction algorithms could
be considered, to improve the detection performance without
increasing the overhead of the system, and the increase of
the recall to a more adequate value, over 90%, that will
reduce the number of not relevant events being detected. In
addition, our dataset could also be improved with more/newer
samples of normal and attack behaviors, in order to evaluate
the robustness of the proposed approach against them.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES). The authors also thank the UFPR Computer Sci-
ence department.

REFERENCES

[1] S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues,
challenges, and the road ahead,” IEEE Access, 2019.

[2] A. Lam, “New IPS to boost security, reliability and performance of the
campus network,” Newsletter of Computing Services Center, 2005.

[3] W. Yassin, N. I. Udzir, Z. Muda, M. N. Sulaiman et al., “Anomaly-
based intrusion detection through k-means clustering and naives bayes
classification,” in 4th Int. Conf. Comput. Informatics, ICOCI, 2013.

[4] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, “Sok:
Introspections on trust and the semantic gap,” in 2014 IEEE symposium
on security and privacy. IEEE, 2014, pp. 605–620.

[5] M. Liu, Z. Xue, X. Xu, C. Zhong, and J. Chen, “Host-based intrusion
detection system with system calls: Review and future trends,” ACM
Computing Surveys (CSUR), 2018.

[6] R. A. Bridges, T. R. Glass-Vanderlan, M. D. Iannacone, M. S. Vincent,
and Q. Chen, “A survey of intrusion detection systems leveraging host
data,” ACM Computing Surveys (CSUR), 2019.

[7] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense
of self for unix processes,” in IEEE Symp. on Sec. and Privacy, 1996.

[8] S. Srinivasan, A. Kumar, M. Mahajan, D. Sitaram, and S. Gupta, “Prob-
abilistic real-time intrusion detection system for docker containers,” in
Int. Symp. on Sec. in Computing and Communication. Springer, 2018.

[9] C. I. Systems, “Sequence-based intrusion detection,”
http://www.cs.unm.edu/ immsec/systemcalls.htm, 1998.

[10] J. Flora and N. Antunes, “Studying the applicability of intrusion de-
tection to multi-tenant container environments,” in 2019 15th European
Dependable Computing Conference (EDCC), 2019.

[11] A. S. Abed, T. C. Clancy, and D. S. Levy, “Applying bag of system calls
for anomalous behavior detection of applications in linux containers,”
in 2015 IEEE Globecom Workshops (GC Wkshps), 2015.

[12] M. Mitchell, J. Oldham, and A. Samuel, Advanced linux programming.
New Riders Publishing, 2001.

[13] J. Cespedes and P. Machata, “ltrace(1), linux manual page,” 2013,
https://man7.org/linux/man-pages/man1/ltrace.1.html.

[14] ftrace, “perf-ftrace(1) — linux manual page,” mar 2018,
https://man7.org/linux/man-pages/man1/perf-ftrace.1.html.

[15] K. Jain and R. Sekar, “User-level infrastructure for system call interpo-
sition: A platform for intrusion detection and confinement.” in NDSS,
2000.

[16] M. Rajagopalan, M. A. Hiltunen, T. Jim, and R. D. Schlichting, “System
call monitoring using authenticated system calls,” IEEE Transactions on
Dependable and Secure Computing, 2006.

[17] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, 2014.

[18] L. Litty, Hypervisor-based intrusion detection. University of Toronto,
2005.

[19] S. S. Durairaju, “Intrusion detection in containerized environments,”
2018.

[20] P. Sharma, L. Chaufournier, P. Shenoy, and Y. Tay, “Containers and
virtual machines at scale: A comparative study,” in 17th International
Middleware Conference, 2016.

[21] A. S. Abed, C. Clancy, and D. S. Levy, “Intrusion detection system
for applications using linux containers,” in International Workshop on
Security and Trust Management. Springer, 2015.

[22] S. S. Alarifi and S. D. Wolthusen, “Detecting anomalies in IaaS
environments through virtual machine host system call analysis,” in
Int. Conf. for Internet Technology and Secured Transactions, 2012.

[23] Y. Liao and V. R. Vemuri, “Using text categorization techniques for
intrusion detection.” in USENIX Security Symposium, 2002.

[24] D. Yuxin, Y. Xuebing, Z. Di, D. Li, and A. Zhanchao, “Feature
representation and selection in malicious code detection methods based
on static system calls,” Computers & Security, 2011.

[25] W. Wang, X.-H. Guan, and X.-L. Zhang, “Modeling program behaviors
by hidden markov models for intrusion detection,” in 2004 International
Conference on Machine Learning and Cybernetics. IEEE, 2004.

[26] M. Laureano, C. Maziero, and E. Jamhour, “Intrusion detection in
virtual machine environments,” in 30th Euromicro Conference, 2004.
IEEE, 2004, pp. 520–525.

[27] “CVE-2014-0160,” Available from National Vulnerability Database,
CVE-ID CVE-2019-9978., may 2019.

[28] “CVE-2020-25213,” Available from National Vulnerability Database,
CVE-ID CVE-2020-25213., may 2020.

[29] “CVE-2020-12800,” Available from Common Vulnerabilities and Ex-
posures, CVE-ID CVE-2020-12800., may 2020.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, 2011.

[31] M. Bernaschi, E. Gabrielli, and L. V. Mancini, “Remus: a security-
enhanced operating system,” ACM Trans. on Information and System
Security (TISSEC), 2002.

