
A Trusted Message Bus Built on Top of D-Bus

Abstract. A wide range of applications use Inter-Process Communication (IPC)
mechanisms to communicate between each other or between their components
running in different processes. A well-known IPC mechanism in UNIX-like sys-
tems is D-Bus, which allows processes to communicate by receiving and routing
messages. Despite being widely used, such system lacks mechanisms to pro-
vide end-to-end data confidentiality. In this paper we propose the use of Intel
Software Guard Extensions (SGX) to provide a trusted communication channel
between local applications over the D-Bus message bus system. We obtained
stronger security guarantees in message confidentiality and integrity while keep-
ing a small Trusted Computing Base (TCB) and compatibility with the reference
D-Bus system.

1. Introduction

A UNIX environment is composed of applications and services that frequently need to
communicate with each other [Tanenbaum and Bos 2015, Lauer 2019]. This is accom-
plished using Inter-Process Communication (IPC) mechanisms, which allow the coordi-
nated information exchange between such elements. Different IPC solutions exist, imple-
menting different communication paradigms, with distinct concerns about performance,
modularity, and scope.

The standard IPC mechanism for many UNIX-like desktop platforms is D-Bus
[freedesktop.org 2018]. It is responsible to provide basic functionalities such as data ex-
change between processes and also more complex operations. Based on a client/server
architecture, its offers two types of services: bidirectional, where a resource is requested
through an exchange of messages, and unidirectional, where the information is broadcast
to interested clients.

D-Bus messages are fully typed, the communication is based on a single message
bus shared in the system, allowing the integration between events [Love 2005]. Shared
bus provides a simple mechanism for exchanging messages, but, on the other hand, makes
the solution susceptible to denial-of-service (DoS) attacks and may expose sensitive ap-
plication data to malicious entities.

Confidentiality issues in the use of IPC mechanisms are described by
[Bui et al. 2018], and can be addressed by using cryptographic protocols. These pro-
tocols can be implemented by the final applications or by the IPC itself. To reinforce
the security constraints, a Trusted Execution Environment (TEE) can be used, in order to
provide authentication and a root of trust to applications. Similar security concerns are
explored in distributed IPC mechanisms [Pires et al. 2016, Havet et al. 2017].

This paper presents a framework that applies the Intel Software Guard Exten-
sions (SGX) framework to protect the information exchange on D-Bus. The developed



system allows applications to exchange messages with strong integrity and confidential-
ity guarantees, using security mechanisms provided by the hardware. Our prototype was
evaluated and compared to the standard D-Bus implementations.

The text is organized as follows: Section 2 presents the background for the study;
Section 3 presents previous research related to D-Bus and secure communication between
processes; Section 4 describes the solution proposed by this paper; implementation of a
proof of concept, as well performance evaluation and security assessment of the solution
are presented in Section 5; finally, Section 6 concludes the paper.

2. Background

This Section presents a brief description of important concepts used in this work, such as
D-Bus, D-Bus Broker, and the Intel Software Guard Extensions (SGX).

2.1. D-Bus

D-Bus is a message bus system used as an IPC mechanism between multiple application
in the same machine. Using D-Bus, applications can send messages to particular services
and broadcast messages to all interested services; it is also used for communication be-
tween system programs and user sessions [Pennington et al. 2020]. D-Bus is the main
IPC mechanism used in current Linux desktops.

D-Bus consists of a library (libdbus) that allows the connection and message ex-
change between applications; a daemon that allows the connection of several applications
and performs the message routing; and high-level libraries that enable applications to
communicate with libdbus. The D-Bus daemon provides two buses, a system bus and a
session bus, in which the process can connect and use the message routing service, as
shown in Fig. 1.

CALLER Outgoing call

Program 
code

Marshall 
method 

call D-Bus Connection

D-BUS
D-Bus Connection

D-Bus Connection

Message Dispatcher

Destination Table

CALLEEIncoming call

Locate 
object via 

path

Unmarshall 
method call

D-Bus Connection

Socket

Object 
instance

Socket

Figure 1. D-Bus overview [Marhefka and Muller 2014].



The system bus is used for applications to interact with system components with-
out dealing with low-level system details. It can provide important information to appli-
cations, such as adding new hardware, low battery alert, or network status. The session
bus allows the user applications to share data and event notifications between them in a
single user session. Any user process can connect to the system bus and to its current
session bus, but not to another users’ session buses.

When each application connects to the bus, the daemon assigns a unique identi-
fier to the process, ensuring that identifier is never reused during the lifetime of the bus
daemon. In order to be located by others, each application must register a known name
on the bus, the service name, and the daemon will perform the translation of the service
name into the identifier.

D-Bus messages have two sections. The first section, header, has a set of infor-
mation used in the message routing, such as sender, destination, message type, and also
the type signature for the data. The second section, body, has the message data in binary
format. There are also two main types of messages: method and signal. Methods are
operations that can be invoked in the destination and can contain optional arguments and
return values. Signals are used by the application to notify others of the occurrence of an
event and will be received by all processes connected to the bus. Signals can also contain
arguments, and they do not expect any reply.

2.2. D-Bus Broker

An alternative to the default implementation of D-Bus is D-Bus Broker [bus1 2018],
which is a drop-in replacement for the D-Bus reference implementation and keeps com-
patibility to it. D-Bus Broker uses a set of modern features provided by recent Linux
kernel releases and an improved implementation to provide higher performance, reliabil-
ity, scalability, and security.

The standard D-Bus daemon performs connection accounting on a process basis.
Clients can circumvent this accounting by creating multiple processes, in order to get new
connection quotas, opening the way to DoS attacks. The D-Bus Broker implementation
uses a user-based accounting, preventing this attack.

All internal errors are considered fatal by D-Bus Broker; when an error occurs,
all peers are disconnected and the broker is shut down, with no tries to work around the
situation. This behavior avoids to put peers into unexpected situations or to silently drop
messages. Also, when a peer commits a protocol violation, it receives an error reply and
is then disconnected.

In order to avoid deadlocks, D-Bus Broker do not use IPC methods in its imple-
mentation. The operation of message transactions is a self-contained procedure, with-
out any external hooks nor callbacks. Also, D-Bus Broker does not employ any global
data-structures non-required by D-Bus specification, with message transactions only be-
ing affected by the data provided by the involved peers. This makes all lookups in D-Bus
Broker to take O(log(n)) time, unlike D-Bus daemon, which takes O(n) times in several
situations.

Finally, in addition to the use of D-Bus Broker as a drop-in replacement for the
reference implementation, it is also possible to integrate the message broker as an isolated



process, without compatibility restrictions and without any side-effects or file-system ac-
cess, behaving like a library and being perfectly suited for private buses.

2.3. Security Issues in D-Bus

Applications using D-Bus are subject to some problems, such as memory leakage and
data loss, as shown by [Marhefka and Muller 2014], because of the way the message
exchanges take place, since the application must validate the received data as it does with
unreliable inputs. Problems of this nature affect applications performance and threaten
reliability, as they are vulnerable to attacks such as DoS [Whittaker 2002].

An improvement is kdbus, an in-kernel implementation of the transport layer, tak-
ing advantage of Linux kernel features to overcome D-Bus limitations imposed by the
user-space implementation [freedesktop.org 2015]. It brings more security to the system,
being available at boot time, providing reliable metadata transmission, a simplified pol-
icy mechanism, and allowing zero-copy messages between process message exchange
[Atlidakis et al. 2016].

Besides that, several applications may still be vulnerable to attacks that compro-
mise data confidentiality when using IPC mechanisms. An attacker may have access to
the system and listen the message bus in order to retrieve messages exchanged between
processes. This type of attack is defined as Man-in-the-Machine, and can reveal sensitive
users’ information, such as passwords and authentication tokens [Bui et al. 2018].

The security of D-Bus can be improved by requiring a bus authentication, ensur-
ing that applications can only connect to it when presenting the appropriate credentials.
D-Bus authentication is based on the Simple Authentication and Security Layer (SASL)
standard [Melnikov and Zeilenga 2006], but it is not mandatory. It is also possible to
apply a security policy, which allows the filtering of exchanged data by characteristics
such as source, recipient, and content. SELinux can also be enabled in D-Bus in two
ways: messages that are routed have their permission checked; and when a message asks
to own a name, the context is verified. Despite this, end-to-end data protection is left to
applications [freedesktop.org 2020].

2.4. Intel Software Guard Extensions

Intel SGX is an extension of the 6th+ Intel CPU instruction set. The new instructions
protect sensitive information in an application that could be modified or accessed by soft-
ware running at a higher privilege level. With such instructions, developers are allowed to
define private regions of memory, that are known as enclaves, blocking any access from
outside of enclaves in this data. The main goal of the SGX architecture is to reduce the
Trusted Computing Base (TCB) to a piece of hardware and software, as shown in Fig. 2.

Each enclave has an author self-signed certificate containing information that al-
lows SGX to detect when any part of the enclave has been tampered with, allowing an
enclave to prove that it has been correctly loaded to the memory and is trustworthy.
The enclave creation consists of several steps: initialization of the control structure of
the enclave; page memory allocation and loading the enclave content to these pages;
measurement of the enclave content; and creating an enclave identifier. The enclave is
linked to the application that created it, which is open to any inspection and analysis
[McKeen et al. 2013, Costan and Devadas 2016].



Hardware Hardware

VMM VMM

OS OS

App App App App App App

Attack Surface

Attack Surface Without Enclaves Attack Surface With Enclaves

Figure 2. Attack surface of a security-sensitive application without and with SGX
enclaves [Sobchuk et al. 2018].

Unauthorized access to data or code inside an enclave are blocked, generating
access faults. The data in the enclave memory is encrypted, with the encryption key
being stored in the CPU, without access by external entities [Costan and Devadas 2016,
Intel 2016]. While the data is being transferred between the registers, unauthorized access
is avoided using the internal access control mechanisms of the processor itself. Malware
and even system code with higher privilege can’t change the data inside the enclave,
ensuring its confidentiality and integrity [McKeen et al. 2013, Jain et al. 2016].

Enclaves are also able to share data each other by using an attestation mechanism,
which allows an enclave to prove that it is legitimate, has not been tampered with and
was loaded correctly, allowing the creation of a secure channel for communication. Lo-
cal attestation is used when both enclaves are running in the same platform, defining a
symmetric key by a Diffie-Hellman key agreement procedure, authenticated by the hard-
ware. This procedure ensures that both enclaves were loaded correctly and that all static
measurements are valid. Remote attestation is also provided [Anati et al. 2013].

3. Related Work

There is a lack of proposals to improve the security of the D-Bus infrastructure. The
current section discusses some papers found in the literature that cover this subject.

The structure used in D-Bus allows users to call methods with a set of arguments.
[Marhefka and Muller 2014] developed a tool name Dfuzzer to perform fuzz testing of
D-Bus services. As a client, Dfuzzer calls remote methods through the D-Bus interface,
with the types and values of the arguments being automatically discovered. The monitor
is responsible for watching the calls and detecting odd behavior.

There are some works indented to complement D-Bus or to replace it by more ro-
bust and efficient solutions. One is Bus1 Kernel Message Bus, an in-kernel IPC subsystem
focused on high performance, compatibility, and reliability. It pushes into the kernel some
features of D-Bus to improve their performance [bus1 2016]. D-Bus Broker, presented in
Section 2.2, also replaces D-Bus by a more efficient solution. None of them deals with
message confidentiality or integrity issues [bus1 2018].

Other IPC frameworks are frequently used to develop applications. A popular one



is ZeroMQ [ZeroMQ 2020], a lightweight messaging bus used in many organizations,
like Spotify, Microsoft, and Samsung. It allows users to connect their code using any
language or platform, with a focus on stability and reliability. ZeroMQ uses the sockets
API, allowing its use in distributed applications.

The paper [Pires et al. 2016] uses Intel SGX to create secure communication
channels, and ZeroMQ is used on them to implement a secure content-based routing
mechanism between enclaves. They achieved acceptable performance, as long as the
memory used by each enclave is kept within the size of its private memory. Similarly,
[Havet et al. 2017] applies ZeroMQ and SGX in a middleware framework for data flow
processing tasks. Its goal is to provide end-to-end security guarantees in industrial-level
data processing, such as large-scale clusters or cloud infrastructures. The proposal has
limited scalability related to the availability of physical cores.

We did not find any research work intended to improve the security aspects of
communication using D-Bus, concerning the confidentiality and integrity of messages
exchanged by applications. This motivated us to investigate how the Intel SGX framework
could be used in such context.

4. A Trusted Message Bus
D-Bus is a well-known Linux Inter-Process Communication (IPC) mechanism, enabling
applications to communicate each other and with system modules. One of the charac-
teristics of message buses (session bus and system bus) is that both are public, allowing
applications to connect to them and to listen the messages. We can use the dbus-monitor
tool to listen all messages and data put on each bus.

Some applications may share sensitive data with other application or with a system
service, such as in authentication systems [?] and password managers [Bui et al. 2018],
which require data confidentiality. Confidentiality can be achieved by using asymmetric
or symmetric encryption, but both solutions lack authentication when there is no root of
trust, enabling the occurrence of man-in-the-middle attacks.

In this work, we propose the use of Intel SGX as a root of trust to establish secure
communications between applications using D-Bus. Our proposal uses the local attes-
tation mechanism to establish a communication session between the applications, with
the key agreement procedure authenticated by the hardware, avoiding man-in-the-middle
attacks, even their active forms.

Our implementation includes the Trusted D-Bus Library (tdbus), built on top of
libdbus, to perform the attestation and data ciphering procedures. Fig. 3 shows the archi-
tecture overview of our solution, in which Fig. 3(a) presents a simple usage of libdbus
reference implementation and Fig. 3(b) presents the organization and communication
flow among tdbus, libdbus, and the enclave; the encrypted data flow is represented by a
lock.

4.1. Service Registration and Secure Session Setup
As described in Section 2.1, connection establishment in D-Bus and D-Bus Broker in-
volves the client request to use a name (service name) that identifies it on the message
bus, with D-Bus daemon and D-Bus Broker using this name to route messages to this
client.



Application

libdbus

D-Bus Daemon

Application

libdbus

(a)

Application

libdbus

D-Bus Daemon

libdbus

tdbus tdbusEnclave Enclave

Application

(b)

Figure 3. (a) Usage of libdbus reference implementation by the application; (b)
Communication flow among tdbus, libdbus, and the enclave.

Our solution includes the enclave creation at this step, which will carry out the at-
testation and data encryption/decryption. In order to provide a secure end-to-end commu-
nication channel, we add an step to perform an authenticated Diffie-Hellman key agree-
ment between the two applications that will exchange data, by using the local attestation
procedure provided by Intel SGX, thus creating a secure communication session between
the applications. Each service name registered by the application creates an enclave, and
each enclave is able to handle multiple communication sessions.

To establish the communication session, both application enclaves attest each
other using the mechanisms provided by Intel SGX, ensuring that both are running in
the same platform. Attestation also provides a certificate for the key agreement proce-
dure, allowing to validate data received in this process. Key agreement is performed by a
three-step Diffie-Hellman procedure, with one client sending its identification to the other,
which will use this identification to generate a signed report that will be send back to the
first client. It will then validate the received report and send a signed response to the other
client, to be validated there. All these steps are done through and open channel and at the
end both clients will have a 128-bit session key that will be used to encrypt all messages
exchanged between them.

4.2. Secure Communication

Each communication session ensures an end-to-end secure channel, with a specific key
used to cipher data. The session key defined will be used to cipher all data exchanged
between the two applications until the session is closed. This session key is handled only
by the enclave and never leaves its boundaries, as well as the data encryption/decryption
procedures, ensuring their integrity. Attestation and data encryption are transparent to
the programmer, being carried out by the tdbus library, which contains all the code to
implement such tasks.

Data cipher includes the entire message body section and the type signature for the
data, preventing the attacker from listening what data and data types are being exchanged
between applications. The remaining information in message header section cannot be
encrypted, since they are necessary for the message routing that is carried out by the D-
Bus daemon. This approach makes the message body opaque to D-Bus daemon and does
not require any changes in D-Bus itself.

The data flow in the trusted message bus is presented in Fig. 4, including the data
encryption procedures, performed inside enclaves (shaded boxes). The data structures to



be sent are converted to a byte array and then encrypted using the session key. This byte
array is then sent to D-Bus as an opaque message. We opted to add our own marshaller
before the encryption, to keep the D-Bus libraries and runtime intact.

Then, the message is marshalled by D-Bus with the encrypted data array as a
payload, routed by D-Bus daemon, and then received by the second application, which
will unmarshall the message, decrypt the data inside the enclave, and rebuild the message
structure as defined by the sender, allowing the application to use the data.

Decrypt 
data

Unmarshall 
data

CALLER

D-BUS
D-Bus Connection

D-Bus Connection

Message Dispatcher

Destination Table

Socket

Socket

Outgoing call

Program 
code

Marshall method 
call

D-Bus Connection

Marshall 
data

CALLEEIncoming call

Locate 
object via 

pathUnmarshall method 
call

D-Bus Connection
Object 

instance

Encrypt 
data

Figure 4. Trusted message bus overview. Shaded boxes indicate enclaves.

5. Evaluation
In order to evaluate the feasibility of our proposal, we implemented a prototype of the
Trusted D-Bus Library using the C language. In this Section we discusses the performance
trade offs and the security guarantees provided by the solution.

5.1. Performance Evaluation

We evaluated the performance of our solution in three different scenarios, applying it on
both the standard D-Bus daemon and the D-Bus Broker solutions. Tests were run on a
Dell Inspiron 7460 laptop, dual-core 2.7 GHz Intel Core i7-7500U CPU, 16 GB RAM,
1 TB hard drive, 128 GB SSD, SGX enabled with 128 MB PRM size, running Ubuntu
18.04 LTS, kernel 4.15.0-109-generic. Intel TurboBoost, SpeedStep, and HyperThread
extensions were disabled, to provide stable results. We used the D-Bus daemon 1.12.2;
D-Bus Broker v23; Intel SGX SDK 2.9.101.2 and set the enclave stack size at 8 KB and
the enclave heap size at 64 KB. All benchmarks were taken by using RDTSCP instruction
[Paoloni 2010]. Experiments were run 100,000 times each. The width of the confidence
interval at 95% is 0.96% of the average.

The first evaluated scenario involves the connection establishment, in which we
have major changes and we expect the biggest overhead. We started two applications,
both register themselves as services in D-Bus and the first one starts a secure connection



to the other. We measured the time needed for the service name registration and secure
session establishment. Due to the enclave creation and attestation, the secure session
establishment imposes a high overhead in our solution, around 7.7× using the D-Bus
daemon and 9.3× with the D-Bus Broker, as shown by Fig. 5.

	0

	10

	20

	30

	40

	50

Untru
sted

	D-Bus	D
aem

on

Trust
ed	D

-Bus	D
aem

on

Untru
sted

	D-Bus	B
roke

r

Trust
ed	D

-Bus	B
roke

r

CP
U
	c
yc

les
	(x

	1
,0
00

,0
00

)

Bus	Connection

Enclave	Creation

Attestation

5.794

44.860

4.619

42.928

Figure 5. Connection/session establishment latency.

The secure session establishment includes the enclave creation, which is done
when the application requests the service name to the bus, and is responsible for 77%
of the time spent in this step. In consequence, the overhead for an application to estab-
lish new communication sessions after being connected to the bus will be considerably
lower, as each enclave can handle multiple communication sessions. The time spent in
the attestation process is around 4.8 million CPU cycles.

In order to evaluate the overhead of our marshalling and encryption/decryption
process, we performed tests using four primitive data types (uint8, uint16, uint32,
and uint64), with the results being presented by Fig. 6. In this scenario, our proposal
imposes an overhead around 160% when compared to vanilla D-Bus daemon and D-Bus
Broker.

	0

	100

	200

	300

	400

	500

	600

1	Byte 2	Bytes 4	Bytes 8	Bytes

CP
U
	c
yc
les

	(x
	1
,0
00
)

Data	size

D-Bus	Daemon

249.9 218.8 235.1 219.9

Trusted	D-Bus	Daemon

587.2
528.0

584.5 561.6

D-Bus	Broker
209.7 207.7 232.6 208.9

Trusted	D-Bus	Broker

580.1 565.2
603.2 583.4

Figure 6. Latency in sending messages containing primitive data type.

In order to evaluate the influence of message size on the communication costs,
we ran another test, in which a byte array of different sizes is sent. The results obtained



are shown in Fig. 7. We can observe that D-Bus daemon and D-Bus Broker increase the
processing time with larger arrays (above 4 KB to D-Bus daemon, and above 256 B to
D-Bus Broker). We can see that our proposal adds an average overhead of 2.5×, to both
B-Dus daemon and D-Bus Broker, similar to the results obtained in sending primitive
types. This overhead is reduced in D-Bus Broker when the array size is equal or greater
than 1 KB. Our experiments shows an overhead of 1.25× in D-Bus Broker with a 256 KB
array.

	100

	1000

	10000

	100000

1	B 4	B 16	B 64	B 256	B 1	KB 4	KB 16	KB 64	KB 256	KB

CP
U
	c
yc
les

	(x
	1
,0
00
)

Array	size

D-Bus	Daemon

Trusted	D-Bus	Daemon

D-Bus	Broker

Trusted	D-Bus	Broker

Figure 7. Latency in sending messages containing a data array.

Finally, we evaluated the cost of encryption and decryption procedures when
sending messages, without considering marshalling (Fig. 8). The time spent in encryp-
tion/decryption steps increases with the array size, and it is responsible for about 56% of
the total overhead imposed by out solution. Thus, we can achieve a better performance
by improving marshalling procedure and avoiding memory copying operations.

	100

	1000

	10000

1	B 4	B 16	B 64	B 256	B 1	KB 4	KB 16	KB 64	KB 256	KB

CP
U
	c
yc
les
	(x
	1
,0
00
)

Array	size

Figure 8. Latency in encryption/decryption procedures.

5.2. Security Assessment

To build a system intended to be secure, its Trusted Computing Base (TCB) should be kept
as small as possible, in order to reduce the chances of success in an attack. In Intel SGX
technology, the TCB is composed of the CPU and its internal elements, such as hardware
logic, microcode, registers, and cache memory.

Our solution keeps a small TCB with a single library (tdbus) built with less than
1,000 lines of code (of which only 230 lines of code in the enclave), which runs over



the standard libdbus library. We split the tdbus library into two components: trusted and
untrusted. The trusted component is responsible for the attestation procedure, encryption
and decryption process, and handling session keys. The untrusted component contains the
public interface for the applications and encapsulates the message data to be encrypted.

The tdbus trusted component runs inside an SGX enclave, which provides an en-
crypted memory area and ensures protection against external attacks, even if they come
from components with high execution privilege, such as BIOS or hypervisor. Session
keys are kept inside the enclave and never go outside its boundaries, which ensures that
they cannot be manipulated by any untrusted entity.

The attestation procedure ensures an authenticated key agreement when establish-
ing the communication session, and this session provides an end-to-end secure commu-
nication channel. The use of an authenticated key agreement prevents passive and active
man-in-the-middle and related attacks, reducing the range of possible attacks on the sys-
tem aiming at listening or replacing data travelling on the bus.

Finally, encryption and decryption procedures are performed using an authenti-
cated 128 bit AES-GCM algorithm, which ensures that any change in the message pay-
load will be detected by the message receiver, causing the message to be dropped and the
sender to be notified. Also, even if the attacker listens to the bus and collects the messages,
she will spend a considerable time to crack the encryption, even in a high performance
system. In addition, a session key must be used only for short periods of time.

6. Conclusion
This work proposed the use of the Intel Software Guard Extensions (SGX) technology
to create a trusted version of the D-Bus Inter-Process Communication (IPC) mecha-
nism, by adding a transparent end-to-end attestation procedure over the reference lib-
dbus implementation. Our proposal creates a secure communication channel between
processes, which allows sending sensitive information to each other while keeping the
content opaque to the underlying message bus.

Performance evaluation experiments show a bigger overhead in the connection
establishment, due the enclave creation cost, which is reduced when new trusted commu-
nication sessions are established using the same service name. The security assessment
demonstrated that we can provide strong secure guarantees while keeping a very small
trusted computing base, thus reducing the attack surface. Also, our solution is fully com-
patible with the standard D-Bus daemon, D-Bus Broker, and their libraries, and do not
require any changes in these components.

An important limitation of our solution is related to SGX private memory size,
limited to 128 MB in the current SGX version. This memory region includes meta-
data that is used to perform the enclave access control routines. Only about 90 MB
of this protected memory are actually available for storing enclave data and code
[Shaon et al. 2017, Fuhry et al. 2017], which imposes a limitation on the amount of user
data that can be handled by the enclave at same time.

As for future work, we intend to implement a new scheme to encrypt/decrypt data
to overcome the limitation cited above, by splitting large amounts of data in smaller ones.
Also, in order to achieve better performance, we will move our implementation to libd-



bus, to perform the data encryption/decryption after the native marshalling/unmarshalling
procedure, ensuring the full integration with D-Bus.

Acknowledgment
This research was developed in the context of the H2020 - MCTI/RNP Secure Cloud
project. The authors also thank the UFPR and UTFPR Computer Science departments.

References
Anati, I., Gueron, S., Johnson, S. P., and Scarlata, V. R. (2013). Innovative technology for

CPU based attestation and sealing. In Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, Tel-Aviv, Israel.
ACM.

Atlidakis, V., Andrus, J., Geambasu, R., Mitropoulos, D., and Nieh, J. (2016). POSIX has
become outdated. ;login:, 41(3).

Bui, T., Rao, S. P., Antikainen, M., Bojan, V. M., and Aura, T. (2018). Man-in-the-
machine: Exploiting ill-secured communication inside the computer. In Proceedings
of the 27th USENIX Security Symposium, Baltimore, MD, USA. USENIX Association.

bus1 (2016). bus1 – Kernel Message Bus. https://bus1.org/bus1.html.

bus1 (2018). D-Bus Broker. https://github.com/bus1/dbus-broker/wiki.

Costan, V. and Devadas, S. (2016). Intel SGX explained. Cryptology ePrint Archive,
Report 2016/086. https://eprint.iacr.org/2016/086.pdf.

freedesktop.org (2015). kdbus. https://www.freedesktop.org/wiki/
Software/systemd/kdbus/.

freedesktop.org (2018). D-Bus. https://www.freedesktop.org/wiki/
Software/dbus/.

freedesktop.org (2020). dbus-daemon. https://dbus.freedesktop.org/doc/
dbus-daemon.1.html.

Fuhry, B., Bahmani, R., Brasser, F., Hahn, F., Kerschbaum, F., and Sadeghi, A.-R. (2017).
HardIDX: Practical and secure index with SGX. In Proceedings of the XXXI Data and
Applications Security and Privacy, Philadelphia, PA, USA. Springer.

Havet, A., Pires, R., Felber, P., Pasin, M., Rouvoy, R., and Schiavoni, V. (2017). Se-
cureStreams: A reactive middleware framework for secure data stream processing. In
Proceedings of the 11th International Conference on Distributed and Event-based Sys-
tems, Barcelona, Spain. ACM.

Intel (2016). Intel Software Guard Extensions SDK for Linux OS Developer Ref-
erence. Intel Corporation. https://01.org/sites/default/files/
documentation/intel_sgx_sdk_developer_reference_for_
linux_os_pdf.pdf.

Jain, P., Desai, S., Kim, S., Shih, M.-W., Lee, J., Choi, C., Shin, Y., Kim, T., Kang, B. B.,
and Han, D. (2016). OpenSGX: An open platform for SGX research. In Proceedings
of the Network and Distributed System Security Symposium, San Diego, CA, USA.
Internet Society.



Lauer, M. (2019). D-Bus, pages 171–200. Apress, Berkeley, CA, USA.

Love, R. (2005). Get on the D-BUS. Linux Journal, 2005(130):3.

Marhefka, M. and Muller, P. (2014). Dfuzzer: A D-Bus service fuzzing tool. In Proceed-
ings of the 7th International Conference on Software Testing, Verification and Valida-
tion Workshops, Cleveland, OH, USA. IEEE.

McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C. V., Shafi, H., Shanbhogue, V.,
and Savagaonkar, U. R. (2013). Innovative instructions and software model for iso-
lated execution. In Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, Tel-Aviv, Israel. ACM.

Melnikov, A. and Zeilenga, K. (2006). Simple Authentication and Security Layer (SASL).
RFC 4422, RFC Editor. https://tools.ietf.org/html/rfc4422.

Paoloni, G. (2010). How to benchmark code execution times on Intel IA-32 and
IA-64 instruction set architectures. Intel Corporation. https://www.intel.
com/content/dam/www/public/us/en/documents/white-papers/
ia-32-ia-64-benchmark-code-execution-paper.pdf.

Pennington, H., Carlsson, A., Larsson, A., Herzberg, S., McVittie, S., and Zeuthen,
D. (2020). D-Bus specification. freedesktop.org. rev. 0.36. https://dbus.
freedesktop.org/doc/dbus-specification.html.

Pires, R., Pasin, M., Felber, P., and Fetzer, C. (2016). Secure content-based routing using
Intel Software Guard Extensions. In Proceedings of the 17th International Middleware
Conference, Trento, Italy. ACM.

Shaon, F., Kantarcioglu, M., Lin, Z., and Khan, L. (2017). SGX-BigMatrix: A practi-
cal encrypted data analytic framework with trusted processors. In Proceedings of the
Conference on Computer and Communications Security, Dallas, TX, USA. ACM.

Sobchuk, J., O’Melia, S., Utin, D., and Khazan, R. (2018). Leveraging Intel SGX technol-
ogy to protect security-sensitive applications. In Proceedings of the 17th International
Symposium on Network Computing and Applications, Cambridge, MA, USA. IEEE.

Tanenbaum, A. S. and Bos, H. (2015). Modern Operating Systems. Pearson, Boston, MA,
USA, 4th edition.

Whittaker, J. A. (2002). How to break software. Addison-Wesley, Boston, MA, USA.

ZeroMQ (2020). An open-source universal messaging library. https://zeromq.
org.


