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Abstract—Inter-Process Communication (IPC) enables appli-
cations to share information in a local or distributed envi-
ronment, allowing them to communicate with each other in
a coordinated manner. In modern systems this mechanism is
extremely important, as even local applications can run parallel
tasks in multiple processes in the machine, needing to exchange
information to coordinate their execution, and optimizing the
exchange of data in a more efficient way. The security in
IPC relies on the integrity and confidentiality of the messages
exchanged in such an environment, as messages exchanged
between different processes can be targeted by attacks that
seek to obtain sensitive data or to manipulate the application
behavior. A Trusted Execution Environment (TEE) can be used
to enable an isolated execution of the IPC mechanism to mitigate
such attacks. In this paper we propose the adoption of the
Intel Software Guard Extensions (SGX) architecture to provide
data confidentiality and integrity in message exchange between
processes, by using hardware instructions and primitives to
encrypt and authenticate the messages. Our approach highlights
a threat model and compares the solution proposed with two
other scenarios, showing a feasible solution for security and an
approach that can be applied to standard IPC mechanisms with
small processing overhead.

Index Terms—Computer security, Data security, Information
exchange, Operating systems and Software Guard Extensions.

I. INTRODUCTION

The environment found in today’s systems may be complex,
with multiple processes sharing system resources and interact-
ing among them to exchange information and to coordinate
their activities. Usually the Operating System (OS) provides
Inter-Process Communication (IPC) mechanisms that allow
processes to exchange messages and perform synchronization
[1, 2].

An IPC could explore distinct forms of communication that
consider the purpose of the application [3], where multiples
process or just two processes are communicating with each
other; also, restrictions may exist for reading/writing in the
communication channel [4].

Like any other software system, the OS IPC mechanisms
are prone to security problems. In particular, the integrity
and confidentiality of data exchanged through IPC is a main
concern. An attacker could exploit vulnerabilities in an IPC
mechanism to build attacks against the system, as for example
a Man-In-The-Middle (MITM) attack [5].

This paper explores using the Intel Software Guard Exten-
sions (SGX) to improve the security of an IPC mechanism. Intel
SGX provide trusted execution environments in which security-
critical code and data can be protected from the running
environment. Using SGX enclaves, the exchanged messages
get a new layer of security, ensuring data confidentiality and
integrity. We apply the SGX attestation protocol and make use
of the isolation primitives provided by SGX to encrypt and
authenticate the message payload, improving the security of
process communication.

This paper is structured as follows: Section II presents the
background concepts for understanding of the paper. Section
III presents the related work. Section IV presents our proposal.
Sections V and VI present the evaluation results and discusses
the security solutions found. Finally, Section VII concludes
the paper.

II. BACKGROUND

This Section presents a brief description of important con-
cepts used in this work, such as Inter-Process Communication
(IPC) and Intel Software Guard Extensions (SGX).

A. Inter-Process Communication

Currently, complex software systems are structured as
multiple processes running, sharing resources, cooperating,
and coordinating their activities. The mechanisms that allow
process to interact, exchanging information and synchronizing
their executions are collectively called Inter-Process Communi-
cation (IPC); there are several mechanisms available to achieve
it.

Usual IPC mechanisms include UNIX Pipes, which are
unidirectional stream-based bounded data channels between
pairs of processes; Shared Memory, which allows multiple
processes to access the same region of memory to exchange
data efficiently but provides no coordination; Message Queues,
providing a bounded buffer for messages that can be accessed
by multiple processes for sending and receiving messages
with strong synchronization constraints; and so on [1, 2, 4].
Synchronization mechanisms like semaphores and condition
variables are considered IPC as well, as they provide means
for tasks to interact.



A Message Bus is a specific IPC mechanism that routes
messages among processes in a system. Each process connects
itself to the bus using a name or an ID that can be used
by the other processes to send messages to it. A typical
message bus can also be used to broadcast messages to all
or a subset of tasks, and supports the publisher/subscriber
style of communication. D-Bus [6] is a message bus used
in modern Linux systems, aiming at replacing the chaos that
multiple processes would have exchanging messages between
each other by a common path for all messages.

B. Intel Software Guard Extensions

In the last years some hardware mechanisms are being pro-
posed to support the Operating System (OS) and applications
to ensure the safe execution and manipulation of sensitive
user data. One of such technologies is Intel Software Guard
Extensions (SGX), which allows the application to be divided
into two components: trusted and untrusted [7]. The trusted
component, called enclave, is placed in a protected memory
region, called Processor Reserved Memory (PRM), that is fully
encrypted, with the encryption key handled only by the Central
Processing Unit (CPU) and generated on each boot.

The access to the enclave is protected by SGX hardware,
preventing enclave data from being accessed by malicious
software or any software with high privileges, such as the
OS kernel, virtual machine monitors and the BIOS, as shown
in Fig. 1 [8]. Only the application that creates the enclave
can access it, using public entry points called the ECALLs.
Each enclave must have at least one public ECALL, allowing
the application to access the enclave resources in a controlled
manner. The enclave runs on ring-3 and cannot access system
calls directly, requiring the definition of a set of functions that
allow it to access the application untrusted code, the OCALLs
[7].
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Fig. 1. Intel SGX operating principles [9].

Since all resources are statically linked to the enclave, a
signature is generated at compile time containing information
about the code and data to be placed in the enclave, including
version and identification of the enclave author. This signature

is validated when the enclave is loaded into the memory,
ensuring that it is legitimate and has not been tampered
with. After the enclave is loaded, CPU memory protection
mechanisms validate each access to enclave data and code [8].

Finally, the SGX architecture provides mechanisms to keep
the data confidentiality and integrity when stored on secondary
memory. The enclave can use an encryption key derived
from its signature and CPU to encrypt and authenticate the
data. This key does not need to be stored by the enclave,
and can be requested at any time. Also, enclaves can create
a trusted channel to communicate each other locally or
remotely, ensuring the confidentiality and integrity of data
being exchanged [10].

III. RELATED WORK

Secure communication among processes is well explored
in microkernel architectures, by using virtual address space
switching [11, 12] and hardware-based security mechanisms,
such as the Intel Memory Protection Key for Userspace [13].
In monolithic kernels, a set of works focuses on moving the
IPC mechanism to the kernel level, in order to achieve better
performance [14, 15].

Another approach seeks to provide secure and transparent
communication between applications and the OS [16]. The
authors propose a reliable communication layer located be-
tween the kernel and the user space. To provide authenticity
and integrity to communications, an isolated memory space
is reserved for them and the messages are protected by
cryptographic hashes. In addition, all interactions between
processes are monitored and controlled by access control
policies enforced by a reference monitor. A prototype was
implemented and evaluated to validate the proposal; the results
presented showed a high overhead during communications.

The study [3] raises a discussion about the security features
that the operating system must support to contribute to secure
communication between local processes, based mainly on
SELinux. It proposes a unidirectional IPC mechanism using
shared memory combined with message queues to perform data
forwarding, but no evaluation of the proposal implementation
is presented, impairing its validation.

CurveCP [17] focus on the security in transmitting packets in
an open network, where common network protocols sometimes
do not implement the appropriate security measures. Focusing
on fixing problems concerning the integrity and confidentiality
of the data transmitted, CurveCP relies on a connection
with similarities with Transmission Control Protocol (TCP).
CurveZMQ is an adaptation of CurveCP that expands it
for protocols like User Datagram Protocol (UDP), using an
elliptic curve algorithm with a key of 256 bits for client/server
communication. This way, each new session a pair of keys is
stored in memory during the communication interval, fixing
problems with stolen keys and MITM attacks [18].

Finally, [19] builds a library that ensures secure communica-
tion between process by using SGX mechanisms. This library
is placed over the libdbus default implementation and can be
used to mediate the communication between the application



and the message bus, providing attestation and encryption
features. The solution presents a high overhead and its limited
only to basic data types.

IV. A TRUSTED IPC APPROACH

As described in Section II, IPC allows different applica-
tions communicate each other and there are distinct ways
to implement IPC mechanisms. Message buses are largely
used as IPC mechanisms, allowing applications to send and
accept messages using one or more buses (see Fig. 2),
allowing message exchange without knowing implementation
or protocol details about each other. To send a message, the
application just puts it on the bus, and to receive a message, it
only needs to listen the bus and collect the messages addressed
to it.

Application 1
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Application 4 Application 5

Fig. 2. Message bus architecture.

This IPC architecture presents several advantages, allowing
adding and removing applications from the bus with no impact
on other applications connected to it, with the applications
working in a decoupled fashion. The communication com-
plexity is reduced in the application, which only needs to
follow the bus protocol, letting the bus handle all routing and
interconnection complexity. This way, the applications only
needs to know how to communicate with the bus; also internal
bus components can be changed to meet new requirements
without impact the applications. All these characteristics made
message buses highly modifiable and scalable [20].

On the other hand, the bus become a single point of
failure for all connected applications, and can be exploited to
interfere with communications and violate message integrity.
Also, message buses offer no privacy nor confidentiality, with
the messages delivered indiscriminately to all applications
connected to the bus, each application being responsible for
filtering messages addressed to it.

Despite these security limitations, some applications use
message buses to transmit sensitive data, such as user creden-
tials, applying cryptographic algorithms to ensure the confi-
dentiality of exchange data [21]. Such solutions do not ensure
integrity nor provide message authentication, being susceptible
to active MITM attacks. A wide range of applications, even
using other IPC mechanisms, present leakage of sensitive data
that may compromise the security of the application and the
privacy of users [22].

In this context, we propose the use of SGX enclaves to
create trusted channels inside open message buses, providing
a secure way to exchange sensitive data between applications.
Our solution ensures data confidentiality and integrity by using
the trusted execution environment and root of trust provided
by the SGX architecture.

A. Bus Connection

In a message bus, each application must connect to the
bus to be able to send messages to other applications that
are connected to it. In this step, the application receives an
ID that uniquely identifies the connection. Each application
can establish multiple connections to the bus, each one with a
different ID. The application can be found by others by using
this connection ID or, alternatively, a registered alias.

Our solution creates an SGX enclave at this step, which
will be uniquely linked to the connection. In this way, each
connection will manage its own enclave. This enclave will
provide a trusted execution environment to perform the
message encryption/decryption and handle the encryption keys.
Also, the enclave provides a root of trust that allows to
authenticate the key agreement procedure and all exchanged
messages.

B. Creating a Trusted Channel

Once the application is connected to the bus, it can send
messages to other ones that are also connected to the same
bus, identifying the receiver by its ID or alias. The application
can also listen the bus and read all messages, filtering which
ones are addressed to it. This is one of the main characteristics
of a message bus: each application connected to the bus can
listen and read all messages put on the bus, even when the
message was not addressed to it.

Thus, to allow sending confidential data over the bus, our
solution enables the creation of trusted channels, ensuring a
secure communication between two applications (Fig. 3). The
trusted channel is created by using the SGX local attestation
procedure.
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Fig. 3. Trusted communication channel in a message bus.

SGX local attestation allows an enclave to be confident
that another enclave is running in the same platform and was
properly instantiated. To build this proof, the enclave asks to
the SGX hardware to build a credential, called REPORT, that
reflects the enclave signature, including information about its



security properties. This report can be provided to another
enclave, enabling it to verify the identity of the sender [10].

The attestation procedure has three steps, as shown in Fig.
4. 1 Enclave A obtains the identity of enclave B; 2 Enclave
A creates the REPORT structure using the identity of enclave
B and sends this structure to enclave B; 3 Enclave B uses the
data contained in REPORT sent by A to verify that enclave A
is running on the same device as B; enclave B may create a
REPORT structure and send it back to enclave A, which will
perform the same validation. All these steps can be performed
over an open communication channel and, at the end, the
enclaves will be mutually authenticated. Also, both enclaves
use the exchanged information to perform an authenticated
key agreement.

Application BApplication A

Enclave A

REPORT A

Enclave B

REPORT B

1

2

3

Fig. 4. SGX local attestation procedure [10].

After the attestation process, the two applications have a
trusted communication channel to exchange sensitive messages
in a secure way over the bus. The same bus connection can
handle multiple trusted channels with different applications.
The trusted channel can be closed or reset at any time by any
of the applications involved.

C. Secure Messaging

The attestation process provides an 128-bit key as a result
of an authenticated Diffie-Hellman key agreement. This key is
stored by both enclaves and can be used to encrypt sensitive
data before putting them on the bus. To do this, our solution
uses the enclave to perform the data encryption, ensuring
that the encryption key never leaves the enclave boundaries,
keeping it protected by the SGX mechanism.

Since SGX provides a root of trust, the encryption is per-
formed using an authenticated AES-GCM algorithm, including
a message signature that is used to identity whether any part of
the message was tampered with. Thus, we ensure the message
integrity, identifying corrupted data and notifying the sender.

To ensure message confidentiality, all message payloads are
encrypted, including the message signature, which identifies
what kind of data is being sent. Message metadata, such as
message type, sender and destination are not encrypted, since
they must be readable by all applications connected to the bus
to be filtered by each one.

V. PERFORMANCE EVALUATION

To evaluate our proposal, we implemented a proof of concept
based on the D-Bus message bus [6], which is the main IPC
mechanism used in current Linux desktops. D-Bus uses a
daemon to enable the connection of applications to the bus

and perform the message routing; and a low-level Application
Programming Interface (API), called libdbus, that provides
the protocol implementation and allows the applications to
exchange messages among them.

Our prototype adds new functions to the libdbus to allow
applications to create trusted channels on the bus. This section
presents the tests that were performed to measure the overhead
imposed by our implementation.

A. Experimental Setup

We run the performance tests in a Dell Inspiron 7460 laptop
with the following settings: dual-core 2.7 GHz Intel Core
i7-7500U CPU, 16 GB RAM, 1 TB hard-drive, 128 GB
SSD, SGX enabled with 128 MB PRM size. Intel TurboBoost,
SpeedStep, and HyperThread extensions were disabled, to
provide stable results. We use Ubuntu 18.04 LTS, kernel 4.15.0-
112-generic, libdbus 1.12.20, Intel SGX SDK 2.9.101.2, and
set the enclave stack size at 8 KB and the enclave heap size
at 64 KB.

B. Methodology

To evaluate the method proposed, three distinct test sce-
narios were elaborated, with the focus on reflecting common
operations between a client and a server process:

• Scenario 1: client connect to the bus and send a message
addressed to server, with no encryption;

• Scenario 2: client connect to the bus and perform a key
agreement with the server by using an Elliptic-Curve
Diffie–Hellman (ECDH) protocol based on Curve25519
[23]. The key is then used to encrypt the message using
a 128-bit AES-CTR algorithm;

• Scenario 3: presents our solution. Client connect to the
bus and creates a trusted channel to communicate with
the server.

We also measured the overhead of our solution in three
aspects: bus connection, payload encryption, and message
throughput. All benchmarks were taken by using the RDTSCP
instruction, which provides a high-precision low-overhead time
source [24]. Experiments were run 10,000 times each. The
width of the confidence interval at 95% is 1.55% of the average.

C. Connection and Session Establishment

The connection to the bus is the first step that the application
must perform in order to be able to send messages to other
ones, as described in Section IV-A. In this step, we create
an enclave that will be bound to the connection. Also, to
establish a trusted channel, the application must perform the
attestation procedure (Section IV-B). Both operations impose
a high overhead, as shown in Fig. 5.

The overhead is mainly caused by enclave creation, more
than 70% of total time spent, due to the need for the enclave to
allocate all the necessary memory in PRM at the creation time.
This operation has a high computational cost, as described
by [21] and [25]. It is important to highlight that, once the
enclave is created, it will be able to handle several trusted
communication sessions. This factor can be considered as a
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trade-off between a secure system and an insecure one and
could be better explored in systems where threads are already
mapped and optimization could be made [26].

Finally, the attestation step also has a considerable impact,
having a computational cost of approximately 6×, compared
to the ECDH key agreement. This overhead is the result of
the security mechanisms used to authenticate and validate the
data exchanged between enclaves at this step, which provide
a root of trust and allow to use the agreed key to authenticate
all data exchange between them after the attestation.

D. Payload Encryption

After the key agreement step, both applications can send
encrypted messages to each other. The encryption adds an
overhead in message sending, as it features an extra step in the
procedure. To measure this impact, we evaluate the time spent
when sending messages with different payload sizes, from
writing the message by the client to receiving and reading it
by the server. The results are presented in Fig. 6.
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We can see that the time spent to send a message increases as
the payload size grows, as well as the encryption overhead, and
we could say that is an expected behavior considering others
studies [19, 26, 27]. Scenario 3 presented a better performance,
with an overhead of approximately 28% for a message payload
up to 4 KB, with respect to scenario 1, and has 18% less impact
when compared to scenario 2.

Considering messages with a payload bigger than 4 KB,
scenario 3 presents an overhead of approximately 100% when

compared to scenario 1, but still with a performance superior
to that presented in scenario 2.

E. Message Throughput

Aiming to know the amount of messages and data the bus
can handle in short periods of time, we use a “ping-pong”
application in which the client sends a message, the server
reads it and sends the same message back to the client. Fig.
7 presents the number of messages dispatched per second;
we can see that scenario 3 presents a throughput around 30%
lower than scenario 1 for messages with payload up to 16
KB. Above this threshold, this difference is reduced to 15%.
Scenario 3 also presents a better throughput than scenario 2,
which has a performance drop starting at a payload size of 64
KB.
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We can see that the number of messages dispatched drops
when payload size increases, even in scenario 1. Scenario
2, which presents a high encryption overhead, has also a
perceptive drop in message dispatch rate starting at 64 Bytes
of payload size, earlier than presented by the other scenarios.
Scenario 3 presents a smoother drop, achieving results close
to the scenario 1 to messages with payload equal or higher
than 64 KB.

To complement the results presented in Fig. 7, we evaluated
the amount of data sent per second, with results shown in Fig.
8. The results show that scenario 2 is limited to a throughput of
3.5 MB/s, while scenarios 1 and 3 present transfer rates of 175
MB/s and 150 MB/s, respectively. These results demonstrate
that our solution presents scalability with a low computational
cost.

VI. SECURITY ASSESSMENT

This section presents the threat model and the security
analysis of our solution.

A. Threat Model

We consider a threat model where the adversaries aim to
have access to the data that travels on the bus. To do this,
they can listen the bus and record all data retrieved from it or
send such data to another machine over the network, maybe
in real time. By sending the messages to another machine,
they can read messages with plaintext payload and use higher
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computational power to apply techniques to break payload
encryption.

Attackers can also intercept and replace the messages,
performing an active MITM attack aiming to replace the
messages placed on the bus or interfering with a key agreement
between two applications. Finally, they can also perform a
memory dump or a Direct Memory Access (DMA) operation to
extract the encryption keys defined by the applications when
using a key agreement protocol.

B. Discussion

To assess the security of our solution, we consider that
the Intel SGX architecture works properly, according to its
specifications, and it is secure, focusing our validation only on
the proposed solution. We also consider that the development
environment is reliable.

If the attacker has access to the machine, or can manage
to install a malicious software to listen the bus, they will
get only the encrypted data, since the payload is encrypted
before being put on the bus and can only be decrypted by
the receiving application, which performed the attestation and
key agreement with the sender. Even if the attacker stores
the collected messages to break the encryption key in a high
performance environment using a brute force strategy, this will
take an excessively long time, making it impractical.

Even when acting actively on the bus, replacing the messages
sent on it, the attacker will not be successful. At the attestation
an key agreement step, any interference will be detected by the
SGX architecture, since the exchanged data reflect the unique
signature of the enclave and is authenticated by the hardware.
Thus, in an attempt to manipulate the attestation process, it
will be interrupted and both applications will be notified. The
replacement of encrypted messages after the establishment
of the trusted communication channel will also be detected,
since it is authenticated by the SGX hardware. In this case, the
receiver will notify the sender that the message was corrupted.

Finally, if the attacker uses a malicious software or similar
techniques to perform a memory dump or DMA operations
in order to obtain the keys used to encrypt the messages,
they will not have success, since the keys are kept inside
the enclaves and never go out their boundaries. The enclave
memory is encrypted with a 128-bit AES-CTR algorithm, with

the encryption key being randomly generated on each boot
and stored on CPU registers, and the enclave data and code
are decrypted only inside the CPU.

VII. CONCLUSION

This paper presented a novel solution to provide a trusted
communication channel over a message bus, by using software
isolation and protection mechanisms provided by Intel SGX
architecture. We implemented a proof of concept by changing
the libdbus low-level API to validate our proposal.

The performance evaluation shows a small overhead on
data encryption and decryption, when compared with the
unmodified library. Also, results demonstrated that our solution
is feasible and scalable, in terms of number of messages sent
and message size. The major overhead is presented at bus
connection step, and it can be reduced by using an enclave
pool approach, as described by [25], and will be subject of
future work.

Security assessment presented strong guarantees to data
confidentiality and integrity, with Intel SGX providing a root
of trust that allows to authenticate the key agreement procedure
and the exchanged messages. Moreover, SGX enclaves provide
an isolated environment that allow to handle the keys and
perform the encryption and decryption procedures in a secure
way.

Our solution is limited only to sending unicast messages,
since the Intel SGX architecture does not provide mechanisms
to perform group attestation, which makes it difficult to create a
secure communication channel that enables multicast message
sending. In the same way, broadcast messages are not addressed
in our approach. These subjects will be addressed in future
work.

Finally, our solution can be applied to any message bus
and can be extended to other IPC mechanisms. Also, other
security mechanisms can be used to provide trust execution,
both hardware-based [28] or software-based [29]. Also, this
approach can be used in distributed or cloud environments, by
applying the trusted execution approach in network communi-
cation.
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