Is It Safe? Identifying Malicious Apps Through the
Use of Metadata and Inter-Process Communication

Rodrigo Lemos, Tiago Heinrich, Carlos A. Maziero

Computer Science Department
Federal University of Parand State
Curitiba, Brazil
{rglemos, theinrich, maziero} @inf.ufpr.br

Abstract—In recent years, the growth in the number of threats
on Android has contributed to increasing user awareness and
concern about security-related concepts. Due to the predomi-
nance of Android, the attacks present on the platform have also
evolved, and new strategies for identifying threats are needed. A
popular way to identify threats is the use of intrusion detection
systems, which can exploit different strategies to carry out threat
identification. Static analysis strategy aims to identify malicious
apps by scanning their source code, and dynamic analysis uses
the behavior monitor approach to classify benign and malicious
apps. These two strategies can also be combined in a hybrid
approach. This paper focuses on a hybrid strategy to identify
threats in Android systems through the use of static metadata
extracted from applications and dynamic data from inter-process
communication, in order to train machine learning models to
perform threat identification. Three machine learning algorithms
were used to verify the efficacy of our strategy. Our approach
showed to be viable, with the results presenting an identification
rate of around 87%, demonstrating that the proposed model
has benefits in identifying threats in Android mobile devices.
We also point out attributes that differ between malicious and
benign apps and highlight the impact on the use of inter-process
communication to identify threats.

Index Terms—Android Security, Intrusion Detection, System
security, Malware Detection.

I. INTRODUCTION

Social engineering techniques are often used by attackers
to compromise mobile devices, often offering malicious apps
such as hot apps at the moment [1]. The complexity of getting
access to mobile devices remotely implies this need for user
actions (installing an application, clicking on an Uniform
Resource Locator (URL), or connecting to a wireless network)
to compromise the system. Thus, is important to evaluate the
applications to be installed in Android systems to maintain
their security.

During the Covid-19 lockdown period it was possible to
observe the growth in these types of attacks. One example
is covidLock, which is a ransomware that tricks users by
promising to provide real-time monitoring information for
coronavirus. After deceiving users, it locks the device and
requests a ransom [2]. An Avira report [3] highlights that 59%
of Americans install some type of user-safety-oriented software,
with 81% of users stating that security on mobile devices is
essential. This same study highlights a 28% growth in concern

Newton C. Will
Computer Science Department
Federal University of Technology - Parand
Dois Vizinhos, Brazil
will@utfpr.edu.br

for the safety of mobile devices during the pandemic. This
growth is also presented by Kaspersky [1].

Distinct malware identification strategies exist in the Android
environment. Despite the security checks found in app stores
(such as Google Play), there are malicious apps that pretend
to be legitimate and are not detected by the stores’ detection
engines [4].

In the literature, a wide range of approaches are presented to
carry out the identification of threats on Android. For malware
identification we can find works that use system calls, hardware
device usage information [5], network traffic [6], and Intents
calls [7].

Our focus on identifying threats is to utilize application
metadata and inter-process communication (IPC) [8] data
obtained from application executions. These data will be used
to represent behaviors expected from applications, thus using
machine learning strategies to learn to distinguish between
harmless and harmful behaviors.

The following contributions are presented in this work:

o A new strategy as a discussion of using hybrid data for

Android threat identification;

o A strategy for observing behavior and identifying threats

using machine learning techniques for Android; and

o A dataset named AndroBlend [9], containing hybrid data,

in order to identify threats on Android.

The remainder of this paper is organized as follows. Section
IT presents the background concepts for understanding the
paper. Section III presents our proposal. Section IV present
the evaluation results and discusses our findings. Section V
presents the related work and compares our proposal with the
literature. Finally, Section VI concludes the paper.

II. BACKGROUND

This Section presents a brief description of important
concepts used in this work, contextualizing how threat iden-
tification is performed on Android and what are the most
common strategies to assess data.

A. Malware Detection on Android

The detection of malware threats on Android is an essential
task, and over the years new strategies have been proposed to
improve user security. Android Runtime (ART) is responsible

for implementing the virtual machine used by each Android
application and executes its bytecode, in a sandbox having
an unique User ID (UID) inside its own process [10]. This
feature is similar to the Java Virtual Machine (JVM), however
ART is register-based and uses an ahead-of-time compilation
to improve runtime performance of apps [11].

In addition to the applications running in an isolated environ-
ment, Android provides a kernel-level secure communication
channel between processes, known as Binder [12]. Apps also
use signatures to ensure their authenticity and permissions to
ensure an user driven level of security on Android, besides
all Linux kernel resources, such as SELinux, that are used to
provide more robust access control policies [13].

Although these security layers are designed to make Android
a secure environment, there are threats able to find breaches
on it and to circumvent these security measures. This problem
is highlighted by the substantial growth in threats in this
environment [1].

In order to minimize the damage of such threats, several
approaches are explored. Malware detection systems are one
of them, aimed to monitor and identify malicious applications.
Such approaches are very relevant, since Android has became
the top one target to malware creators [14].

Malware can be defined as any code added, modified, or
removed from a software system with the aim of causing
damage or using differently a certain functionality of the
system [15]. In this context, we consider an Android malware
any app having this purpose.

When analysing an app, a malware detection system may
behave in different ways due to its design. For example, its
mechanism may work online or offline, process data locally
or in a cloud environment, and use anomaly or signature
detection methods. These design choices are relevant for the
performance of the method and also by the impact they cause
on the devices performance and use of resources.

The main way to differentiate these approaches are according
to the origin of the analyzed data; they are divided into static,
dynamic, and hybrid analysis methods [16], where hybrid
analysis stands for the use of a combination of both static and
dynamic data.

B. Malware Detection Strategies

Two strategies are used to identify threats on Android
systems, these being:

1) Static analysis: aims to study the source or binary code
of a threat (malware) without executing it [17]. This evaluation
on Android is done by exploring the .apk files, which refers
to the compressed application data. This file contains the
resources, configuration files, and the bytecode (.dex) that
will be interpreted in ART. This strategy ends up being fast
and lightweight [18], but it may not be able to represent all
the behaviors of an application. Obfuscation techniques or
runtime code generation tend to escape this type of evaluation
[19].

2) Dynamic analysis: explores application execution to
capture information and perform threat identification. This

evaluation can take into account a varied set of characteristics
and operations that an application performs, such as: use
of resources, type of communication operations performed,
system calls, and communication between applications. As
a result, this strategy is not susceptible to obfuscation, in
addition to extracting more information [18]. However, it has
the need for more resources and recent threats already highlight
attackers’ strategies to detect and/or circumvent this type of
strategy [17].

III. PROPOSAL

The constant evolution of threats in the Android environment
ends up representing how attackers are improving over time.
Because of this, new security measures are needed aiming
to keep up with new attacks. Our work aims to improve
security in the Android environment, through the identification
of malicious applications.

Through a hybrid set of data, consisting of inter-process
communication data and application metadata, we aim to
identify threats in applications published in the app store.
The identification procedure will focus on the use of machine
learning algorithms to define expected behavior for malicious
apps.

Looking at the state of the art mechanisms for detecting
malware it is clear that machine learning approaches are used
in most of them and are accurate in detecting malware [16].
The use of machine learning strategies to identify threats on
Android has gained attention in the last decade. It is possible to
highlight a wide range of strategies aimed at solving problems
found in the mobile device environment, with better results than
classical strategies [20]. It can be implied that the popularity
of such methods is due to their performance and flexibility,
since they can deal with any kind of data and can be ported
to any platform such as the mobile device itself or outsourced
to a cloud.

A. Data Approach

The proposed evaluation strategy focuses on previously
collect data, intended to identify malicious apps. This method
of monitoring allows to identify threats without any limitation
of device resources. It is advantageous to identify threats in
apps before they are made available in the app store.

Android’s architecture forces apps to use its inter-process
communication mechanism to gain access to system and
hardware resources. Communication between apps and system
services also requires the use of this feature. Fig. 1 shows
how two apps communicate through the use of Intents.
A message will be generated by an activity of Appl, this
message is forwarded to a handler that will be responsible
for exchanging messages with the Android Binder IPC facility.
When Binder receives this message, it forwards it to the
handler of App2 until it reaches the intended service. As
such, tracking and understanding communications on this
channel is a key to understanding Android-specific behaviors
[21].

User space

app1.activity app2.activity

app1.messager

app2.messager

app1.handler app2.handler

Kernel space v

-

Binder ’

Fig. 1. Inter-process communication engine on Android.

The interaction between applications and with system
services is carried out through ioctl system calls to Binder
[22]. A simple example would be an application that wants read
and write access to a system resource, which ends up sending
a BINDER_WRITE_READ call to Binder, and consequently,
Binder forwards this request to the corresponding service. Two
types of requests can be issued using in this system call, (1)
requests sent by services to Binder (BC_) and (2) requests
sent by Binder to services (BR_).

The sequence of requests issued by an application through
ioctl calls is explored to extract dynamic features using
two distinct approaches. The first one is to count the number
of requests issued by the application, resulting in a table
of requests frequency. The second one captures the relative
sequence of requests using n-grams', which are processed
using TF-IDF (Term Frequency—Inverse Document Frequency)
to create a table of frequent request subsequences.

Static information can be extracted from Android Application
Package (APK) files using reverse engineering tools. Fig. 2
highlights the information contained in an APK file. Our
focus at this stage is the extraction of attributes from the
AndroidManifest and the bytecode (.dex file).

From the AndroidManifest it was extracted the decla-
ration of permissions, categories and minimum, target, and
maximum versions of the Software Development Kit (SDK).
Categories are strings that define the kind of component that
should handle an intent [24]. Permissions are used by an app
to request access to a restricted data or resource [25]. SDK
versions are relevant to have knowledge about which APIs are
available to use and if an app is targeted for outdated and less
protected devices.

Since . dex file contains the application’s bytecode, we can
extract the names of the classes present in the application’s
source code from it by using [26]. This data brings information

In-grams are overlapping sequences of consecutive requests of size
obtained through a sliding window approach [23].

APK

Fig. 2. Structure of the information found in an APK file.

about which APIs are used in the app and may also indicate
whether the app source code was obfuscated.

The dataset used in this approach consists of a vector
containing both dynamic and static attributes for describing
each app, in order to have all attributes analyzed simultaneously
by the classification algorithms [9].

B. Methodology

Since we performed an offline evaluation, the entire set of
selected apps must be executed and analyzed beforehand. Thus,
a controlled execution of the apps is performed to capture the
information discussed in Section III-A. Subsequently, these
characteristics are combined into a single characteristic vector
that is used to classify the apps as malicious or benign,
according to the trained machine learning model.

The dataset consists of the labels presented by the Androzoo
dataset [27]. Due to the constant updating of this dataset,
characteristics of 622 apps launched between 2018 and 2020
were collected, 319 being benign apps and 303 malicious apps,
thus representing a balanced dataset.

The dataset was normalized and divided into 80% for
training/validation and 20% for testing. The training data were
used for training and validation of the models through k-fold
cross validation, with £ = 5. An attribute selection strategy
was applied in order to select the 10% of the attributes with the
highest relevance. Finally, three machine learning strategies
were explored: Multilayer Perceptron, Random Forest and
AdaBoost. The choice of these strategies was due to the
popularity in the literature and the low cost of training the
models.

The tests where performed using the Android Studio
environment emulator, version 3.6.3. The Android Virtual
Device (AVD) used has a Nexus 4.0 hardware profile and
an Android Q (Android 10.0) system image, with API level 29
and x86 architecture. In addition, AVD was configured with 8
GB of RAM and 50 GB of storage. Android 10.0 was chosen
because it is the most used version of Android in the world
since August 2020, with 32.5% of market share in August
2021 [28].

IV. EVALUATION

This Section presents our evaluation process and a discussion
about the use of metadata and inter-process communication
for the identification of malicious apps. Our dataset was split
into training and testing bases in a 80:20 ratio, maintaining
a balanced distribution between classes. The training dataset
was also split into training and validation bases using the same
ratio.

From the dataset, it is important to highlight that two
pieces of information enrich the application profile. The
communication between processes that is dynamic information,
extracted from an application execution and discloses how an
application interacts (communicates) with services and other
applications; and metadata that present static information such
as application categories and classes.

Four key points in Android threat identification using hybrid
data will be evaluated in this section. Such assessments take
into account key information to distinguish malicious apps. The
evaluations are: (i) to identify among the attributes extracted
from AndroidManifest which ones are representative
for malicious apps; (ii) to identify which attributes have
a statistically relevant difference between malicious and
benign apps; (iii) to assess the impact on the use of process
communication information to identify threats; and (iv) to
discuss the impact of using machine learning strategies to
identify threats in the app store.

A. Feature Analysis

When evaluating the most popular features, the first factor
that stands out is the difference between the number of per-
missions related to accessing and changing network elements
between benign and malicious apps. These features are related
to WIFI or NETWORK states, which are directly related to
the communication of applications; malicious apps uses such
features 24% and 18% more than benign apps, respectively.
This tendency for malicious apps to communicate can be
related to factors such as extracting data, discovering new
victims, or even requesting advertisements.

Network access isn’t the only popular permission that
malicious apps focus on. The PHONE state also gets attention
from malicious apps, as it allows access to communication
resources as well as to device connections resources. 26.2%
of observed malicious apps requested this permission, which
means 40.3% more than benign apps. This permission allows
malicious apps to monitor user actions and watch private
information, such as calls. This difference is also shown in
Figure 4, as one of the top differences between malicious and
benign apps.

LOCATION and INSTALLATION permissions also
have a higher presence in malicious apps; as an
example, BROADCAST_PACKAGE_INSTALL and

ACCESS_LOCATION_EXTRA_COMMANDS are used 4.1 and
3.1 x more in malicious apps than in benign ones. An install
permission will allow a malicious app to install other features
or even other applications on the device without notifying

the user or requesting his explicit approval. Thus, such
permissions need some attention from users.

Looking into the permissions only present in malicious
apps, the ones related to running tasks based in context
information, running instrumentation, and interacting between
different users stands out. Such kind of permissions are very
representative for malicious actions, since two of them allows
an app to execute tasks automatically and the other opens
a breach in the protection between users, which is one of
Android’s core security mechanisms.

Fig. 3 presents the classes used at least 5x more in malicious
apps. Looking at the classes, it’s highlighted that from the 36
zxing classes that appeared in the dataset, 29 of them are
used at least 5x more in malicious apps. The zxing case
gained notoriety in media recently as a barcode scanner app
that was cloned and refurbished in a malicious one, affecting
many people [29].

Another class that stands out is the
org/apache/cordova/inappbrowser, which opens a
window that behaves like a standard web browser, but is not
subjected to any whitelist, and therefore is recommended to
load third-party (untrusted) content [30]. This class is used
5.2 X more in malicious apps.

Finally, it was noted that many of malware applications uses
the same kind of code obfuscation. This is due to many classes
used mostly by malicious apps had the same pattern in their
name of repeated single letters, such as com/b/a/a/a and
com/a/a/a/a, for example. This fact shows the importance
of having dynamic features for detecting malware, because
many of them uses code obfuscation, especially the malicious
ones.

Fig. 4 shows the static features with the greatest discrepancy
in use between malicious and benign apps. These thirty
attributes are the features with the biggest difference among
around 14.7 k features. The X axis shows the attributes, and
the Y axis shows the percentage of malicious and benign apps
using it. It is noteworthy that the average difference between
malicious and benign apps is -0.06%, with the third quartile
having an average value of 0.04%.

Overall, the classes with the greatest discrepancy in use
between malicious and benign apps show that many of malware
apps are disguised as usual ones, such as fitness apps and even
apps with paid options linked to Google Play Services.

The com/stub class found in Fig 4 also highlighted a
different behaviour regarding the use of inter-process commu-
nication by malicious and benign apps, since it implements a
remote interface, aiming at sending and receiving messages
locally for services (similar to a Remote Procedure Call (RPC)).
This information emphasizes the relevance of the dynamic data
collected to characterize a malware behaviour.

Looking at the dynamic data collected, it was observed that
malicious apps make 17.4% more calls per application into
the inter-process communication mechanism than benign ones.
This factor ends up highlighting the importance of observing
calls between processes to identify threats in the Android
environment.

Classes used more than 5 times more in malwares

Hmm Number of times that a class appeared more in malicious than benign apps

(uBluag %)/(21eM|eW %)

Selected Class

Fig. 3. Ratio between use of classes between malicious and benign applications.

Top 30 static attributes with biggest differences in use percentage between malwares and benign apps
N
w@"’
&
S

Malware
&
&

T T T T T 1
O o o o o o o
© n < m N

(%) @3Inquie siy3 bulurejuod sddy

70 4 HEEE Benign

Selected Attributes

Fig. 4. Percentage of malicious and benign apps using a feature (ordered by relative differences).

B. Results

This difference is much higher regarding the commands

related to registering threads to the Binder service, which

The results obtained are presented in Tables I and II. They
contain are the average values obtained after five runs using
cross-validation for both representation approaches, using the
validation dataset (as presented in Section III-B). The metrics

suggests that this apps intends to send many messages to other

processes simultaneously. The reason behind this statistics

is likely to be that besides the normal app tasks, malware

also intends to perform their malicious actions while being
executed, such as launching unwanted adds, accessing files,

sending data to the internet, etc.

were chosen focusing on the best description of the behavior

found.

The results presented in Tables I and II highlight that the use

TABLE I
AVERAGE PERFORMANCE ON VALIDATION (V) AND TEST (T) DATASETS USING THE NUMBER OF CALLS REPRESENTATION FOR DYNAMIC FEATURES.

Aleorithm F1 Score Recall Precision Brier Score ROC AUC
g \% T \% T \% T \% T \% T
Random Forest 91.7% 86.1% 902% 769% 93.6% 979% 79% 13.8% 922% 87.4%
AdaBoost 934% 873% 913% 77.5% 95.7% 100.0% 63% 12.6% 93.7% 88.7%
Multilayer Perceptron 92.9% 87.0% 93.7% 82.0% 922% 928% 69% 13.7% 93.2% 86.9%
TABLE II

AVERAGE PERFORMANCE ON VALIDATION (V) AND TEST (T) DATASETS USING THE 3-GRAMS REPRESENTATION FOR DYNAMIC FEATURES.

Algorithm F1 Score Recall Precision Brier Score ROC AUC
v T v T A\ T v T v T
Random Forest 89.2% 84.8% 90.5% 18.6% 88.0% 92.1% 10.7% 15.7% 89.4% 85.0%
AdaBoost 89.0% 85.1% 90.9% 78.9% 873% 92.4% 109% 154% 89.2% 85.3%
Multilayer Perceptron 91.9% 86.1% 93.0% 803% 91.1% 93.1% 79% 145% 924% 86.2%
of metadata and communication between processes to identify
threats can achieve satisfactory results. F1Score demonstrates Average ROC Curve for each algorithm
that all algorithms were able to fit both in the test and validation 1.0 —
datasets. Recall would be the only metric to which a feature
selection could contribute to improving its result. Taking into o84
account the value achieved by the ROC AUC and Brier Score,
it is possible to observe the learning and adequacy of data in §
relation to the models, validating this strategy for identifying 2 %]
threats. 2
Comparing the results from both Tables it is noted that the § 0.4
3-grams approach got slightly worse results, with a decrease in ’
performance for all algorithms tested. This decrease is probably 024
. . . . d ROC curve of Ada Boost
due to the greater complexity of its data, since this approach — ROC curve of Random Forest
generated 4.4 x more features. A greater complexity in data oo | — ROC curve °f""“'t"ayef Perceptron
also explains why Multilayer Perceptron obtained the 0.0 02 0.4 0.6 0.8 1.0
best results in this approach, since it is a neural network and Folse Positive Rate
therEf(.)re des.lgn.e d for m(.)re complex data. Fig. 5. Average ROC curves using the number of calls as dynamic data.
Besides this difference in results, the 3-grams approach have
some advantages: (i) with the greatest focus on dynamic data,
it is less susceptible to obfuscation techniques; (ii) the dynamic Average ROC Curve for each algorithm
data in it represents how communication between processes is 10]
performed. The success in this approach, where most of the
data was from the dynamic source, shows the relevance of the
inter-process communication in malicious behaviour. %
The approach using only the number of calls as dynamic g g
data (Table I) and the AdaBoost algorithm obtained the best E 061
results considering the adequacy of the models. But it still has 3 ’
values close to Multilayer Perceptron, that obtained a similar % 0.4
result in both data approaches. Overall, we can say that the g
algorithms managed to adapt to the dataset and it was possible 0]
to identify malicious apps. | T e
The ROC curves representing the average performance in —— ROC curve of Multilayer Perceptron
cross-validation folds for both approaches are represented in 00—+ o2 o oe o8 To

Figs. 5 and 6. The curves demonstrate that the performance
remained consistent in all stages of the cross-validation, as
the discrimination threshold varied.

With the results achieved, we can say that the use of meta-
data together with information for inter-process communication

False Positive Rate

Fig. 6. Average ROC curves using 3-grams as dynamic data.

is a feasible strategy for identifying threats in the Android
environment. However, some points regarding the use of hybrid
data to identify threats should be discussed.

The use of dynamic data in the Android environment is
impacted by its high cost in resources, which are limited in
mobile environments. Working with an approach that focuses
on processing and verifying applications outside the mobile
environment solves the impact that the use of dynamic data
would have. In addition, this approach prevents malicious apps
from propagating in the app store. This contribution is relevant,
since the stores aren’t free from malware samples and even
Google Play makes some of them available, as shown in
the Androzoo dataset [27].

Finally, the use of hybrid data contributes to a deeper insight
into the expected behaviors of an app, as we can assess both
the metadata declared in the manifest and the actual resource
usage when the app runs.

V. RELATED WORK

The detection of malicious apps on Android systems is a
research field that receives a lot of attention in the literature,
with several techniques being proposed. A static approach is
proposed by [19], extracting information from applications and
building domain-specific models, which are used to analyze
security settings and identify vulnerabilities in the application.
This solution is vulnerable to code obfuscation and requires a
specific model to identify each vulnerability.

Several works use permissions to detect Android malware,
such as [31] that uses pairs of permissions that may be
dangerous to identify malicious apps. Another solution per-
forms a permission usage analysis to identify malware, mining
permission data and identifying the most relevant permissions
to distinguish benign and malicious apps, and using machine
learning to classify malware families [32].

A dynamic approach is proposed by [33], using a set of
features based on inter-component communication Intents
and method calls to perform an application classification
aiming to differentiate benign and malicious apps. A dynamic
analysis of runtime application behavior is performed by [34],
extracting data from system calls and Binder communications,
and the authors described that data recovered from Binder
calls improve the detection accuracy. These approaches can
overcome obfuscation techniques and the use of reflection in
source code by malicious apps, which are a challenge for static
approaches.

Hybrid approaches are also adopted in the literature, as
in [35], where authors use permissions and system calls as
attributes, including their parameters. Arshad et al. [36] extracts
data from AndroidManifest.xml and system calls logs and uses
machine learning to process these data in remote servers,
providing a real time analysis with minimum memory and
battery overhead, but requires a constant network connection.

Our work focuses on a hybrid approach, collecting data from
the AndroidManifest, such as permissions and categories,
and extracting information from the application’s bytecode
, as described in Section III-A. This strategy overcomes the

limitations of fully static approach, such as those presented by
[19] and [31], and adds a new set of relevant data compared
to fully dynamic approaches, such as those presented by [33]
and [34], providing better results.

When compared with other hybrid approaches, such as
those presented by [35] and [36], we can highlight the use of
a more diverse set of static parameters and different machine
learning algorithms, in addition to identifying the most relevant
attributes for identifying malicious apps.

VI. CONCLUSION

This paper presented a new hybrid approach to detect
malicious apps in Android systems, by collecting static and
dynamic attributes from a new dataset, named AndroBlend [9],
which is composed by the attributes extracted from 622 APK
files.

We demonstrated that the attributes used to identify ma-
licious apps presented feasible results using three different
machine learning algorithms. It also demonstrated that our
dataset is suitable for representing both benign and malicious
apps. In addition, we discussed which attributes have greater
relevance for identifying threats in the Android environment,
highlighting permissions and recurring classes used by mali-
cious applications.

As future work, we will improve the treatment of the
dynamic data used, in order to more accurately represent the
behavior of the analyzed applications. We will also study the
correlation between static and dynamic attributes in identifying
malicious apps, aiming to identify which combinations of
attributes may be potentially dangerous. It is also possible to
point out that the dataset can be expanded, aiming to cover a
larger set of samples and, consequently, expanding the range of
observed attacks. Consequently, new features used by malicious
apps may be identified.

ACKNOWLEDGMENT

This study was financed in part by the Coordenagdo
de Aperfeicoamento de Pessoal de Nivel Superior — Brasil
(CAPES) — Finance Code 001. The authors also thank the
UFPR and UTFPR Computer Science departments.

REFERENCES

[1] V. Chebyshev, “Mobile malware evolution 2020,” 2021. [Online]. Avail-
able: https://securelist.com/mobile-malware-evolution-2020/101029/

[2] CISA, “Alert (aa20-099a): COVID-19 exploited by malicious cyber
actors,” 2020. [Online]. Available: https://us-cert.cisa.gov/ncas/alerts/
2a20-099a

[3] Avira, “Mobile security report,” 2020. [Online]. Available: https:
/lwww.avira.com/en/mobile-security-report

[4] M. Rahman, M. Rahman, B. Carbunar, and D. H. Chau, “Search rank
fraud and malware detection in Google Play,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 6, pp. 1329-1342, 2017.

[5] R. Zachariah, K. Akash, M. S. Yousef, and A. M. Chacko, “Android
malware detection a survey,” in Proceedings of the International
Conference on Circuits and Systems. Thiruvananthapuram, India: IEEE,
2017, pp. 238-244.

[6] H. Kato, S. Haruta, and I. Sasase, “Android malware detection scheme
based on level of SSL server certificate,” IEICE Transactions on
Information and Systems, vol. E103.D, no. 2, pp. 379-389, 2020.

[7]

[8

[t

[9]

[10]

[11]

(12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning
based android malware detection using real devices,” Computers &
Security, vol. 89, p. 101663, 2020.

N. C. Will, T. Heinrich, A. B. Viescinski, and C. A. Maziero, “Trusted
inter-process communication using hardware enclaves,” in Proceedings
of the 15th Annual International Systems Conference. Vancouver, BC,
Canada: IEEE, 2021, pp. 1-7.

R. Lemos, T. Heinrich, N. C. Will, and C. A. Maziero,
“AndroBlend,” 2020. [Online]. Available: https://github.com/
Rodrigo-Lemos/AndroBlend

Google, “Application sandbox,” 2021. [Online]. Available: https:
/Isource.android.com/security/app-sandbox

M. Backes, S. Bugiel, O. Schranz, P. von Styp-Rekowsky, and S. Weis-
gerber, “ARTist: The Android runtime instrumentation and security
toolkit,” in Proceedings of the European Symposium on Security and
Privacy. Paris, France: IEEE, 2017, pp. 481-495.

T. Schreiber, “Android Binder,” Master’s thesis, Ruhr University,
Bochum, Germany, 2011.

Developer Android, “Secure Android devices,” 2020. [Online]. Available:
https://source.android.com/security

S. Kumar and S. K. Shukla, “The state of android security,” in Cyber
Security in India. Springer, 2020, pp. 17-22.

T. Alsmadi and N. Alqudah, “A survey on malware detection tech-
niques,” in Proceedings of the International Conference on Information
Technology. Amman, Jordan: IEEE, 2021, pp. 371-376.

V. Kouliaridis, K. Barmpatsalou, G. Kambourakis, and S. Chen, “A
survey on mobile malware detection techniques,” IEICE Transactions
on Information and Systems, vol. E103.D, no. 2, pp. 204-211, 2020.
J. Qiu, S. Nepal, W. Luo, L. Pan, Y. Tai, J. Zhang, and Y. Xiang,
“Data-driven Android malware intelligence: A survey,” in Proceedings of
the International Conference on Machine Learning for Cyber Security.
Xi’an, China: Springer, 2019, pp. 183-202.

Y. S. I. Hamed, S. N. A. AbdulKader, and M. S. Mostafa, “Mobile
malware detection: A survey,” Proceedings of the International Journal
of Computer Science and Information Security, vol. 17, no. 1, pp. 5665,
2019.

A. Nirumand, B. Zamani, and B. T. Ladani, “VAnDroid: A framework
for vulnerability analysis of Android applications using a model-driven
reverse engineering technique,” Software: Practice and Experience,
vol. 49, no. 1, pp. 70-99, 2018.

K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A review of
android malware detection approaches based on machine learning,” IEEE
Access, vol. 8, pp. 124 579-124 607, 2020.

K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “CopperDroid:
Automatic reconstruction of Android malware behaviors,” in Proceedings
of the Network and Distributed System Security Symposium. San Diego,
CA, USA: Internet Society, 2015.

N. Artenstein and I. Revivo, “Man in the Binder: He who controls IPC,
controls the Droid,” BlackHat Europe, 2014.

(23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36

M. Zolotukhin and T. Haméldinen, “Detection of anomalous HTTP
requests based on advanced n-gram model and clustering techniques,”
in Proceedings of the 6th Conference on Internet of Things and Smart
Spaces. St. Petersburg, Russia: Springer, 2013, pp. 371-382.

D. Android, “Intents and intent filters,” 2019. [Online]. Available:
https://developer.android.com/guide/components/intents-filters

, “App manifest overview,” 2021. [Online]. Available: https:
//developer.android.com/guide/topics/manifest/manifest-intro

A. Desnos, “AndroGuard: Reverse engineering, malware and
goodware analysis of Android applications,” 2015. [Online]. Available:
https://github.com/androguard/androguard/

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo:
Collecting millions of Android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software

Repositories. Austin, TX, USA: ACM, 2016, p. 468-471.
StatCounter, Mobile Android Version Market
Share Worldwide, 2021. [Online]. Available:

https://gs.statcounter.com/android- version- market-share/mobile/
worldwide/#monthly-202008-202108

S. Hollister, “The original barcode scanner app, seemingly
mistaken for malware, is getting review-bombed,” 2021.
[Online]. Available: https://www.theverge.com/2021/2/9/22275024/

android-barcode-scanner-app-zxing-malware-confusion-negative-reviews
Cordova, “Inappbrowser plugin,” 2021. [Online].

Available: https://cordova.apache.org/docs/en/10.x/reference/
cordova-plugin-inappbrowser/

A. Arora, S. K. Peddoju, and M. Conti, “PermPair: Android malware
detection using permission pairs,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 1968-1982, 2020.

J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant
permission identification for machine-learning-based Android malware
detection,” IEEE Transactions on Industrial Informatics, vol. 14, no. 7,
pp. 3216-3225, 2018.

H. Cai, N. Meng, B. Ryder, and D. Yao, “Droidcat: Effective Android
malware detection and categorization via app-level profiling,” IEEE
Transactions on Information Forensics and Security, vol. 14, no. 6, pp.
1455-1470, 2018.

S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder,
and L. Cavallaro, “DroidScribe: Classifying Android malware based on
runtime behavior,” in Proceedings of the Security and Privacy Workshops.
San Jose, CA, USA: IEEE, 2016, pp. 252-261.

R. de Souza Polisciuc, L. C. Albini, A. Grégio, and L. C. Bona, “Andlise
de aplicativos no Android utilizando tragos de execu¢do,” in Proceedings
of the Brazilian Symposium on Information and Computational Systems
Security. Petrépolis, RJ, Brazil: SBC, 2020.

S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song, and H. Yu,
“SAMADroid: A novel 3-level hybrid malware detection model for
Android operating system,” IEEE Access, vol. 6, pp. 4321-4339, 2018.

