
On the Design of a Flexible Architecture for
Virtualized Network Function Platforms

Vinı́cius Fulber Garcia∗, Leonardo da C. Marcuzzo†, Alexandre Huff∗§, Lucas Bondan‡, Jéferson C. Nobre‡,
Alberto Schaeffer-Filho‡, Carlos R. P. dos Santos†, Lisandro Z. Granville‡, Elias P. Duarte Junior∗

∗Federal University of Paraná †Federal University of Santa Maria
{vfgarcia,ahuff,elias}@inf.ufpr.br {lmarcuzzo,csantos}@inf.ufsm.br

‡Federal University of Rio Grande do Sul §Federal Technological University of Paraná
{lbondan,jcnobre,alberto,granville}@inf.ufrgs.br alexandrehuff@utfpr.edu.br

The proper execution and management of heterogeneous
Virtualized Network Functions (VNFs) relies on the employ-
ment of efficient and comprehensive VNF platforms. However,
current systems are developed without following any standard-
ized reference architecture, thus leading to proprietary and
monolithic solutions. Furthermore, those platforms lack sup-
port for recent NFV developements, such as VNF Components
(VNFC) and the Network Service Header (NSH). In this work,
we present an architecture for VNF platforms that is fully
compliant with the European Telecommunications Standards
Institute (ETSI) NFV architecture, while also enabling the
execution of both VNFC and NSH. Through the development
of a system prototype called COmprehensive VirtualizEd NF
(COVEN) platform, we were able to evaluate the effectiveness
of our proposed architecture and to demonstrate the benefits of
supporting VNFC and NSH, such as flexibility and efficiency.

I. INTRODUCTION

Network Functions Virtualization (NFV) is driving a
paradigm shift in telecommunications by introducing a soft-
ware plane in the core network. This paradigm employs
current virtualization techniques to perform different network
functions. By moving the network traffic processing from ded-
icated and proprietary physical appliances to commercial off-
the-shelf servers, the NFV paradigm enhances the flexibility
and scalability of network services while reducing the CApital
and OPerational EXpenditure (CAPEX and OPEX) [1].

To standardize the NFV paradigm, specifications, models,
and NFV enablers (systems used to support the execution
of Virtualized Network Functions - VNF) are being devel-
oped. Standards and recommendations are being specified
by organizations such as the European Telecommunications
Standards Institute (ETSI) and the Internet Engineering Task
Force (IETF), as well as several working groups (e.g., ETSI
NFV Industry Specification Groups, IRTF NFV Research
Group, and IETF Service Function Chaining). The ultimate
goal of these efforts is to encourage the development of solid
foundations that support advanced NFV solutions.

The main element of the NFV paradigm is called Vir-
tualized Network Function (VNF), which is responsible for
effectively processing the network traffic. A VNF, in turn,
can be decomposed in two parts [2]: the VNF platform

and the Network Function (NF). In particular, VNF plat-
forms provide the proper environment and required resources
for executing and managing network functions. Despite its
importance, current VNF platforms (e.g., Click-on-OSv [3]
and ClickOS [4]) are being developed without following any
standardized reference architecture, thus leading for inflexible
and monolithic solutions with severe limitations to support
emerging NFV features. Examples of such features are VNF
Components (VNFC) [5] – individual elements consisting of
some or all of the VNF functionality – and Network Service
Header (NSH) – a packet header that enables the creation of
dynamic service planes [6].

In this paper, we present a comprehensive architecture for
VNF platforms, which is designed to be fully compliant with
the ETSI requirements for NFV, while providing support for
VNFCs and NSH through native modules. In this context, our
main contributions are: i) the design of the core elements of
a flexible architecture for VNF platforms that support VNFCs
and NSH; ii) the development of a VNF platform prototype,
called COmprehensive VirtualizEd NF (COVEN) platform,
based on the proposed reference architecture; and iii) the
identification of critical attributes provided by both VNFCs
and NSH that enable the development of advanced network
functions and services.

The remaining of this paper is organized as follows. Section
II presents the background on VNF along with its main
concepts, requirements, and a brief review of the literature.
Section III presents relevant related works. In Section IV,
we propose a reference architecture for developing VNF
platforms, which enables network operators to achieve im-
provements in flexibility and management. In Section V, we
instantiate the architecture by describing a running prototype
platform implemented to support virtualized network func-
tions. In Section VI, we evaluate the performance of our
prototype in a case study. Finally, in Section VII, conclusions
and perspectives for future work are presented.

II. VIRTUALIZED NETWORK FUNCTION IN A NUTSHELL

Network Function Virtualization (NFV) is a network
paradigm that employs current virtualization technologies
(e.g., virtual machines, and containers) to execute softwarized
Network Functions (NF) in commodity hardware [1]. The

978-1-7281-0962-6/19/$31.00 ©2019 IEEE

NFV architectural framework is defined by the European
Telecommunications Standards Institute (ETSI) [7]. This ar-
chitecture is composed of three main blocks: NFV Infras-
tructure (NFVI), NFV Management and Orchestration (NFV
MANO), and Virtualized Network Functions (VNF). The
NFVI includes the physical and virtualized computing re-
sources that are employed for the execution of network
functions. NFV MANO includes standards for virtualized in-
frastructure management, NF lifecycle control and monitoring,
and network service orchestration.

In particular, the Virtualized Network Functions block cor-
responds to the specific network functions virtual instances.
These instances are responsible for network traffic processing,
and are the core block of the NFV paradigm. A VNF can pro-
cess different network layers to execute a variety of functions,
such as routing, DHCP, DPI, and IPS. A VNF is composed
of two main parts [2]: the VNF platform (e.g., ClickOS [4],
OpenNetVM [8], and Click-on-OSv [3]); and the NF software
implementation which runs on the platform. In addition, an
Element Manager (EM) is employed to configure and monitor
a VNF instance, providing the communication interface with
the NFV MANO block.

Sophisticated VNFs can be designed through the composi-
tion of many VNF Components (VNFC). VNFCs are internal
components which implement a subset of the VNF operations
[9]. Usually, a standalone VNFC performs a particular oper-
ation with lower complexity, but the combination of VNFCs
enables the creation of complete network functions. A VNFC
is deployed as a virtualized element, but its lifecycle depends
on its parent VNF. Also, VNFCs are reusable and specific
components can be applied for different network functions
(e.g., an application level signature identifier can be used
either as part of a deep packet inspector or an L7 load
balancer).

Steering traffic through several VNFs in a predefined se-
quence defines a structure called Service Function Chain
(SFC) [10]. An SFC is composed of VNFs, boundary nodes
(e.g., ingress and egress data points), and the virtual con-
nections among them. The Internet Engineering Task Force
(IETF) RFC 7665 [10] provides a standardized architecture
for the SFC implementation. Furthermore, to allow traffic
steering through the various possible paths of an SFC, the
IETF also proposed the Network Services Header (NSH) [6].
Each VNF can be either NSH-aware or NSH-unaware. An
NSH-aware VNF processes and updates the service header
during its execution. Otherwise, NSH-unaware VNFs work
with a proxy instance that recognizes and processes the service
header externally the network function.

Finally, VNF platforms are designed to host and execute
NFs and VNFCs. These platforms must observe a collection
of requirements in order to be compliant with the ETSI NFV
development model (e.g., hardware independence, elasticity,
and reliability) [11] and ETSI NFV virtualization assumptions
(e.g., portability, performance, integration, management, and
scalability) [5]. In a previous work [2], we have shown how
a VNF platform can explore the NSH processing through a

generic architecture. However, despite the recent research ini-
tiatives, VNF platforms are still under-explored. For example,
current platforms and architectures do not provide a simple
way to deploy, execute, and manage VNFCs. Moreover, the
interconnection between platforms internal modules and with
other NFV architecture components are not formalized.

III. RELATED WORK

Multiple VNF platforms have been proposed in recent
years. These platforms, however, are being developed without
following any standardized architecture. Furthermore, they
do not entirely meet the VNF requirements described in [5]
and do not natively support some essential and recent NFV
features (e.g., VNFC and NSH). Next, state-of-the-art VNF
platforms currently available are presented and discussed.

ClickOS [4] is a platform based on a paravirtualized tiny
operational system (MiniOS) with a netmap-enabled network
stack. The ClickOS virtualization is dependent on a modi-
fied version of Xen hypervisor with VirtuAl Local Ethernet
(VALE) and netmap support. However, the ClickOS platform
architecture is inflexible and executes only network functions
developed in Click Modular Router. Also, it can only be
managed by using the XenStore solution.

Click-on-OSv [3] uses a paravirtualized minimalist oper-
ational system, called OSv, to host network functions. This
platform employs the Intel Data Plane Development Kit
(DPDK) to achieve high throughput on packet processing and
provides a custom management agent to enable access to both
configuration parameters and runtime performance metrics.
However, this platform is built as a monolithic system, thus
requiring the operating system to be recompiled in case of ma-
jor modifications. Finally, Click-on-OSv only allows network
functions implemented with the Click Modular Router.

OpenNetVM [8] is a multi-VNF platform based on contain-
ers with the DPDK network stack. This platform is deployed
in commodity hardware and aims to execute network functions
with fast network traffic I/O. In OpenNetVM, the NFs are cre-
ated within a proprietary framework (NFLib). Its architecture
consists of multiple VNFs interconnected through a shared
data plane coordinated by an internal manager. Thus, this
platform can also create a service chain in a single physical
machine.

The OPNFV SampleVNF1 is the VNF testing platform
within the OPNFV project. This platform is based on a
Ubuntu virtual machine with DPDK support and does not
have any other native internal module. In this way, the
network functions must be manually developed and executed.
SampleVNF is a very simplified platform, but it should be
able to accomplish compatibility and performance testing of
NFs before they are deployed on the OPNFV environment.

The presented VNF platforms do not support some im-
portant NFV features (e.g., VNFCs and NSH). In general,
the solutions are developed as immutable systems and any
adaptations, such as replacing or adding packet accelerators

1https://wiki.opnfv.org/display/SAM/SampleVNF+-+Home

(network stack) or NF programming languages, must be done
by modifying the platform source code. Furthermore, current
platforms do not meet all the NFV requirements defined by
ETSI. For example, ClickOS depends on Xen hypervisor (in-
tegration), the container-based platforms cannot be migrated
to different hardware architectures (portability), and platforms
that employ Intel DPDK present high CPU overhead due the
network stack idle waiting (performance).

IV. A VNF PLATFORM ARCHITECTURE

There is currently no standard architecture for the design
and development of VNF platforms, with features such as
NSH processing, VNFC deployment, internal modules dy-
namic traffic steering, and elastic life cycle management.
Flexible and holistic VNF platforms are a fundamental ne-
cessity to meet multiple NFV requirements (e.g., portability,
performance, integration, management, and scalability) and
to accomplish the needs of modern softwarized networks.
VNF platforms must also be created with integration in mind.
There are several systems (OSS/BSS, Hypervisors) and NFV
architecture blocks and elements (NFVI, VNFM, EMS) that
must work together with multiple VNFs in order to adequately
provide virtualized network services [7].

In this work, we propose a flexible, generic, and comprehen-
sive architecture for VNF platforms. The proposed platform,
depicted in Figure 1, consists of six main modules deployed
on a VNF core (i.e., a virtualized host, such as virtual machine
or container): (i) Virtual Network Subsystem, (ii) Internal
Traffic Forwarder, (iii) NSH Processor, (iv) Packet Processing
Subsystem, (v) Management Agent, and (vi) Extended Agents.
Each module performs specific operations within the VNF and
can process network packets from both the data and control
planes (depicted with solid lines) and the management plane
(depicted with dashed lines). External interfaces to the VNF
Core are also defined in the architecture to enable the use of
virtualized resources (available in the NFVI) and to support
both management and orchestration operations (by using EMS
and VNFM systems).

Modules of the architecture are designed to be loosely
coupled and with well-defined access interfaces. In this way,
each module can be redesigned or replaced as the technology
evolves. Modules are described below:

• Virtual Network Subsystem (VNS) – This module is
responsible for accessing the Virtual Network Interface
Controllers (VNICs) – provided by the hypervisor –
for sending/receiving network packets. Typically, this
operation, when executed by the native network stack in
traditional operating systems, is not optimized to support
the performance requirements of high-speed networks
(e.g., 40GbE/100GbE). To tackle this problem, several
packet acceleration tools (e.g., netmap [12], PacketShader
[13], Intel DPDK2, PF RING/DNA3, and OpenOnload4)

2https://www.dpdk.org
3https://www.ntop.org/products/packet-capture/pf ring
4https://www.openonload.org

have been proposed and extensively evaluated. These
systems can replace the traditional L2 Socket approach
for traffic steering and are satisfactory solutions for NFV-
based networks.

�✁✂ ✄☎✆✝

✞✟✠✟✡☛✞☛✠☞ ✟✡☛✠☞

✌✟✍✎☛☞ ✌✏✑✍☛✒✒✓✠✡ ✒✔✕✒✖✒☞☛✞

✗✘✙✚✛✜✢✘✣
✤

✓✠☞☛✏✠✟✥ ☞✏✟✦✦✓✍ ✦✑✏✧✟✏★☛✏

✩✩✩

✠✒✪ ✌✏✑✍☛✒✒✑✏

✫✓✏☞✔✟✥ ✠☛☞✧✑✏✎ ✒✔✕✒✖✒☞☛✞

✚✙✬✙✭✛✚✛✬✮
✯✬✰✱✯✬✰✱ ✤ ✯✬✰✱ ✬

✩✩✩
✯✬✰✱ ✲

✁✂� ✳✁✂✆✴✵✶✆✷✄✶✷✆✝

✝✸✝✹✝✁✶ ✹✴✁✴✺✝✹✝✁✶ ✵✻✵✶✝✹

✼✽✾✿❀

✮✢✢❁ ✤ ✮✢✢❁ ✲ ✮✢✢❁ ✬

✩✩✩

✁✂�

✹✴✁✴✺✝✹✝✁✶

✴✁❂

☎✆✄❃✝✵✶✆✴✶✳☎✁

✑✏✍✪☛✒☞✏✟☞✑✏

✫✠✦ ✞✟✠✟✡☛✏❄✒❅

✫✓✏☞✔✟✥

✓✠✦✏✟✒☞✏✔✍☞✔✏☛

✞✟✠✟✡☛✏

❆❇
❈❆
❉❊
❋

●
❍❈
❆
■

❆
■❈❆
❉❊
❋

✬❏❑✯▲

●
❍❈
❆
❉❊
❋

❆
❇❈
❆
❉❊
❋

✛▼✮✛✬◆✛◆
✙✭✛✬✮ ✤

✛▼✮✛✬◆✛◆
✙✭✛✬✮ ✲

✛▼✮✛✬◆✛◆
✙✭✛✬✮ ✬✩✩✩

✗✘✙✚✛✜✢✘✣
✤

✗✘✙✚✛✜✢✘✣
✤

✗✘✙✚✛✜✢✘✣
✤

✗✘✙✚✛✜✢✘✣
✤

✗✘✙✚✛✜✢✘✣
✲

✗✘✙✚✛✜✢✘✣
✤

✗✘✙✚✛✜✢✘✣
✤

✗✘✙✚✛✜✢✘✣
✬

✛▼✮✛✬◆✛◆
✙✭✛✬✮ ✤
✛▼✮✛✬◆✛◆
✙✭✛✬✮ ✤

✛▼✮✛✬◆✛◆
✙✭✛✬✮ ✲
✛▼✮✛✬◆✛◆
✙✭✛✬✮ ✲

✛▼✮✛✬◆✛◆
✙✭✛✬✮ ✬
✛▼✮✛✬◆✛◆
✙✭✛✬✮ ✬

❖P
◗
❘❙
❙
❚
❯

❖P
◗
❘ ❱
❲
❚
❙
❯

❖P
◗
❘ ❳
❱
❚
❯

❖P
◗
❘P
❳
❯

❖P
◗
❘❨
❩
❯

❬✿❭❪❫✾❫❫❭❴

❬❵❛✾✿❭❪❫❴❬❵❛✾❫❫❭❴

❬❵❛✾✼✿❭❴

❬✼✿❭✾✼✿❵❜❴

❬❫❫❭❝✾❞❡❴

❬❢❡✾❞❡❴

Fig. 1. VNF Platform Architecture

• Internal Traffic Forwarder (ITF) – Once the network
packets are captured by the VNS, they are forwarded
internally to the VNF Core by the Internal Traffic For-
warder. The configuration of this module is a task of
the Management Agent (discussed later), which speci-
fies the order of processing among the several VNFCs.
Once the Internal Traffic Forwarder is initialized, it uses
communication channels (e.g., using shared memory,
pipes, sockets) to forward the network packets between
the VNS, the Packet Processing Subsystem (PPS), and
the NSH Processor (NSHP). The use of an ITF allows
VNFCs to be created individually.

• NSH Processor (NSHP) – The IETF specified the Net-
work Service Header (NSH) that is inserted in packet-
s/frames to provide service function paths [6]. However,
despite its advantages, the use of NSH is optional to steer
traffic across multiple VNFs. In order to provide NSH
support, we define the NSH Processor, which provides
an abstraction for the network functions regarding the
existence of NSH packets. Specifically, when this module
is activated, the ITF forwards the network traffic to be
processed by the NSHP. Alternatively, the network packet
is forwarded directly to the corresponding VNFC. NSHP
acts on the specific NSH fields that may be modified
when traversing a network path (i.e., the Service Index
- SI; and Context Header - CH). NSHP provides the

following operations: NSH removal, NSH reinsertion,
CH retrieval, and CH update.

• Packet Processing Subsystem (PPS) – This module
corresponds to the frameworks used to implement and
execute network functions. Basically, these frameworks
include applications (e.g., Click Modular Router [14]
and Vector Packet Processing5), programming languages
(e.g., C, C++, Python), libraries (e.g., Scapy, libtins, lib-
net), or even single routines that support the construction
and handling of network packets.

• Management Agent (MA) – The primary goal of a
Management Agent is to monitor and control the exe-
cution of VNFs. Furthermore, it is also responsible for
coordinating the execution of all internal modules of
the VNF platform. MA provides five main operations:
request, retrieve, start, stop, and monitor. The request
operation receives a VNF Package (VNFP) [15] from the
network operator and deploys the specified VNF instance.
Once a VNF is executing, retrieve operations can be used
to obtain information about the VNF instance (e.g., VNF
ID, network interfaces). The start and stop operations
are essential for VNF lifecycle management. Finally,
the monitoring operation is responsible for measuring
performance indicators from the VNF Core (e.g., CPU,
memory, and network usage) and providing information
retrieved from the extended agents deployed in the VNF
platform.

• Extended Agent (EA) – This module is controlled by
the Management Agent and is used to monitor/control
each network function or component. It is supposed to be
developed by the creator of the VNF/VNFC, as it acts on
the individual management data of those implementations
(e.g., number of packets discarded by a firewall). This
module must provide at least one standard operation
which we call “list”. This operation is used by MA to
discover all the management data that can be accessed
by network operators. To the best of our knowledge, the
EA is the first effort to enable customized monitoring of
a particular VNFC/NF.

All the modules are controlled by the MA, which upon
receiving a VNFP (MA-MV interface), does the validation,
extracts the relevant information for deploying the VNF, and
configures the internal modules accordingly. For example,
VNFP may contain information about the set of VNFCs that
compose an NF, which is essential for the ITF to forward the
traffic to the proper components. The initial request for VNF
deployment must also provide more specific information, such
as the extended agents to be instantiated together with the
network function components.

The MA also retrieves VNFC source code from the VNFP,
requests the PPS to create the associated communication
channels, and to start the execution of VNFCs (Figure 1
MA-EA and PPSF-EA). Once this operation completes, PPS
returns a success/failure confirmation to the MA (MA-PPS).

5https://blogs.cisco.com/tag/vector-packet-processing

In case of failures, a rollback mechanism can be employed to
abort the instantiation process properly. When NSH is used,
the MA starts the NSHP (MA-NSHP). NSHP then creates a
communication channel with the PPS (NSHP-PPS) to allow
the network functions to access the NSH context header.
VNICs are connected to the VNS (VNS-VNIC) based on the
original request specified in the VNFP, processed by the MA
(MA-VNS).

Finally, the ITF is initiated with two default communication
channels: ITF-VNS and ITF-PPS. The former is used by the
ITF to retrieve network packets from the VNS, while the latter
is used by VNFCs to access the packets to be processed. A
third connection labeled ITF-NSHP is used (i) to remove the
NSH before it is processed by any VNFC and (ii) to reinsert
the NSH after the last VNFC of the path.

The reference architecture described in this section defines
the key modules responsible for the deployment of both VN-
FCs and SFCs [10]. We believe the architecture can provide
a valuable reference for the design and development of VNF
platforms, working as a guideline to integrate distinct modules
in order to create complete solutions.

V. THE COVEN PLATFORM

As a proof of concept of the proposed VNF platform
architecture we implemented all modules on a prototype
platform called COmprehensive VirtualizEd NF (COVEN) 6.

A. Platform prototype

The COVEN platform employs Debian Jessie (8.11) as
the VNF Core. Debian Jessie is a generic operating system
designed for the execution of miscellaneous tasks, thus it
allowed both the development of prototype modules and of the
network functions that run on the platform, without software
compatibility concerns. We note however that production
platforms should be based on lightweight virtual machines or
containers, such as CoreOS, Alpine, and TinyCore, that prop-
erly support NFV requirements (e.g., performance, portability,
and integration).

The Virtual Network Subsystem was implemented with L2
sockets. Although we have employed only the L2 sockets tool,
packet accelerators can be easily included in the platform
through a standard interface template. The Internal Traffic
Forwarder communicates with other internal modules of the
architecture (i.e., VNS and NSHP) using shared-memory to
boost the performance. For the communication with PPS (i.e.
NFs or VNFCs), L3 Sockets were employed, which may
affect the latency and throughput when compared to shared
memory. However, L3 Sockets provide greater flexibility for
the development of NFs and VNFCs.

The NSH Processor acts as a proxy and is executed on
demand if requested by the network operator. The NSHP
receives the network traffic as input from the ITF before it
is processed by PPS, removes the NSH, updates the service
index field and saves it locally. The network traffic is then

6https://github.com/ViniGarcia/COVEN

steered to the PPS for packet processing. After that, the traffic
is delivered to the NSHP again so that NSH can be reinserted.
The NSHP also waits for requests to retrieve or update the
context header (which has a fixed-length [6]). For the Packet
Processing Subsystem, five frameworks (i.e., Click Modular
Router, C, Python 3, Java, and JavaScript) are integrated and
natively provided for the network operators.

The Management Agent was developed using the Bottle7 li-
brary and executes all the basic lifecycle operations: [16] start,
stop, turn off, monitor, and configure. In particular, for moni-
toring, we implemented three basic operations: ´´list´´, shows
all management and monitoring queries available ; ´´check´´,
checks VNFCs heartbeats with NetCat8; and ´´request´´, pro-
vide the communication between the network operators and
the VNFCs Extend Agents. We highlight that these operations
can be accessed both by network operators and operational
blocks/modules of the NFV architecture (i.e., EMS and VNF
Manager).

B. Interconnection between modules

Before the platform is executed, the NFV Orchestrator or
a user must provide a configuration file containing the net-
work function and the routines to initialize the modules. The
platform receives the corresponding descriptor and configures
its internal connections in order to allow the execution of the
function.

The (VNS-VNIC) connections can be set up with an L2
socket tool. The (ITF-VNS), (ITF-NSHP), and (ITF-PPS)
connections are implemented using inter-process shared mem-
ory. The race conditions caused by shared memory write
operations is treated using mutexes. The (NSHP-PPS) consists
of a REST interface that allows the execution of NSH Context
Header operations. All connections related to the management
plane (i.e., (MA-PPS), (MA-EA), (PPSF-EA), (MA-NSHP),
(MA-ITF), (MA-VNS), and (MA-MV)) are also created using
REST interfaces.

Except for inter-VNFC communication, all network packets
arriving at the NIC are directly captured by the Virtual Net-
work Subsystem, which forwards those packets to the Internal
Traffic Forwarder via shared memory. If NSH processing
is being used, the packets are first delivered to the NSH
Processor before being processed by the Packet Processing
Subsystem. Otherwise, the NSHP module is bypassed and
packets are directly delivered to the proper NF/VNFC.

VI. EVALUATION

To evaluate the COVEN platform prototype, a case study
is presented. The platform was executed on an Intel Core
i7-4790K@3.60Ghz server with 8GB RAM DDR4 running
Debian 8. The platform was configured to use L2 Sockets as
the virtual network tool and NFs can be developed using C,
CMR, Java, and Python3 frameworks. All the experiments
were repeated 30 times, considering a confidence level of
95%.

7https://github.com/bottlepy/bottle
8http://netcat.sourceforge.net

The proposed architecture enables the composition of het-
erogeneous VNFCs into a single VNF. We argue that VNF
creators may benefit from choosing multiple VNF devel-
opment tools to fulfill specific requirements for each com-
ponent. For example, sophisticated components (e.g., ana-
lyzing the payload of ciphered packets) cannot be created
using the default elements of CMR, thus requiring more
sophisticated programming languages. Furthermore, allowing
multiple frameworks to cooperate within a VNF platform also
improves the flexibility and reusability of VNFCs, which can
be dynamically composed into customized VNFs offered by
modern NFV Marketplaces (e.g., FENDE [17]).

The case study, shown in Figure 2, consists of the creation
of an L7 Firewall employing VNFC and NSH. The ultimate
goal of this network function is to block Skype traffic by using
the fingerprint-based approach [18]. The detection process
consists of (i) port detection (80 and 443), (ii) payload pattern
inspection (first 72 bytes), and (iii) the identification of similar
data in different positions of the payload.

Fig. 2. L7 Firewall Case Study

Two separate components were created: a packet analyzer
and a packet filter. The packet analyzer was developed us-
ing the Scapy9 Python3 library, while the packet filter was
implemented using C, CMR, Java, and Python3. The packet
analyzer receives network traffic and searches for Skype fin-
gerprints. All packets coming from ports 80/443 and present-
ing Skype patterns in the payload receive a mark in the NSH
context header and are then forwarded, while the remaining
packets are forwarded without any marking (in-band control).
The second component (i.e., the packet filter) checks the
context header and discards all the packets that are considered
to possibly be Skype traffic. These components were chained
to create the L7 Firewall, but they are independent and can
be executed alone or be incorporated as part of other complex
network functions.

In the case study, we evaluated the RTT between the client
and the server by using a combination of VNFCs running
within a VNF: the packet analyzer component plus the packet
filter component. Figure 3 presents the results. It is possible
to conclude that for this case study the combination Python-
Python presents the worst results, while the combination
Python-C presents the best. The combinations Python-CMR
and Python-Java present results that are close to each and
neither as bad nor as good as the others.

9https://scapy.net

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Python + C Python + Click Python + Java Python + Python

R
T

T
 (

m
s
)

VNFC Composition (Analyzer + Filter)

Fig. 3. L7 Firewall RTT

These results can be explained by the fact that Python
is interpreted on runtime; Java is bytecode precompiled;
CMR involves the translation from a high-level specification
language to C++; and C is a low-level and compiled language.
It is important to notice, however, that although components
implemented in C leverage its optimized packet processing,
the development of more sophisticated components can benefit
from higher-level languages and libraries available for other
frameworks (e.g., Python3 Scapy and Java Pcap4J), even with
lower performance. Similar conclusions can be observed in
other development scenarios, for example, when embedding
assembly code in higher-level programming languages (e.g.,
C, C++), or when using the Java Native Interface (JNI)
framework.

VII. CONCLUSION

Network Function Virtualization (NFV) has been proposed
as a novel network paradigm that migrates the physical net-
work functions (i.e., physical appliances) to a software plane
by using virtualization techniques, such as virtual machines
and containers. However, despite the recent works and stan-
dardization in the field, many research opportunities are still
open. Among these opportunities there are several related to
VNF platforms. VNF platforms provide resources and support
the execution of virtual NFs. Even though VNF platforms
perform an important role in the NFV paradigm, there is no
de facto architecture that specifies their internal operational
modules. Furthermore, some important NFV features, such as
NSH and VNFC, are not covered by current platforms (e.g.,
ClickOS, Click-on-OSv, OpenNetVM, and SampleVNF).

In this work we proposed a comprehensive architecture
for VNF Platforms. We identified and described the basic
operational modules, as well as their interconnections. This
architecture ultimately leads to the creation of extensible
solutions to support interoperable NFV technology. In addi-
tion, we presented a prototype, called the COVEN platform,
that implements the proposed architecture. Finally, we have
deployed a evaluation scenario that uses the NSH and VNFC

technologies to execute an L7 firewall. We observed that
creating NFs by using individual components implemented in
different languages brings benefits regarding performance and
development flexibility. This approach enables, for example,
the VNF developer to choose the best mix of languages for
his/her specific needs.

Future work includes extending and improving the COVEN
platform. Perhaps the first task is to reimplement the prototype
using a low-level and high-performance language, the C lan-
guage is currently the best option. Other improvements include
reimplementing all the data plane connections using shared
memory in order to reduce the internal delay introduced by
the use of L3 sockets. We also plan to allow COVEN to fully
support VNFCs, including new features and functionalities
such as for example VNFC bottleneck detection and allowing
the dynamic composition of NFs. Finally, we hope to get a
broader group of users that will provide new case studies to
further evaluate the proposed architecture in realistic settings.

REFERENCES

[1] E. T. S. I. NFV, “Network functions virtualisation – an introduction,
benefits, enablers, challenges & call for action,” 2012.

[2] V. Garcia, L. Marcuzzo, G. Souza, L. Bondan, J. Nobre, A. Schaeffer-
Filho, C. dos Santos, L. Granville, and E. Duarte, “An nsh-enabled
architecture for virtualized network function platforms,” in Conf. on
Advanced Information Networking and Applications, 2019.

[3] L. Marcuzzo, V. Garcia, V. Cunha, D. Corujo, J. Barraca, R. Aguiar,
A. Schaeffer-Filho, L. Granville, and C. dos Santos, “Click-on-osv: A
platform for running click-based middleboxes,” in Symp. on Integrated
Network and Service Management, 2017.

[4] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Conf. on Networked Systems Design and Implementation, 2014.

[5] E. T. S. I. ISG, “Network functions virtualisation (nfv): Virtualisation
requirements,” 2013.

[6] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header (NSH)
- RFC 8300,” 2018.

[7] E. T. S. I. GS, “Network functions virtualisation (nfv); architectural
framework,” 2014.

[8] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. Ramakrishnan, and T. Wood, “Opennetvm: A platform for high
performance network service chains,” in Work. on Hot Topics in
Middleboxes and Network Function Virtualization, 2016.

[9] E. T. S. I. GS, “Network function virtualisation (nfv): Terminology for
main concepts in nfv,” 2014.

[10] J. Halpern and C. Pignataro, “Service Function Chaining (SFC) Archi-
tecture - RFC 7665,” 2015.

[11] E. T. S. I. G. SWA, “Virtual network functions architecture,” 2014.
[12] L. Rizzo, “netmap: A novel framework for fast packet i/o,” in Annual

Technical Conference, 2012.
[13] S. Han, K. Jang, K. Park, and S. Moon, “Massively-parallel packet pro-

cessing with gpus to accelerate software routers,” Symp. on Networked
Systems Design and Implementation, 2010.

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” Trans. on Computer Systems, vol. 18, no. 3, 2000.

[15] E. IFA, “Vnf descriptor and packaging specification,” 2018.
[16] L. Bondan, C. Santos, and L. Granville, “Management requirements for

clickos-based network function virtualization,” in Conf. on Network and
Service Management, 2014.

[17] L. Bondan, M. Franco, L. Marcuzzo, G. Venancio, R. Santos,
R. Pfitscher, E. Scheid, B. Stiller, F. De Turck, E. Duarte, A. Schaeffer-
Filho, C. Santos, and L. Granville, “Fende: Marketplace-based distribu-
tion, execution, and life cycle management of vnfs,” Communications
Magazine, vol. 57, no. 1, 2019.

[18] S. Ehlert, S. Petgang, T. Magedanz, and D. Sisalem, “Analysis and
signature of skype voip session traffic,” in Conf. on Communications,
2006.

