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Abstract. Novel wireless networking technologies such as massive
Internet-of-Things and 5G-and-beyond cellular networks are becoming
increasingly denser. The SINR model can improve the performance of
dense wireless networks by taking into consideration the effects of inter-
ference to allow multiple simultaneous transmissions in the same cover-
age area. However, transmission scheduling under the SINR model is an
NP-hard problem. This work presents a bioinspired solution based on
a genetic heuristic. The Genetic-based Transmission Scheduler (GeTS)
produces efficient transmission schedules, increasing the number of simul-
taneous transmissions (i.e., spatial reuse). Simulation results are pre-
sented, including a convergence test and a comparison with the optimal
algorithm and another heuristic.

1 Introduction

There is a noticeable trend in networking technologies towards high-density.
Examples include cellular networks [3] and massive Internet-of-Things [8]. As a
wireless channel is a shared medium, interference among multiple transmissions
must be taken into consideration to allow the multiple devices to communicate
efficiently. One of the most common ways to deal with interference is to define
a schedule for the transmissions, separating transmitting devices in space or
time [19]. Scheduling has also to take into consideration other characteristics of
the communication channel, such as the fact that the power of the transmitted
signal decreases with the distance. Efficient transmission schedules are essential
to guarantee the latency and throughput requirements of ultra-dense wireless
networks.

The SINR (Signal-to-Interference-and-Noise-Ratio) model has been used to
represent the effect of cumulative interference on signal reception in wireless net-
works [9]. In the SINR model, it is necessary to schedule transmissions into slots.
This model allows spatial reuse: multiple simultaneous transmissions by devices
in the same coverage area can be scheduled to the same time slot. Those trans-
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missions do interfere with one another but are possible as long as the power level
of an interfering signal transmitted from one source is low enough not to pre-
vent the proper reception of signals transmitted from the other sources. Spatial
reuse improves the efficiency of ultra-dense networks, as the amount of simulta-
neous transmissions increases, and each device waits less time to communicate.
Thus, the objective is to obtain the minimum schedule that allows all devices to
communicate.

The SINR scheduling problem has been proven to be NP-hard [6]. For this
reason, much of the work in this area explores approximation algorithms [1,2,
9,15]. Although those algorithms are important from the theoretical point of
view, they have little application in practice [18]. The fact that there is still a
need for practical and efficient scheduling algorithms for SINR wireless networks
has been the main motivation for us to propose a novel strategy to solve the
problem.

This work presents a bioinspired solution to the problem of scheduling in
wireless networks under the SINR model, which is called the Genetic-based
Transmission Scheduler (GeTS). The proposed strategy consists of a schedul-
ing algorithm for dense wireless networks that is based on the TDMA access
mechanism (Time Division Multiple Access). The strategy is based on the so-
called “down-to-earth heuristic” designed to improve spatial reuse: each device
only communicates with its closest device [5]. GeTS employs a population of
individuals – each representing a candidate schedule to solve the problem – that
evolves over generations. To do so, we designed crossover and mutation mecha-
nisms that allow the efficient exploration and exploitation of the search space.
The objective is to find the schedules of minimum size, i.e., with the minimum
number time of slots possible. Besides presenting a convergence test to show the
feasibility of the proposed algorithm, we evaluated the ability of GeTS to achieve
near-optimal schedules for different numbers of devices, including comparisons
with two other alternative algorithms.

The remainder of this work is organized as follows. Section 2 gives a brief
overview of the SINR model and the SINR scheduling problem. Section 3 intro-
duces GeTS, the Genetic-based Transmission Scheduler. Section 4 shows the
results of two experiments conducted to evaluate GeTS. Finally, conclusions
are presented in Sect. 5.

2 The SINR Model and Scheduling

The SINR (Signal-to-Interference-plus-Noise Ratio) model, also known as the
physical interference model or physical model, is a wireless network model that
considers the effects of cumulative interference on signal reception and the effects
of path loss on the transmitted signal power. This model has been shown empir-
ically [13,20] to provide a good approximation of real wireless communication
environments.

The SINR model employs the signal-to-noise interference ratio metric to
determine the quality of wireless communication links. This metric defines a
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criterion to determine whether a given transmission can take place. Equation 1
shows how the so-called SINR threshold γ is employed to determine whether
a signal sent by a device i can be correctly received by a device j. The SINR
threshold is computed based on three properties of wireless communications. The
first is path loss, a property related to signal propagation according to which the
power level of the transmitted signal PTi fades as it travels through free space.
We assume that the devices are on the Euclidean plane and that the power of
the transmitted signal decreases according to the inverse of the distance between
the transmitter i and the receiver j, represented by d(i, j) raised to an exponent
that represents path loss, α. This particular signal propagation model has been
called by some authors the geometric SINR model [7,11].

PT i

d(i,j)α

N0 +
∑τ

k=1
k �=i

PT k

d(kj)α

≥ γ (1)

The two other properties refer to noise and interference between signals. Noise
corresponds to spurious signals that cannot be avoided and are usually present
in any communication. Antennas and even the receiving circuit can be sources
of noise. Noise interferes with the transmissions. The SINR model represents all
noise from different sources as a single constant N0 called background noise.

Interference occurs when multiple transmissions take place simultaneously in
the same area. Each device receives a composition of signals. Typically, a receiver
is only responsible for decoding a single signal, which is the one with the highest
power level, so that all others are considered interfering signals [12].

The so-called Down-to-Earth heuristic [5] was designed to improve spatial
reuse: each device i only makes a transmission to the closest device j. Next, we
describe how a device determines the power level of its transmissions. Consider
that i is the only device making a transmission. In this case, the minimum power
level PTi, required by device i to communicate successfully with j is shown as
Eq. 2 below.

PT i

d(i,j)α

N0
= γ ∴ PTi = γ + ·N0 · d(i, j)α (2)

However, in order to allow simultaneous transmissions, the transmission
power level must be set so that the SINR condition at each receiver is above
the minimum limit. We call this extra power the spare SINR level, γspare. Thus
the transmission power PTi adopted by device i is such that the resulting SINR
at the receiver j is γ + γspare, as shown in Eq. 3.

PT i

d(i,j)α

N0
= γ + γspare ∴ PTi = (γ + γspare) · N0 · d(i, j)α (3)

The spare power makes spatial reuse possible, under certain conditions. The
amount of interference power PΦ supported by the receiver j, when considering
the reception of the signal transmitted by the device i, is given by the following
equation, where PRj is the power level at the receiver j, given by PT i

d(i,j)α :
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PΦ ≤ PRj

γ
− N0 (4)

A wireless channel is a shared communication medium that requires a pro-
tocol to allow multiple devices to communicate with each other. TDMA (Time
Division Multiple Access) is a widely adopted strategy that schedules devices
to transmit at specific time intervals, called time slots. The SINR model allows
spatial reuse, i.e., multiple transmissions can be scheduled to the same slot,
thus improving the performance of the system as a whole. Figure 1 illustrates an
example of an SINR schedule with spatial reuse.

Fig. 1. An SINR scheduling example.

The most common approach to the SINR problem is to schedule links, not
devices [15]. A link corresponds to a transmission from a source to a destination
device. Thus, link � = (i, j) represents a transmission, where i is the source and
j is the destination. The length of the link is defined as the Euclidean distance
d(i, j) between the sender and the receiver. A scheduling algorithm assigns links
to time slots, establishing an order for all the transmissions. The greater the
number of simultaneous links in a given time slot, the greater the spatial reuse.

In the next section, we present a bioinspired strategy as a feasible solution
to the Multi-Slot Scheduling Problem (MSSP), i.e., the objective is to obtain a
schedule with the minimum number of time slots. Another bioinspired approach
has also been proposed recently [18], but in that work, the authors propose a
genetic algorithm to solve the One-Slot Scheduling Problem (OSSP), with the
objective of maximizing the number of transmissions on a time slot.

3 The Proposed Bioinspired Scheduling Strategy

In this section, we present GeTS1 – the Genetic Transmission Scheduler, a genetic
solution for the STDMA (TDMA model that allows spatial reuse [17]) schedul-
ing problem. Genetic algorithms are stochastic heuristics based on Darwinian
principles [10]. Those algorithms have been successfully used to solve a variety
of problems in networking, such as resource allocation [14], fault diagnosis [4,16],

1 Available at https://github.com/ViniGarcia/GeTS.

https://github.com/ViniGarcia/GeTS
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among many others. Genetic heuristics are well known to achieve optimal global
solutions in acceptable computation time.

In our context, the genetic algorithm is used to find an SINR schedule, in
which every link is assigned to a time slot. The source device has the opportunity
to make a transmission in that time slot. The schedule has to assign a slot to each
of the links. After the last time slot, the schedule is executed again and this goes
on indefinitely. The main objective is to find a schedule with the smallest possible
number of time slots. To reduce the size, it is necessary to maximize global spatial
reuse, i.e. assign as many links as possible to communicate simultaneously. In
other words: minimizing the schedule size implies maximizing spatial reuse across
all time slots. Note that reducing schedule size has advantages not only in terms
of raising the efficiency of the network as a whole but also in reducing the time
it takes for a device to communicate.

A major goal of GeTS is to provide a configurable solution, in the sense
that the user can tune a set of parameters that affect scheduling. Parameters
are either related to the SINR model or to the genetic algorithm itself. The
parameters related to the SINR model are path loss, background noise, inter-
ference limit, and maximum time slot size. In order to improve the chance that
multiple simultaneous transmissions can be scheduled for the same time slots
thus improving spatial reuse, the strategy employs the down-to-earth heuristics:
each device only communicates with its closest device. Thus the positions of
links in the Euclidean plane are known. The transmission power level is individ-
ually adjusted by each device according to the distance to the closest device, as
described in Sect. 2. Every device is assumed to be able to detect the start of
each time slot.

Genetic algorithms evaluate generations of individuals, each individual repre-
senting a possible solution to the problem at hand. Each individual is represented
by a chromosome that carries information about the solution to the problem.
The chromosome consists of multiple genes carrying alleles that represent solu-
tions to specific parts of the problem. The set of individuals executing a genetic
algorithm is called its population. In the case of GeTS, each individual car-
ries a valid schedule. The chromosome corresponds to a schedule, i.e. a vector
of time slots, each particular time slot (i.e., a sub-vector) is a gene, and each
device is scheduled into a time slot (gene) is an allele. Figure 2 illustrates the
representation of the problem modeled with GeTS.

A genetic algorithm starts with an initial population, that must be generated
beforehand, consisting of a predefined number of valid individuals (called the
population size). A valid individual is a candidate for solving the problem. In
the proposed solution, an initial population of schedules of the maximum size
(number of links) is generated with unique and random genes, each of which
corresponds to a time slot. Next, each gene is tested to check if all its assigned
devices (alleles) can perform simultaneous transmissions. If that is the case, the
gene is validated and becomes part of the chromosome of a given individual. If
not, one of the devices is removed from the time slot and the validity of the
corresponding gene is checked again. As mentioned above, in the worst case (no
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Fig. 2. GeTS: problem representation.

spatial reuse) a chromosome has the number of genes equal to the number of
links in the network.

Genetic algorithms promote evolution by crossing and mutating individuals.
Individuals present in a given generation are used to create new individuals for
the next generation. A crossover between individuals occurs according to a given
rate, which is the probability of two or more selected individuals producing new
individuals for the next generation. The proposed solution uses a binary crossover
mechanism in which two new individuals are always created from two individuals
that already exist. The crossover strategy consists of mixing half of the genes of
each individual, thus generating two new individuals: each with half of the alleles
of the parents. As a given device (allele) cannot appear twice in the genes of an
individual, occasionally it is necessary to replace some alleles of the resulting
genes in the new chromosomes.

The selection of an individual for the crossover process is based on a binary
tournament. Binary tournaments receive as input two individuals randomly
selected from the current generation, the best of which is selected. The selection
is based on an objective function: GeTS chooses the individual with the chro-
mosome with the smallest number of genes. GeTS requires the execution of two
binary tournaments to determine the pair of individuals to crossover.

Mutations are also employed by genetic algorithms to promote the evolu-
tion of the population in the following generations. In this process, some genes
of specific individuals’ chromosomes are modified according to some particular
strategy. Mutations also occur according to a particular rate, similar to crossover.
GeTS adopts the following mutation strategy: two genes are randomly chosen,
merged, and checked to be valid, i.e. whether the devices (alleles) can make
transmissions in the same time slot. If the mutation is valid, the resulting indi-
vidual has a smaller chromosome – one gene less than the original one. If the
mutation is invalid, it is discarded, and the original individual is returned intact.

As the proposed model relies both on external optimization (by rearranging
chromosomes during crossover) and internal optimization (by integrating alle-
les during mutation), the crossover and mutation rates are typically high. This
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behavior is not usual in most genetic algorithms, which typically have a high
crossover rate and a low mutation rate. However, the problem at hand – SINR
scheduling – has properties that do require these particular rates to guarantee
the proper exploration and exploitation of the search space. Thus, the optimiza-
tion can both converge to local optima and approximate the global optimum.

Finally, the proposed genetic heuristic can be classified as elitist: only the top
10% of individuals are kept from one generation to the next. This process allows
for safe explorations since it guarantees that the individuals of a generation with
the best fitness are not lost in the next one.

4 Experimental Evaluation

This section describes the experiments executed to evaluate GeTS. The first
experiment consists of a convergence test of the genetic algorithm. The second
experiment evaluates the algorithm’s ability to approximate the optimal (i.e.,
minimum size) schedule.

The first experiment is the convergence test, which was executed to check the
feasibility of the proposed genetic algorithm by determining whether it can evolve
and eventually converge to a result after a certain number of generations (even if
it is to a local optimum). For that convergence test, there is no predefined limit
to the number of generations the genetic algorithm can create. To determine
convergence, the following criterion was defined. In the convergence test, GeTS
was employed to produce schedules for a highly dense network of 50 devices
randomly placed on a 50 m × 50 m area. The SINR parameters were set as
follows (for all experiments): the path loss was set α = 4; the SINR threshold
γ = 20 decibels, while γspare = 50 decibels and the background noise N0 =
−90 dBm. The genetic algorithm was configured to operate with a population
of 30 individuals, a maximum slot size of 15, and a crossover and mutation
rate of 0.7. The algorithm stops evolving after it reaches a generation for which
the mean of the objective function (scheduling size) is the same as that of the
previous 100 generations.

The results are shown in Fig. 3, where each dot indicates the average size of
schedules created in a given generation, and the error bars indicate the size of the
worst (largest) and best (smallest) schedules of that generation. As can be seen
in the graph, the first set of 100 generations produced schedules with an average
size of 28.93 time slots, after further evolution with the application of crossover
and mutation they reached an average size of 13.33 time slots in generation
number 3400. By generation 3500 the algorithm had converged according to our
criteria. The size variation of schedules produced across generations reflects the
exploration of the search space by genetic heuristics. These results confirm that
GeTS represents a feasible solution to the SINR scheduling problem.
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Fig. 3. Convergence test.

The next experiment was executed to evaluate the performance of the GeTS
algorithm, in particular, its ability to produce schedules with sizes close to or
equal to the optimum. For this reason, we compared GeTS with an optimal
algorithm. Both algorithms were applied to find schedules for links determined
by the down-to-earth heuristics, described in Sect. 2. The optimal algorithm is
exhaustive: after checking all possible combinations to find the minimum sized
schedule.

Figure 4 shows how close to the optimum GeTS gets, as well as the heuristic
algorithm presented in [5]. That algorithm also computes the list of sets called δ
that contains sets of devices that can transmit simultaneously in the same time
slot. The algorithm models the problem as a graph Gδ = (V,E) in which the
vertices are the δ sets, and there is an edge in E between every two vertices
representing δ sets that have a device in common. Each device only needs to
be in a single δ set (time slot). The final schedule is obtained by obtaining a
Maximal Independent Set on G, which is done employing the efficient algorithm
by Tsukiyama and others [21].

The scheduling strategies were compared for systems with 5 and 10 devices.
The optimal algorithm could not be executed in a feasible time for larger system
sizes. On the other hand, GeTS was executed for up to 50 devices in a few
seconds. Areas of five different sizes were considered from 50m × 50 m to 200m
× 200 m. Simulations were repeated 1,000 times, each for a different random
distribution of the devices across the area. Figure 4 shows that GeTS surpasses
the other heuristic algorithm and gets very close to the optimum, regardless of
the number of devices considered, producing 90% or greater than that percentage
of optimal schedules in all scenarios.

It is also possible to conclude from Fig. 4 that the percentage of optimal
schedules decreases as the number of devices increases. To further investigate
this fact, Fig. 5 shows the percentage of schedules with no spatial reuse. In other
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Fig. 4. Comparison with another heuristics: scenarios with 5 and 10 devices.

Fig. 5. Percentage of schedules with no spatial reuse.

words, the figure shows the percentage of schedules for which no pair of devices
could be found to transmit simultaneously. In those cases, the schedule size is
equal to the number of devices, since each device is assigned to transmit in a
single time slot. From Fig. 5 it is also possible to conclude that the amount of
spatial reuse potentially increases as the number of devices grows.

5 Conclusion

This work presented GeTS, a genetic solution to the scheduling problem in wire-
less networks under the SINR model. GeTS produces schedules for links gener-
ated by the so-called Down-to-Earth heuristics. The algorithm demanded high
crossover and mutation rates and was evaluated in terms of the convergence and
ability to produce good solutions to the problem. Simulations were executed
for different scenarios, including comparisons with the optimal algorithm and
another heuristic alternative. Results show that GeTS gets very close to the
optimum and always surpasses the other heuristic.
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