
Building Multi-domain Service Function Chains
Based on Multiple NFV Orchestrators

Alexandre Huff∗†, Giovanni Venâncio†, Vinı́cius Fulber Garcia† and Elias P. Duarte Jr.†
∗Federal Technological University of Paraná, UTFPR, Toledo, Brazil

†Federal University of Paraná, UFPR, Curitiba, Brazil

Email: alexandrehuff@utfpr.edu.br, {ahuff, gvsouza, vfgarcia, elias}@inf.ufpr.br

Abstract—Service Function Chains (SFCs) are compositions of
Virtual Network Functions (VNFs) designed to provide complex
network services. In this work, we propose a strategy to build an
SFC across multiple domains and multiple clouds using multiple
NFV platforms, which we call a Multi-SFC. To the best of our
knowledge, this is the first solution to allow an SFC to be built
across multiple different orchestrators – although there are other
solutions for multiple domains and clouds. The basic building
block of the proposed strategy is the SFC segment, in which
all VNFs are connected within a single cloud/domain/platform.
A pair of different segments is interconnected through a VNF
tunnel that consists of a pair of VNFs, each interfacing one
of the connected segments. A tunnel can be implemented with
different technologies such as a VPN or VXLAN. The main
advantage of the Multi-SFC strategy is that it is a holistic
approach that allows operators to deploy SFCs on multiple
clouds/domains/platforms without having to deal with a myriad
of minute details required to configure and interconnect the
different underlying technologies. A prototype was implemented
as a proof of concept and experimental results are presented.

Index Terms—NFV, SFC, Multi-domain, Multi-SFC

I. INTRODUCTION

Network Function Virtualization (NFV) allows the imple-

mentation in software of network services which traditionally

run on hardware middleboxes. A Virtualized Network Func-

tion (VNF) is executed on commercial off-the-shelf hardware,

improving the flexibility and decreasing costs [1], [2]. The

European Telecommunication Standards Institute (ETSI) has

proposed the NFV-MANO standard architecture for NFV

Management and Orchestration [3]. NFV-MANO specifies

the functionalities required for VNF provisioning and related

operations.

One of the main goals of NFV-MANO is to specify

standard ways to coordinate the composition of VNFs to form

Service Function Chains (SFCs) that provide complex network

services. An SFC consists of a composition of VNFs on a

topology through which traffic is steered in a predefined order

[4], [5]. Usually, a flow identifier is employed to steer traffic

from a function to next along the SFC – this contrasts with

conventional routing in which all decisions are taken based

on the destination IP address.

Current systems usually allow the instantiation and orches-

tration of all VNFs of an SFC composition to be done on

a single NFV platform [6]–[11]. Although in some cases

This work was partially supported by CAPES Finance Code 001 and CNPq
grant 311451/2016-0.

multiple instances of the same orchestrator are permitted, to

the best of our knowledge no system allows multiple different

orchestrators to be used. As multiple different platforms have

become available [2], [12] it is just natural to allow an SFC

to be built on several clouds/platforms. The need to compose

SFCs using VNFs running on multiple domains also arises

when network services are composed of VNFs that natively

run on specific domains. Another reason is to allow VNFs to

access resources available at specific domains.

In this work, we propose a strategy that allows the execution

of an SFC across multiple clouds of multiple administrative

domains orchestrated by multiple NFV platforms. We call

this strategy Multi-SFC. In practice, SFC composition using

different NFV platforms requires specific, detailed knowledge

of the NFV orchestrators, becoming a very complex task

to the network operators. This is the case even for NFV

platforms such as Tacker [6], Open Source MANO (OSM)

[7], and Open Baton [13] all of which implement the stan-

dard NFV-MANO NFV Orchestrator (NFVO). In addition,

the global configuration of an SFC running across different

administrative domains (i.e. steering traffic through all seg-

ments of each cloud/domain/platform) involves coordination

efforts from network operators of all domains. Although the

ETSI has discussed strategies for the communication of NFV

orchestrators on different administrative domains [14], the

problem is still far from solved, as one has to deal with

specific features and different NFVO data models.

The Multi-SFC architecture proposed in this work relies on

a holistic approach and defines a framework which provides

high-level abstractions for the management and composition

of Multi-SFCs. The configuration of the NFV infrastruc-

ture is taken to a higher level of abstraction by leveraging

traffic steering over multiple clouds/domains/platforms. The

basic building block of the proposed strategy is the SFC

segment, in which all VNFs are connected within a single

cloud/domain/platform. A pair of different segments is inter-

connected through a VNF tunnel. Tunnels can be based on

different technologies, such as VPN (Virtual Private Network)

or VXLAN (Virtual eXtensible LAN) which are instantiated

as VNFs at the incoming and outgoing points of the SFC

segments being connected. Overall, the main advantage of

this holistic approach is that it abstracts the myriad of low-

level minute configurations required to compose and manage

SFC lifecycle over multiple clouds/domains/platforms. Thus,

2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)

978-1-7281-8159-2/20/$31.00 c©2020 IEEE 19

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on May 18,2021 at 23:27:10 UTC from IEEE Xplore. Restrictions apply.

the user with the permissions to set up a virtual network in

each domain can execute a Multi-SFC without the manual

intervention of network operators.

A proof-of-concept prototype was implemented based on

two NFV platforms (Tacker and Open Source MANO) along

with two different versions of OpenStack on two different

administrative domains. Experiments are presented that were

executed to evaluate the Multi-SFC strategy in terms of in-

teroperability and overhead. Results allow the conclusion that

the Multi-SFC strategy is an effective solution, which to best

of our knowledge is the first NFV-MANO-compliant strategy

to build SFCs across multiple clouds, multiple domains, and
multiple different NFV orchestrators.

The rest of this paper is organized as follows. Section II

presents related work. The Multi-SFC architecture is described

in Section III. The prototype and experiments are in Section

IV. Section V concludes the paper and presents future work.

II. RELATED WORK

Francescon et al. proposed the X-MANO framework [15]

which enables the orchestration of network services across

multiple domains. X-MANO only allows the composition of

previously created network services through specific NFVO

interfaces at each domain. X-MANO also requires manual

configuration and instantiation of inter-domain links.

A mechanism for the automated establishment of dynamic

Virtual Private Networks (VPN) in the NFV context has been

recently proposed [16]. The purpose is to provide encryption

and security to connect the functions of an SFC.

The TeNOR NFV orchestrator [17] allows management

and control of the network services on distributed virtualized

infrastructures. TeNOR automates SFC configuration and in-

stantiation. Although a mapping-based solution is provided to

instantiate an SFC over multiple Points of Presence (PoPs),

TeNOR does not allow to create SFCs across multiple differ-

ent NFV orchestrators.

OPNFV (Open Platform for NFV) [18] from the Linux

Foundation aims at simplifying the development and deploy-

ment of NFV components. OPNFV enables the interoperabil-

ity of NFV solutions of different developers, but does not

allow SFCs across multiple NFV orchestrators.

Blue Planet MDSO (Multi-Domain Service Orchestration)

[8] is a framework for composing and managing network

services over multiple domains and NFV infrastructures. De-

spite of simplifying SFC configuration and instantiation, this

framework requires the usage of its own NFV orchestrator.

Cloudify [9] is a project that allows the integration of

virtual and physical network functions and provides an NFVO

and a generic VNF Manager (VNFM) to orchestrate several

clouds. The system employs pre-configured virtual routers

to interconnect different clouds through tunnels. Although

Cloudify orchestrates several clouds, it does not allow SFCs

to be constructed on multiple different NFV orchestrators.

pSmart [19] allows SFCs on multiple domains to provide

cost-effective resource utilization. pSMART aims at reducing

privacy and security risks, and employs a learning based

Multi-SFC Orchestration

 Segment 1 Segment 2

VNF VNF VNF VNF VNF VNF

 Segment N

VNF VNF VNF

SFC Traffic Flow

Multi-SFC
Orchestrator

Domain 1 Domain 2 Domain N

...

VNF Tunnel

Fig. 1. Multi-SFC: Segmentation.

decision process for SFC mapping. Another related work in-

vestigates strategies to deploy SFC across multiple datacenters

[20] which takes into consideration not only cost, but also the

usage of backup functions to improve SFC reliability.

The 5G Exchange (5GEx) project [21] was defined to coor-

dinate the allocation and efficient usage of compute, storage,

and networking resources to deploy services in 5G networks.

The 5GEx project relies on SDN and NFV techonologies for

provisioning services over multiple-technologies and spanning

across multiple 5G operators. 5GEx relies on a single NFV

orchestrator. Finally, in [22] the authors propose a framework

for the orchestration of 5G network services across multiple

domains. The objective is to optimize both resource utilization

and revenue, while matching service requirements.

III. THE MULTI-SFC

In this section we describe the Multi-SFC solution for

the composition and management of SFCs distributed across

multiple clouds, domains, and NFV platforms. We assume that

a domain is formed by a collection of systems and networks

operated by a single organization or administrative authority

[3]. One or more clouds are hosted at each domain; each cloud

runs an NFV platform which corresponds to a set of systems

running the NFV-MANO stack.

The basic building block of a Multi-SFC is the seg-
ment, which consists of VNFs running on a single

cloud/domain/platform as shown in Fig. 1. A pair of different

segments is interconnected through a VNF tunnel. Tunnels can

be based for instance on VPN or VXLAN technologies, and

are instantiated as VNFs at the incoming and outgoing points

of the SFC segments being connected. After a segment is

instantiated on a specific domain, it is connected to segments

running on the other domains.

The Multi-SFC Orchestrator shown in Fig. 1 is respon-

sible for managing the Multi-SFC lifecycle, which consists

of the composition, instantiation, execution and destruction

of a Multi-SFC on multiple domains/clouds/platforms. The

Multi-SFC Orchestrator provides a high-level and generic

API (Application Programming Interface) to allow Multi-SFC

composition and management. By using this interface the user

specifies the SFC as sequence of VNFs, and maps on which

cloud/domain each VNF is to be instantiated by the Multi-SFC
Orchestrator.

Fig. 2 shows the architecture of a Multi-SFC with two

segments split on a pair of domains. The Multi-SFC Or-

20

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on May 18,2021 at 23:27:10 UTC from IEEE Xplore. Restrictions apply.

VNF 1 VNF 2 VNF 3 VNF 6 VNF 7 VNF 8

Multi-SFC
Orchestrator

EM EM

Source Destination

SFC Traffic Flow Multi-SFC Orchestration

NFVO NFVO

Domain 2Domain 1

VIM VIM

VNF 4

TUN

VNF 5

TUN

Fig. 2. A Multi-SFC split on a pair of domains.

NFV Orchestrator

VNF
Catalog

NFV
Instances

NS
Catalog

NFVI
Resources

VNF Manager

Virtualized Infrastructure Manager

Client Applications

Multi-SFC Core

NFVO
Drivers

GUI CLI

VIM
Drivers

NFV-MANO

VNF
Instances

VNF
Packages

Domain
Catalog

VNF
Catalog

Multi-SFC

Multi-SFC Instances

SFC Instance 1

SFC Instance 2

SFC Instance N

...

SFC Segment 1

Classifier Domain

SFC Segment 2

Classifier Domain

SFC Segment N

Classifier Domain

...

Fig. 3. The Multi-SFC Orchestrator architecture.

chestrator does all the configuration required to steer traffic

across these segments. Tunnels implemented as VNFs are

employed to connect Multi-SFC segments across multiple

domains becoming part of the SFC composition. This strategy

allows transparent inter-domain communication, with a VNF

implementing a tunnel attached to the end of a segment and

to the beginning of the next. According to the IETF SFC

architecture [4] these tunnels correspond to Service Function

Forwarders (SFFs). In this context the Multi-SFC introduces

the support for the orchestration of multi-domain SFFs.

Fig. 3 shows the Multi-SFC Orchestrator architecture which

is proposed as a generic and extensible solution aligned to the

definitions of the NFV-MANO architecture. The NFV-MANO

is also shown in the figure, illustrating its interaction with the

Multi-SFC Orchestrator modules. The proposed architecture

allows the integration of multiple NFV platforms and several

client applications.

The Multi-SFC Core is the main module of the Multi-SFC
Orchestrator. This module is in charge of coordinating SFC

composition on multiple NFV orchestrators, managing the

Multi-SFC tunnels, as well as validating requests executed by

client applications. A centralized and generic communication

API is provided by the Multi-SFC Core presenting a REST

interface for SFC composition and management. The Multi-
SFC Core leverages the VNF Tunnel Element Management

(EM) to allow tunnel configuration. The main operations

of the API provided by the Multi-SFC Core to the Client
Applications to compose a Multi-SFC are described next.

GET /msfc/uuid: generates and retrieves a unique iden-

tifier (uuid) in order to compose a new Multi-SFC (msfc). The

unique identifier is employed by several operations to identify

the different segments that form a Multi-SFC.

GET /catalog/domains: retrieves information of all

domains stored in the Domain Catalog. Information regarding

all NVFO and VIM platforms as well as all VNF tunnel

technologies available on that domain is returned by this

operation. This operation is employed by client applications

for instance, to check whether two different domains match

in terms of tunnel technologies available, and internally by

the SFC-Core to gather information about endpoints and

authentication methods available on each NFV platform.

GET /catalog/vnfs/<dom-id>/<plat-id>: lists

all VNF packages stored in the Domain Catalog repository

belonging to a specific domain <dom-id>. Since multiple

NFV platforms are allowed, only compatible VNF packages

(<plat-id>) are returned by this operation.

POST /msfc/sfp/compose: operation for the compo-

sition of a segment, which chains its VNFs. This operation

receives as input the domain, segment, and the VNF Package

ID stored in the VNF Catalog. A single VNF is chained

per call of the operation, the input network interface of this

VNF is configured to be the previous VNF already in the

chain. Unless there are several alternatives, the output network

interface is configured automatically, otherwise the user is

given a set of choices. Note that this approach allows chaining

VNFs that act as branches allowing traffic to be sent on

different Service Function Paths (SFPs).

POST /msfc/source: after the chain has been com-

posed, the next task is to configure the incoming traffic. The

input of this operation indicates whether the traffic source of

the first segment of the Multi-SFC is internal or external. In

case of internal traffic, the Multi-SFC Core allows the user

to chose as traffic source either a running VNF or a VNF

Package stored in the VNF Catalog. In case of external traffic,

the network including the router are configured to allow the

incoming traffic to be received.

GET /msfc/acl/<sfc-id>: returns all classifier poli-

cies of the NFV platform of the first Multi-SFC segment. A

classifier policy is defined as an Access Control List (acl)

that specifies attributes of the incoming traffic, such as source

and destination addresses, ports, protocols, flow labels, etc.

POST /msfc/acl: receives as input the policies speci-

fied by the user for the incoming traffic and configures the

corresponding SFC classifiers of the NFV platforms being

used along the Multi-SFC. Classifier policies of the next seg-

ments are mapped and configured taking into consideration the

configuration of the first segment classifier and the different

NFV platforms being used.

GET /tunnel/em: returns the Element Management

(EM) of the VNF tunnels. The EM is used to configure

the tunnel. After it is instantiated, a VNF tunnel gets the

corresponding EM to configure itself.

POST /msfc/start: this operation instantiates all seg-

ments of a Multi-SFC descriptor on their corresponding

NFV domains and orchestrators. The Multi-SFC identifier is

received as argument. The operation triggers the required op-

21

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on May 18,2021 at 23:27:10 UTC from IEEE Xplore. Restrictions apply.

erations to instantiate and configure the Multi-SFC, including

sending VNF Packages and SFC descriptors to the corre-

sponding NFV platforms, instantiating VNFs and Multi-SFC

segments, configuring tunnels, configuring segment routing,

and configuring security policies on each NFV platform. This

operation can only be executed to effectively instantiate and

configure the whole Multi-SFC after the previous operations

have successfully created all the corresponding network ser-

vice descriptors.

The description of the Multi-SFC Core API above is non-

exhaustive. Other operations include VNF Package manage-

ment, VNF Descriptor management as well as operations

to instantiate, access, and destroy VNFs on the multiple

clouds/domains/platforms.

In addition to the Multi-SFC Core, Fig. 3 also shows both

NFVO Drivers and VIM Drivers. NFVO drivers are respon-

sible for the abstraction of and communication with different

NFV orchestrators that can be employed by the Multi-SFC
Core. Generic operations of the Multi-SFC Core are translated

by the NFVO Drivers to the specific operations and features

of their corresponding NFV orchestrators. Each driver imple-

ments a set of functionalities that allow the composition and

orchestration of SFCs, ranging from the management of VNFs

and SFC descriptors to their instantiation and destruction.

The main operations that a NFVO Driver must include

are those for the instantiation, monitoring and destruction

of VNFs and SFCs and those to manage the Service Func-

tion Path (SFP), such as a compose_sfp operation that

connects VNFs along a Service Function Path of a par-

ticular Multi-SFC segment using information available at

the corresponding VNF Packages. Other operations include:

get_sfc_traffic_src retrieves VNFs eligible to be

configured as traffic source of the first Multi-SFC segment.

configure_traffic_src_policy configures the SFC

classifier to encapsulate and forward the incoming traffic

which can be internal or external. This operation selects in the

cloud infrastructure the most appropriate network interfaces

both for internal (VNFs/VNF packages) and external (virtual

routers) traffic. Finally, there are also operations to manage

classifier policies. get_available_policies returns a

list of policies and constraints which can be applied on a

given SFC segment classifier given the corresponding NFV

platform. configure_policies configures the SFC clas-

sifier by defining constraints for the input traffic of each

SFC segment. This operation is in charge of setting up all

the Multi-SFC user policies related to the incoming traffic.

get_configured_policies: returns the list of policies

configured by the Multi-SFC classifier. The Multi-SFC Core
leverages this operation to configure all classifiers of the

Multi-SFC segments, all VNF tunnels, and firewalls rules on

the VIM network nodes.

The VIM Drivers module is responsible for the transparent

configuration of multi-domain and multi-platform interoper-

ability. Each VIM Driver is employed to configure networks,

manage inter-domain routing rules, and maintain the required

security policies for each corresponding Multi-SFC segment.

For each VIM, the correspondent VIM Driver must be avail-

able on the Multi-SFC Orchestrator.

The VNF Catalog also in Fig. 3 is used to manage meta-

data of VNF Packages which are stored in the Multi-SFC Core
repository. The Domain Catalog provides meta-data required

for inter-domain communication, such as end-points, NFV

orchestrator types, VIMs, as well as authentication data. The

VNF Instances keeps track of the different VNF instances

running on the multiple NFV platforms. Finally, the Multi-
SFC Instances stores and maps information related to each

SFC instance. Each stored instance keeps information about

its Multi-SFC segments and their VNFs, information about

remote SFC segment classifiers as well as information about

the domains and platforms hosting the segments. This allows

for instance, to identify which particular SFC segment is

running on a specific NFV platform, and also allows to release

all cloud resources when destroying a service chain.

IV. IMPLEMENTATION & EXPERIMENTS

A Multi-SFC prototype was implemented as proof of con-

cept1. The implementation leverages several NFV enablers,

in particular: OpenStack [23], Tacker [6], and OSM [7]. In

the SFC context, the Multi-SFC itself can be regarded as

an SFC enabler, since it abstracts and supports the composi-

tion and lifecycle management of distributed SFC segments.

The OpenStack is employed as the NFV-MANO VIM while

Tacker and OSM are the NFVOs. The Multi-SFC prototype

was implemented in Python. The Multi-SFC Core API exports

a REST interface which was implemented using the Python

Flask library. Both NFVO Drivers were implemented using

the Python Requests library to communicate with their corre-

sponding NFVO northbound interfaces. We also implemented

a VIM Driver for the OpenStack platform using the Python

Requests library. Both orchestrators (Tacker and OSM) em-

ploy OpenStack to manage the lifecycle of VNFs and SFCs.

While the NFVO Driver API abstracts the instantiation,

query, and destruction of the Multi-SFC segments distributed

on different domains and NFV orchestrators, the VIM Driver
API abstracts the configuration required to interconnect those

Multi-SFC segments across different domains. An EM was

implemented to manage tunnel configuration and to enable

traffic steering across Multi-SFC segments. We used the

Python Flask library to implement the EM and to provide

a REST API for the IP tunnel lifecycle management. This

lifecycle management is performed by the Multi-SFC Core.

Each Multi-SFC tunnel is established on the specific endpoints

of the segments after all VNFs have been instantiated. IPSec,

VXLAN and GRE were employed to configure and instantiate

the VPN tunnels. The VIM Driver is used to configure routes

and the security restrictions on the incoming traffic for each

segment. Finally, Multi-SFC composition and classifier policy

configurations were set up through a REST client application.

Multi-SFC composition is based on the holistic workflow [24].

1The source code is available at https://github.com/alexandre-huff/multi-sfc

22

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on May 18,2021 at 23:27:10 UTC from IEEE Xplore. Restrictions apply.

Firewall

HTTP DPI

HTTPS DPI

Billing Load
Balancer

Domain 1 Domain 2

Client

|--------- SFC Segment 1 ---------|

|-------- SFC Segment 2 --------|

vServer 1

vServer 2

APP

APPTUN TUN

VNF

SFC Traffic Flow
Non-SFC Traffic

Fig. 4. Multi-SFC evaluation scenario.

Experiments were executed on two physical machines and

other three virtual machines (VMs) running on a KVM

virtualization system. Each of the two machines run a different

OpenStack version, representing two different domains. One

of these machines is based on an Intel(R) Core(TM) i7-

6700HQ @ 2.6 GHz CPU with 4 cores; 6144K of L3 cache;

12 GiB of RAM; Ubuntu 18.04. The other machine is an

Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz with 4 cores;

8192K of L3 cache; 8 GiB RAM; Ubuntu 18.04. The three

VMs run on another machine based on the AMD Opteron(tm)

Processor 6136 @ 2.4 GHz with 24 cores; 96 GiB of RAM;

Ubuntu 20.04. Two different NFV orchestrators were used:

Tacker and OSM each running on a separate VM. A third VM

with the same configuration was employed as the OpenStack

controller for OSM, while the Tacker VM runs both the

Openstack controller and the NVFO. All VMs were set up

with 8 vCPUs, 8 GiB of RAM, and Ubuntu 18.04. Each

of the VNFs in this experiment runs Ubuntu Cloud 18.04

virtual machines with 1 vCPU and 256 MiB of RAM. Physical

machines were interconnected on a Gigabit Ethernet network.

Fig. 4 shows the scenario used to evaluate the TCP goodput

and latency of a Multi-SFC. We used iPerf3 to generate traffic

from the client to the servers on another domain and to

measure the corresponding TCP goodput. ICMP (ping) was

used to measure the latency. We implemented the Firewall
VNF with iptables to filter and mark packets and iproute
to forward marked packets to different network interfaces

(branches). Both DPI VNFs implement packet forwarding.

The VNF tunnels were implemented with IPSec, VXLAN,

and GRE. The Billing VNF was also implemented as a packet

forwarder. The Load Balancer VNF was implemented with

iptables and distributes the traffic to the servers based on a

hash, which is computed from the source IP address. Thus,

all connections of the same client are delivered to the same

server in the pool. Actually, this is an iPerf3 requirement to

measure the TCP goodput. iPerf3 requires the establishment

of at least two connections between the client and the server.

Thus, all traffic of the experiment has to be sent to the same

server even though there are other servers in the pool.

Initially we measured the TCP goodput between the Client
and the TUN VNF in Domain 1, as well as between the

TUN VNF and one vServer in Domain 2. This is a baseline

measurement executed before the SFC was created. We ran

this experiment for 30 times of 60 seconds each. The goodput

was close to 37 Gbps in Domain 1 and 26 Gbps in Domain

Baseline Link VXLAN GRE IPSec
Multi-SFC

0

200

400

600

800

G
oo

dp
ut

 (M
bp

s)

Fig. 5. Inter-domain TCP goodput using different VNF tunnels.

2. Since the Client, vServer, and both TUN VNFs ran on

identical virtual machines, the difference of the TCP goodput

between both domains is related to the difference of the CPUs

of the physical machines.

Next, we created the two SFC segments and measured

the impact of the TCP goodput on each independently. Note

that traffic was not forwarded from one domain to the other

domain in this experiment. The measured TCP goodput for

Segment 1 was on average 16.679 Gbps, while for Segment
2 it was 9.648 Gbps. The reduction of the goodput is due

to fact that additional VNFs have been instantiated on each

segment compute node. The SFC traffic is forwarded to and

is processed by each VNF. Traffic classifiers for each segment

also impose an overhead. Furthermore, the OpenStack virtual

switch uses veth pairs (virtual Ethernet devices that connect

through the kernel). These devices are known to present poor

performance [25] but are used by OpenStack.

We also executed an experiment to evaluate the impact of

the TCP goodput running a complete Multi-SFC consisting

of the two segments shown in Fig. 4. This experiment pro-

vided end-to-end measurements, traffic was steered through

all VNFs and between the two domains. As Segment 1 has a

branch, traffic is steered to one of the DPI functions. IPSec,

VXLAN, and GRE VNF tunnels were employed to implement

the tunnels. Fig. 5 shows the average for 30 executions of 60

seconds each with 99% confidence intervals. Before we set up

the Multi-SFC we measured as a baseline the TCP goodput

between the Client and one of the vServers without using

VNFs, SFCs and the IP tunnel. The average baseline goodput

was 932.1 Mbps. This results from the fact that the two VMs

running the Client and the vServer are connected on a Gigabit

Ethernet. When we executed the same measurement from the

OpenStack compute nodes we got roughly the same results.

We then executed an experiment for a complete Multi-SFC

using the VXLAN VNF tunnel. This experiment reached on

average a goodput of 779.3 Mbps, as shown in Fig. 5. This

result was expected, since the VXLAN tunnel has an overhead

(packet header sizes alone are increased by 50 bytes each).

We also evaluated the TCP goodput for a complete Multi-SFC

running a GRE VNF tunnel. GRE encapsulation adds at least

24 extra bytes per packet. The Multi-SFC using GRE tunnel

reached on average of 774.5 Mbps. We can conclude that GRE

and VXLAN tunnels had roughly the same performance.

23

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on May 18,2021 at 23:27:10 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30 35 40 45 50 55
ICMP Sequence

0

1

2

3

4

La
te

nc
y

(m
s)

Baseline Link VXLAN GRE IPSec

Fig. 6. Latency measured using different VNF tunnels.

Next we measured the TCP goodput for the IPSec VNF

tunnel, which resulted on average in 586.9 Mpbs. In this case

the lower TCP goodput is mainly due to the fact that IPSec

VNFs make calls to system libraries to perform encryption

(which is computationally expensive). This and all the tasks

related to traffic encapsulation raised the qemu-system CPU

utilization close to 100%. We also note that a single vCPU was

allocated to the IPSec VNFs; the hardware of each compute

node in which experiments were run was also a factor, as the

4 physical CPU cores are shared between the corresponding

VNFs and the OpenStack compute node processes. We also

note that one of the physical machines has more CPU cores

but lower performance for I/O tasks (including networking).

We also executed an experiment to measure the latency.

This experiment evaluated the latency of a complete Multi-

SFC by steering the traffic through all VNFs on the two

domains using IPSec, VXLAN and GRE VNF tunnels. Results

are shown in Fig. 6. Samples were obtained one per second

during 60 seconds, each experiment was repeated 30 times.

As a baseline, we measured the latency from the Client to

a vServer bypassing all VNFs and the IP tunnel, getting on

average 0.859 ms with very small variation. The latency for

the complete Multi-SFC using either VXLAN or GRE VNF

tunnels reached on average 4.1 ms, whereas using the IPSec

VNF tunnel the average of the latency reached 4.23 ms –

as IPSec encrypts packets the higher latency was expected.

Overall, the increase of the latency is caused by messages

passing through all the Multi-SFC VNFs, classifiers, and

tunnels (all running on OpenStack).

V. CONCLUSION

In this work we proposed the Multi-SFC architecture for

the composition of SFCs on multiple clouds of multiple ad-

ministrative domains orchestrated by multiple NFV platforms.

The Multi-SFC architecture is compliant with the ETSI NFV-

MANO standard. The Multi-SFC connects segments each on

a specific cloud/domain/platform using tunnels, which are

implemented as VNFs. A proof-of-concept prototype was

implemented, experimental results show that the Multi-SFC

presents low latency and sustains a satisfactory goodput.

Future work includes the design of strategies to allow effi-

cient resource allocation and Multi-SFC placement, elasticity

and migration. The use of NSH for steering traffic between

multiple administrative domains should also be investigated.

The interconnection of multiple domains using federations is

also a promising future work.

REFERENCES

[1] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang, “A comprehensive
survey of network function virtualization,” Computer Networks, vol.
133, pp. 212–262, 2018.

[2] N. F. S. de Sousa, D. A. L. Perez, R. V. Rosa, M. A. Santos, and
C. E. Rothenberg, “Network service orchestration: A survey,” Computer
Communications, vol. 142-143, pp. 69–94, 2019.

[3] J. Quittek, P. Bauskar, T. BenMeriem, A. Bennett, M. Besson, and et
al, “Network functions virtualisation (NFV); management and orches-
tration. GS NFV-MAN 001 v1.1.1,” ETSI, Tech. Rep., 2014.

[4] J. Halpern and C. Pignataro, “Service function chaining (SFC) archi-
tecture,” IETF, RFC 7665, October 2015.

[5] V. F. Garcia, E. P. Duarte, A. Huff, and C. R. dos Santos, “Network
service topology: Formalization, taxonomy and the custom specification
model,” Computer Networks, vol. 178, p. 107337, 2020.

[6] Tacker, “Tacker - openstack NFV orchestration,” 2020. [Online].
Available: https://wiki.openstack.org/wiki/Tacker

[7] ETSI, “Open source MANO,” 2020. [Online]. Available:
https://osm.etsi.org/

[8] Ciena, “Blue planet multi-domain service orchestration (MDSO),”
2020. [Online]. Available: https://www.blueplanet.com/products/multi-
domain-service-orchestration.html

[9] Cloudify, “Network orchestration & edge networking,” 2020. [Online].
Available: https://cloudify.co/

[10] B. Sonkoly, J. Czentye, R. Szabo et al., “Multi-domain service orches-
tration over networks and clouds: a unified approach,” ACM SIGCOMM
Comp. Comm. Review, vol. 45, no. 4, pp. 377–378, 2015.

[11] ONAP, “Open network automation platform,” 2020. [Online]. Available:
https://www.onap.org/

[12] M. Ghaznavi, N. Shahriar, S. Kamali, R. Ahmed, and R. Boutaba,
“Distributed service function chaining,” IEEE Journal on Selected Areas
in Communications, vol. 35, no. 11, 2017.

[13] F. Fokus and B. Tu, “Open Baton,” 2020. [Online]. Available:
http://openbaton.github.io/

[14] X. Haitao and A. Mann, “NFV: Report on architecture options to
support multiple administrative domains. GR NFV-IFA 028 v3.1.1,”
ETSI, Tech. Rep., Jan. 2018.

[15] A. Francescon, G. Baggio et al., “X-MANO: An open-source platform
for cross–domain management and orchestration,” in 2017 IEEE Con-
ference on Network Softwarization (NetSoft), Bologna, Italy, Jul. 2017.

[16] H. Gunleifsen, T. Kemmerich, and V. Gkioulos, “Dynamic setup of
ipsec vpns in service function chaining,” Computer Networks, vol. 160,
pp. 77 – 91, 2019.

[17] J. F. Riera, J. Batallé, J. Bonnet, M. Dı́as, M. McGrath et al., “Tenor:
Steps towards an orchestration platform for multi-PoP NFV deploy-
ment,” in NetSoft Conf. and Workshops (NetSoft), 2016, pp. 243–250.

[18] Linux Foundation, “OPNFV,” 2020. [Online]. Available:
https://www.opnfv.org/

[19] K. D. Joshi and K. Kataoka, “psmart: A lightweight, privacy-aware ser-
vice function chain orchestration in multi-domain nfv/sdn,” Computer
Networks, vol. 178, p. 107295, 2020.

[20] X. Zhong et al., “Cost-aware service function chaining with reliabil-
ity guarantees in nfv-enabled inter-dc network,” in IFIP/IEEE Symp.
Integrated Network and Service Management (IM), 2019, pp. 304–311.

[21] A. Sgambelluri, F. Tusa et al., “Orchestration of network services across
multiple operators: The 5G exchange prototype,” in European Conf.
Networks and Communications (EuCNC), 2017, pp. 1–5.

[22] R. Guerzoni, D. Perez-Caparros et al., “Multi-domain orchestration
and management of software defined infrastructures: A bottom-up
approach,” in European Conf. Netw. and Comm. (EuCNC), Jun. 2016.

[23] OpenStack, “OpenStack - open source software for creating private and
public clouds,” 2020. [Online]. Available: https://www.openstack.org/

[24] A. Huff, G. Venancio et al., “A holistic approach to define service chains
using Click-on-OSv on different NFV platforms,” in IEEE Global
Communications Conference (GLOBECOM), Dec. 2018.

[25] A. Panda, S. Han et al., “Netbricks: Taking the V out of NFV,” in 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2016, pp. 203–216.

24

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on May 18,2021 at 23:27:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

