
Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2020

© The British Computer Society 2020. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com

doi: 10.1093/comjnl/bxaa074

UISA: Decoupling the Frequency
Model From the Context Model in

Prediction-Based Compression

Vinicius Fulber-Garcia1,* and Sérgio Luis Sardi Mergen2

1Laboratory of Networks and Distributed Systems, Department of Informatics, Federal University
of Paraná, Curitiba, Paraná, Brazil

2Department of Languages and Computer Systems, Federal University of Santa Maria,
Santa Maria, Rio Grande do Sul, Brazil

∗Corresponding author: vfgarcia@inf.ufpr.br

Prediction-based compression methods, like prediction by partial matching, achieve a remarkable
compression ratio, especially for texts written in natural language. However, they are not efficient
in terms of speed. Part of the problem concerns the usage of dynamic entropy encoding, which
is considerably slower than the static alternatives. In this paper, we propose a prediction-based
compression method that decouples the context model from the frequency model. The separation
allows static entropy encoding to be used without a significant overhead in the meta-data embedded
in the compressed data. The result is a reasonably efficient algorithm that is particularly suited for
small textual files, as the experiments show. We also show it is relatively easy to built strategies
designed to handle specific cases, like the compression of files whose symbols are only locally

frequent.

Keywords: data compression; lossless compression; prediction by partial matching; prediction tree;
LUISA; compression methodology

Received 17 May 2019; Revised 21 March 2020; Editorial Decision 19 May 2020; Accepted 19 May 2020
Handling editor: Natasha Alechina

1. INTRODUCTION

Prediction by partial matching (PPM) is a compression method
that encodes the probability of a symbol appearing after a
context (a sequence of preceding symbols) [5]. This method
achieves overwhelming compression ratios for texts written in
natural language, where exact contexts appear frequently, and
acceptable ratios for other file formats. The pitfall is execution
time. The cost of compression/decompression is a prohibitive
factor. Also, the overall process is highly sensitive to the
frequency of the symbols. If a symbol is very frequent in a
context, it is greatly compressed. Compression is harmed if a
symbol starts to appear less often.

Those problems are (at least partially) related to the fact
that the frequency model is highly coupled with the context
model. To encode a symbol, the method finds the probability of
the symbol occurring in the current context. Then, an entropy
encoding method (usually arithmetic encoding) is applied in
order to achieve compression. This scheme demands the usage

of dynamic entropy encoding, which is considerably slower
than the static alternative. The reason is that it would be too
expensive in terms of space to use a static method where
frequencies need to be known for every known context.

In this paper, we propose LUISA, a compression method
based on PPM that decouples the context model and the fre-
quency model. Instead of finding the probability of a symbol
in its context, the method finds a key that uniquely identifies
a symbol in its context. On a later (and separate) stage, the
key is compressed using any form of entropy encoding. This
scheme allows several techniques to be used, which would be
cumbersome to implement if the frequency model was built
as part of the context model. For instance, LUISA enables
straightforward implementations that do not necessarily rely
on symbols frequencies and the application of static arithmetic
encoding. Experimental results show how the techniques can be
combined in order to achieve fast compression/decompression
associated with compelling compression ratios. We also show

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/doi/10.1093/com
jnl/bxaa074/5868170 by U

niversity of N
ew

 England user on 11 July 2020

2 V. Garcia and S. Mergen

how the method can be tuned to enhance compression when
symbols are only locally frequent.

This paper is organized as follows: Section 2 briefly explains
how compression is achieved with PPM. Variations of PPM
are also discussed. Section 3 presents the proposed method
and how it differs from PPM. We also discuss alternative
strategies that arise for the problem of generating unique keys.
In Section 4, we present the experimental results, where alter-
native strategies are combined into different versions that trade
compression ratio and execution time. Comparisons against
PPM and other state-of-the-art methods are provided as well.
Section 5 brings our final remarks.

2. PREDICTION BY PARTIAL MATCHING IN A
NUTSHELL

PPM is a prediction-based method that transforms symbols
from a finite alphabet A into a coded output. The prediction
process is streamed, so that incoming symbols are encoded
one at a time. Firstly, the method locates the symbol to encode
within a context model. The model states which symbols have
already appeared for contexts of varying lengths. Contexts are
represented as Markov models of orders ranging from zero to
a previously defined maximum (n).

Once the symbol is found, a prediction is obtained. The
prediction is a probability interval that uniquely identifies the
symbol to be encoded. Then, dynamic arithmetic coding is
used to combine the probability intervals of the incoming
symbols into an increasingly lower probability interval, which
eventually is transformed into a bit sequence. Larger inter-
vals (reserved to the most probable symbols) lead to smaller
sequences and greater compression.

The probability of a symbol in a context is built based on
its frequency, i.e. how many times the symbol has occurred in
that context. The ‘Null Probability’ problem occurs when an
incoming symbol has not yet been seen in a context. In those
cases, the interval probability of the escape symbol is issued.
The escape symbol is not part of the alphabet. Its sole purpose
is to notify the compression method that the symbol to encode
does not exist in the current context of length i, and the search
must continue in the order i−1. A special order (-1) contains all
symbols of the alphabet. In the worst-case scenario, a sequence
of escape symbols is issued until order -1 is reached, where the
symbol to predict definitely exists.

To understand, consider the example illustrated in Table 1.
Assume a small alphabet A composed by the symbols {‘A’,
‘B’, ‘C’, ‘D’, ‘E’}. Also, assume the maximum order is two
(n = 2), and that the current context is ‘DE’. The example
shows lists of symbols that have already appeared in contexts
of lengths 2 (‘DE’), 1 (‘E’), 0 (”) and -1, where all symbols
exist. Frequencies are in parenthesis. For instance, symbol
‘A’ has already appeared three times after context ‘E’. The
escape symbol intrinsically appears in all lists but the last one.

TABLE 1. Context information used by PPM.

Order Context Symbols

2 ‘DE’ E(2)
1 ‘E’ A(3) E(2) C(1)
0 ” A(5) E(4) B(4) C(4)
-1 - A(1) B(1) C(1) D(1) E(1)

The frequency of the escape can be determined in different
ways. One of the earlier solutions, called PPM-C, computes the
frequency as the number of times the escape was issued [21].

Suppose the next symbol to encode is ‘E’, as in the third
character of ‘DEED’. In this case, a single probability interval
is issued, identifying the symbol ‘E’ in order 2. If, however,
the next symbol to encode was ‘C’ (as in the third character of
‘DECADE’), two probability intervals are issued, identifying
the escape symbol at order 2 and the symbol ‘C’ in order
1. After the coding, the model is updated by increasing the
frequency of the symbol. If a symbol is new in an order, its
initial frequency is set (usually the initial value is one). The
most frequent symbols are assigned with the larger probability
intervals. Hence, the occurrence of frequent symbols results in
smaller codes.

Over the years, many PPM-based methods were proposed.
In general, the main concern was on improving the prediction
to enhance the compression of conventional textual files. This
was achieved by several means, such as adjusting the escape
probability estimation [25], cleaning irrelevant contexts [9] and
allowing unbounded context lengths [27]. One of the most com-
pelling alternatives (PPMII) achieves good compression with
several tweaks, which includes setting the initial frequency
of a symbol using information inherent from a lower-order
context [26]. Despite the achievements, very little was done
about PPM’s most severe weakness: execution time.

One of the costlier operations is arithmetic coding [22].
Existing dynamic arithmetic encoding implementations are
slow [17]. On the other hand, it is practically unfeasible to
use static coding for orders higher than one, giving the space
overhead required to store the frequencies for all contexts (the
frequencies need to be packed along with the compressed data
to enable loss-less decompression).

Another side effect of using frequencies in PPM style is that
recency is not properly handled. Symbols that are only locally
frequent have low counts, resulting in low compression. The
problem can be alleviated by using a scale factor to increment
the frequencies. However, it is at best a workaround that does
not address the root problem: using the global frequencies to
issue predictions.

The most recent developments are quite old. The efforts are
focused on the usage of PPM for the compression of specific
file formats, such as log files [28], JPEG [32] and XML [29]. In
those particular scenarios, and given some assumptions about

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/doi/10.1093/com
jnl/bxaa074/5868170 by U

niversity of N
ew

 England user on 11 July 2020

LUISA: Prediction-Based Compression 3

FIGURE 1. LUISA’s architecture: the context model and the fre-
quency model are detached.

the data, efficiency and recency are handled. However, these
are still open challenges when it comes to the compression of
text files in general.

Although the PPM core implementation has not modified
in recent years, their application in different areas has been
extensively explored. For example, in [24], [16], [18], [8] and
[23], the PPM method is used as part of solutions for genome
and amino acid compression, while authors in [2] used it for
data transmission over networks.

Finally, the PPM prediction model can be adopted for
highly abstracted tasks, such as anticipating Web page accesses
according to the users’ browsing history [14] and automated
language identification and discrimination between similar
languages [20]. There is a myriad of other uses, such as the ones
presented in [31], [1], [30] and [11]. These recent applications
show that the PPM is a state-of-the-art compression method
that is still open for improvements and adjustments to particular
scenarios.

3. LUISA

LUISA1 shares the same core processing as PPM, which
involves (i) using the context model to locate the symbol to
encode, (ii) using the frequency model to locate the probability
interval that uniquely identifies the symbol to the encoded, (iii)
encoding that interval and (iv) updating the context model. The
main difference is that LUISA detaches the frequency model
from the context model.

Figure 1 shows how LUISA transforms input symbols into
a compressed output. Two independent stages are defined. We
call them ‘Search & Update’ and ‘Entropy Encoding’. The first
searches the symbol to encode and updates the model. Before
updating the model, it emits a key that uniquely identifies the
input symbol. In the second stage, the key is encoded using any
entropy encoding method. The role of the ‘Search and Update’

1 Available at https://github.com/ViniGarcia/LUISA.

stage is to reduce the entropy of the original message, so the
later stage can actually achieve compression.

Note that the concept of producing an intermediary message
with a highly skewed frequency distribution is also the base
of block-sorting compression, where the ‘Move to Front’ stage
generates long runs of small-valued codes [13].

Additionally, symbol rank refers to a family of methods that
keep the symbols within a context ranked by their likelihood
to appear and encode the rank. One of the latest developments
(whose implementation is available) is sr2/sr3 [19]. They are
improvements over srank, a method that keeps only two orders
(order-3 and order-0), where the highest order stores the three
most recent symbols [12].

In general, symbol rank methods propose specific solutions
to either the problem of keeping contexts information man-
ageable (such as srank/sr2/sr3) or the problem of efficiently
encoding the rank (e.g. by using quasi-arithmetic coding [15]).

We, on the other hand, focus our work on completely decou-
pling the probability estimator from the context model. By
keeping these components in separate layers, we can easily
switch between alternative strategies to generate keys, update
the model (rank the symbols) and compress the keys. Also,
no strong constraints are imposed on the context model or the
entropy encoder. It enables one to try different settings over
a full context model (up to a maximum defined order) and
to possibly conceive new strategies to work with files whose
symbol distribution is somehow biased.

In what follows, we present some of the techniques that
can be used. These techniques are reversible so that the com-
pression is lossless. We also discuss alternative context model
implementations that support the required search and update
operations.

3.1. Key generation

The ‘Search & Update’ stage is ultimately responsible for
producing a key that identifies a symbol. The key is an index
that uniquely locates the symbol in the current context. As
with PPM, the search starts in the highest possible order. If the
symbol is not found, the search proceeds to the next order. The
process continues until the symbol is found.

Part of the problem involves coding symbols that have not
been seen yet in higher orders. As noted in Section 2, this is
called the zero/null probability problem, which PPM handles
by using an escape code. In LUISA, the never-seen symbols
are handled by an abstraction that we call ‘Impossible Key’.
The Impossible Key is an index that does not refer to any of the
symbols that exist in the current order. Its presence means the
search must proceed to the inferior orders.

To understand, consider the same example used in the past
section. Figure 2 brings an updated view of the symbols in each
context. The indexes above the lists mark both the absolute
position of the symbols in the context and the relative position
of the symbols, ignoring all symbols that already appeared

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/doi/10.1093/com
jnl/bxaa074/5868170 by U

niversity of N
ew

 England user on 11 July 2020

https://github.com/ViniGarcia/LUISA

4 V. Garcia and S. Mergen

FIGURE 2. Context information used by LUISA.

in superior orders. The values below the lists mark the key
attached to each symbol by using the techniques of ‘With
Exclusion’ and ‘Without Exclusion’ (discussed next).

Given that the current order is the highest order in which
the symbol to encode appears, we devise two strategies for the
unique key generation:

Without Exclusion. The unique key is the count of all sym-
bols that appear in the superior orders and the absolute
index of the desired symbol in the current order. This single
key uniquely locates both the order and the position of the
symbol within the order.

With Exclusion. The unique key is the relative index of
the desired symbol in the current order. It resembles the
‘Exclusion’ technique used in PPM, which computes the
probabilities in a context considering only the symbols that
have not appeared in the higher orders [6].

Table 2 shows the keys produced for every symbol of the
alphabet by the ‘Without Exclusion’ and the ‘With Exclusion’
techniques. When using exclusions, every symbol is accounted
only once, so the maximum possible key is |A|-1. When no
symbol is excluded, the same symbol may be accounted mul-
tiple times. In the worst (and very unlikely) case scenario,

TABLE 2. Exclusion table.

Symbol ‘With Exclusion’ Key ‘Without Exclusion’ Key

E 0 0
A 1 1
C 2 3
B 3 6
D 4 11

where most symbols occur in all orders, the maximum key is
proportional to (|A| − 1) × n.

Keys produced with the ‘Exclusion’ technique tend to
concentrate more in few indexes, leading to messages with
lower entropy. The counterpart is the computational cost.
Algorithms 1 and 2 show pseudo-codes for decoding a symbol
based on the key. As we can see, ‘Without Exclusion’
implementation is rather straightforward. On the other hand,
‘With Exclusion’ needs more work to count only unseen
symbols.

Algorithm 1 Decoding without exclusion
decode(key)

1: for i = n to 0 do
2: if length(orderi) <key then
3: return get(orderi, key);
4: end if
5: key ← key - length(orderi);
6: end for

Algorithm 2 Decoding with exclusion
decode(key)

1: for i ← 0 to |A|-1 do
2: seen[symbol(i)] = false;
3: end for
4: key2 ← −1;
5: for i ← n to 0 do
6: for j ← 0 to length(orderi) do
7: symbol ← get(orderi, j);
8: if seen[symbol] = false then
9: seen[symbol] ←true;
10: key2++;
11: if key2 = key then
12: return symbol;
13: end if
14: end if
15: end for
16: end for

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/doi/10.1093/com
jnl/bxaa074/5868170 by U

niversity of N
ew

 England user on 11 July 2020

LUISA: Prediction-Based Compression 5

These two algorithms serve merely to (conceptually) state
the basic differences between the approaches. There is a lot
of room for optimization. For instance, the ‘With Exclusion’
strategy can be adjusted to reduce the computation cost by
starting to count from the order immediately above the order in
which the symbol was actually found. The ‘Without Exclusion’
strategy can be adjusted to reduce the range of possible keys by
comparing the lengths of two orders, and ignoring all symbols
of the lower order if the lengths are the same, as no new
information is presented.

3.2. Context update

Whenever a symbol is encoded, its occurrence is used to
update the context model. The idea is to continuously enhance
the model used to predict the forthcoming symbols. In PPM,
updating the context means increasing the frequency of the
symbol in the orders where it exists. This technique assumes
that the most frequent symbols in a context are most likely
to appear again. The classical example is the compression of
files written in natural language. However, it is not suited if
symbols are only locally frequent. Examples include archives
that combine several files into one, where patterns change
drastically from one file to the next. In those cases, a symbol
that is very frequent within a file may cease appearing in the
next one. Another example is files composed of ordered words,
such as dictionaries. A symbol stops appearing as soon as the
next symbol in the lexicographic order starts appearing.

There are other problems associated with the management
of frequencies. For instance, the memory overhead for storing
the values and the need to periodically re-scale the frequencies
to prevent overflows [21].

In contrast, the update method adopted by LUISA is not
necessarily bounded to frequencies. What really matters is to
order the symbols in a context by their estimated probability
of occurrence. The symbol deemed most likely to occur again
appears at index zero, and it is followed by the second symbol
most likely to appear, and so on.

If the symbols to encode are found in the front of their
corresponding lists, the entropy encoding stage will receive few
keys with high frequencies, which leads to better compression.
Therefore, it is important to devise techniques that promote the
most probable symbols to the front of their corresponding lists.

The promotion can be based merely on frequency, as with
PPM and other adaptive compressors [4]. However, techniques
that do not rely on frequencies can be easily conceived. To
explain, consider the task of updating the symbol ‘C’ that has
just appeared in the context ‘DE’. In what follows, we discuss
three alternatives to carry the update (illustrated in Fig. 3).

• Frequency Swap: The symbol is moved by comparing its
frequency with the ones from their front neighbors. In the
given example, the symbol ‘C’ would jump two positions
ahead, and symbols ‘E’ and ‘B’ would be pushed back by
one position.

FIGURE 3. Strategies to update the absolute position of the symbols.

• Transpose Swap: No frequency is used. Instead, the sym-
bol is moved one position ahead. In the given example, the
symbol ‘C’ would be swapped with the symbol ‘B’.

• Move to Front Swap: No frequency is used. Instead, the
symbol is moved to the head of the list (as in BWT). In
the given example, the symbol ‘C’ would jump to the first
position, and symbols ‘A’, ‘E’ and ‘B’ would be pushed
back one position.

Regarding the compression ratio, ‘Frequency’ is preferable
if the symbols are globally frequent, which is the general case.
If symbols are only locally frequent (such as in dictionaries),
the ‘Move to Front’ swap is potentially better. ‘Transpose’
is a strategy that can be placed between these two extremes.
Frequent symbols will continuously exchange positions at the
front part of the list. When compared to the strategy that relies
on frequencies, ‘old’ symbols that are currently much more
frequent than the rest will leave the front sooner.

‘Transpose’ requires a single swap and no comparisons are
ever made. This branch-less design favors the instructions pipe-
lining used by super-scalar processors. ‘Move to front’ also re-
quires no comparisons. If carefully implemented, updating the
position is cheap (just a matter of updating pointers of a linked
list). The number of comparisons and swaps of ‘Frequency’ is
variable. For long enough files, if symbols are globally freq-
uent, most symbols will hardly need to swap more than once.

One optimization proposed for PPM is called ‘Update Exclu-
sion’ [21]. When used, only the order where the symbol was
found is updated. Inferior orders remain untouched. This mode
reduces the update cost. Besides, experiments show that com-
pression is generally improved. The same optimization is used
inside LUISA.

The presented alternatives are not an exhaustive list of pos-
sibilities, neither are they new. All three were originally con-
ceived as heuristics to self-organized sequential searches [3].
Our intention here is to demonstrate that it is straightforward to
come up with strategies tailored at specific ends. We expand
this discussion in the experimental section, where different
update implementations are compared both in terms of com-
pression ratio and execution time.

3.3. Entropy encoding

One of the most important properties of LUISA is that the
‘Entropy Encoding’ stage is completely decoupled from the

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/doi/10.1093/com
jnl/bxaa074/5868170 by U

niversity of N
ew

 England user on 11 July 2020

6 V. Garcia and S. Mergen

FIGURE 4. Context model storing the all contexts up to three characters of the sequence ‘DECADE’.

‘Search & update’ stage, as depicted in Fig. 1. It makes the
first stage an independent module whose probability model
has no relation with the context model. The separation allows
virtually any entropy compressor to be used as a black box.
Also, keys generated by the ‘Search & Update’ stage can be
buffered before entering the second stage. This enables static
entropy encoding to be used, in a block-based pipeline.

An obvious choice is using static Huffman as a fast method
to achieve compression. While arithmetic encoding struggles
with the processing of multiplications and divisions (at least
during decompression), Huffman offers a better solution based
on table lookups. A recent implementation (Huff0) makes
the process even faster by removing branches and decoding
multiple symbols at once [7].

However, it is not as effective as arithmetic encoding at
approximating the entropy of a message. Huffman needs at
least one bit to encode a symbol, whereas arithmetic encoding
can use a fraction of a bit to encode a symbol. Recently, a
breakthrough in entropy encoding was proposed to overcome
the speed barrier. The method, called finite state entropy (FSE),
is based on asymmetric numeral systems, a theoretical way to
approximate Shannon entropy by using low state entropy cod-
ing automata [10]. Experimental results show that the method
is as fast as Huffman and provides a reasonable compression
when compared to arithmetic encoding. Both FSE and Huff0
were evaluated as part of LUISA, as we detailed in Section 4.

3.4. Implementation designs

The core processing of LUISA uses the context model to (i)
perform the symbol search, (ii) update the model and (iii)
propagate the symbol location to the entropy encoder. It is
important to build the model in such a way that these operations
can achieve highly efficient results in terms of execution time.

Essentially, the n-order Markov models that form the con-
texts are represented as n-ary tries (or prefix trees). Nodes
represent symbols, and the path from the root to a node forms

a context. The children of a node are the symbols that have
already occurred in the corresponding context. Suffix links
connect a symbol in order i with the same symbol in order i−1.
If a match is not found at a given order, the suffix link leads
directly to the next order.

In what follows, we discuss two distinct context model
implementations: one memory-intensive solution based on
symbol tables and one memory-friendly solution based on
dynamic sets.

3.4.1. Using symbol tables
The symbol table is an array of fixed size |A| that informs
which symbols from the alphabet A have occurred for a given
context. Figure 4 illustrates an example where a small alphabet
composed by the symbols {A, B, C, D, E} is identified by codes
ranging from zero to four.

There is one table per context, and it provides direct access
to every symbol in an order. For instance, index zero always
leads to symbol A, and index four always leads to symbol E.
Indexes that lead to null elements represent symbols that have
never occurred in that particular context. Suffix links appear as
dotted lines.

The tables can be seen as collision-free hash functions that
come at the expense of high memory consumption. Each of
the i orders of the model would demand |A|i−1 arrays with
|A| elements each. Moreover, the tables can be quite sparse,
especially at the highest orders.

A table t contains two parts: the position pos of the symbol
identified by i, and the index idx of the symbol whose position
is i. For instance, the index of the best ranked symbol (pos = 0)
can be found in t[0].idx. Similarly, the position of the symbol
identified by the index 3 can be found in t[3].pos. During com-
pression, after the symbol s to encode is found, the purpose is to
issue its position within the current context. This information
is found at t[s].pos. During decompression, given a key k, the
correspondent symbol within the current context is found at
t[k].idx.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/doi/10.1093/com
jnl/bxaa074/5868170 by U

niversity of N
ew

 England user on 11 July 2020

LUISA: Prediction-Based Compression 7

FIGURE 5. Symbol table update process using a limited dictionary
(ABCD).

Figure 5 shows examples of symbol table update. In the
first event, the new symbol ‘B’ is reached by the algorithm.
To update this, symbol two operations are, in order, executed:
t[B].pos = first_null_idx(t) (where first_null_idx(t) returns
the lowest position of a symbol table t where .idx is null)
and t[t[B].pos].idx = D. In the second event, ‘D’ symbol is
promoted, assuming the position of ‘C’. Thus, .pos attributes
of both ‘D’ and ‘C’ are exchanged, enabling the execution of
t[t[D].pos].idx = D and t[t[C].pos].idx = C.

It is relatively easy to conceive algorithms to update the
positions of the symbols. Algorithm 3 shows in pseudo-code
how to update the table when the transpose strategy is used.
Lines 1–4 are devoted to locating the symbols to swap. Func-
tion index(s) simply returns the decimal representation of the
symbol s, a value between 0 and 255. Given this index, the
position is immediately found (line 2), as well as the symbol
that occupies the previous position (line 4). Lines 5–8 are
devoted to swapping the positions of the two symbols.

Algorithm 3 Updating the model when using the transpose
strategy
updateModel(Symbol s)

• 1: index_cur ← index(s)
• 2: pos_cur ← t[index_cur].pos
• 3: index_prev ← t[pos_cur-1].idx
• 4: pos_prev ← pos_cur-1;
• 5: t[pos_prev].idx ← index_cur
• 6: t[pos_cur].idx ← index_prev
• 7: t[index_prev].pos ← pos_cur
• 8: t[index_cur].pos ← pos_prev

Different strategies work similarly. For instance, moving a
symbol located at position pos to the front of the list requires
changing the position and index values of all elements whose
positions are smaller than pos, as described by Algorithm 4.

Algorithm 4 Updating the model when using the MTF strategy
updateModel(Symbol s)

• 1: index_cur ← index(s)
• 2: for pos_cur ← t[index_cur].pos, 1 do
• 3: pos_prev ← pos_cur-1;
• 4: index_prev ← t[pos_Prev].idx
• 5: t[index_prev].pos ← pos_Cur
• 6: t[pos_Cur].idx ← index_prev
• 7: end for
• 8: t[index_cur].pos ← 0;
• 9: t[0].idx ← index_cur;

3.4.2. Dynamic sets
Unlike the symbol tables solution, dynamic sets use just enough
memory to store the occurred symbols. This approach is desir-
able for general cases, where the compression ratio requires
setting a maximum order that is just not manageable with
symbol tables.

We support dynamic sets by modifying the source code
of PPMII, a state of the art PPM compressor designed with
a very efficient memory management [26]. We stripped the
arithmetic encoding out of the context model and added the
part related to the key generation. A separate layer uses FSE to
achieve compression. By leveraging from existing PPM code,
we are able to properly compare the effect of changing from
adaptive to static entropy encoding. We get back to this in the
experimental section.

PPMII ignores symbols seen at the highest orders using
a mask array. Also, it has a unique way to accumulate fre-
quencies, based on empirical evaluations. Our implementation
maintained these features, as they are deeply blended into the
code.

However, there was some room for optimizations, especially
during decompression. Since our primal concern is finding the
position of the symbol to decode based on a key, only two
orders need to be accessed: the one where the symbol exists
(i) and the one above (i+1). In order i+1, the mask is updated
with the found symbols. In order i, the mask is used only to
check which symbols have already appeared. Order i is located
as the one where the number of symbols is at least equal to the
key.

Algorithm 5 shows how the symbol is located at order i. The
key to decode is key. Observe that the mask is never updated
(only checked). Unseen symbols cause k to be incremented.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/doi/10.1093/com
jnl/bxaa074/5868170 by U

niversity of N
ew

 England user on 11 July 2020

8 V. Garcia and S. Mergen

The search stops when k equals key, meaning the symbol to
decode was found (p− > symbol).

4. EXPERIMENTATION AND RESULTS

This section reports the results achieved in terms of compres-
sion ratio and speed. The compression ratio is measured as
bpc (bits per code), the average number of bits required to
code each byte. Speed is measured as the number of KBytes
processed per millisecond. We report the average speed from
30 executions (compression + decompression), ignoring the
lowest and highest 10%. Algorithms were executed on an Intel
Core I5-3330 (3.0 GHz, 4 cores, 32KB L1, 256KB L2, 6144KB
L3) server with 8 GB of RAM (DDR3, synchronous, 1333
MHz) running Windows 7 (64 bits) OS.

The input files come from Calgary, Silesia, Canterbury and
Pizza&Chilli corpora. The first three are collections commonly
used as benchmarks of compression tools. The Pizza&Chilli
corpus contains text collections for experimenting and vali-
dating compressed indexes. There is also an extra file con-
taining an English dictionary. It comes from the expansion
of.aff and.dic files with hunspell software, thus creating a
lexicographically ordered dictionary with words in singular and
plural.2 For the sake of space, only some results are discussed,
which we believe are representative enough.3

Two distinct implementations of LUISA were evaluated:
the one that uses symbol tables (used in preliminary tests in
Subsection 4.1) and the one based on PPMII (used in compar-
ing tests in Subsections 4.2 and 4.3). Both were compiled with
GCC/G++ compiler from TDM-GCC (version 5.1.0) using the
-O3 optimization flag to obtain maximum efficiency. Also, keys
are buffered in blocks of size 125 000 bytes, defined empir-

2 The file can be found at https://github.com/ViniGarcia/LUISA.
3 The complete results, files corpora, evaluated compressors, testing framework and

configuration files can be found at https://github.com/ViniGarcia/LUISA.

ically. This information is valuable when using static entropy
encoding. Larger blocks have almost no effect on compression.

4.1. Parameter tuning

LUISA can be tuned in different ways to achieve better
compression or execution time. The tuning involves changing
the model update strategy (frequency, transpose, MTF), the key
generation strategy (with/without exclusion) and the entropy
encoder, using static methods (FSE/Huff0) or a dynamic
method (AE). In what follows, we test different combinations.
Our baseline is a setting that balances speed and compression
ratio, by combining the FSE encoding method, the frequency-
based update model and the key generation with exclusion.

This experiment uses the implementation based on symbol
tables. Since this version was built from scratch, we can easily
alternate between the different strategies (which could not be
done with the version derived from PPMII).

The maximum order was set to five. Longer contexts lead
to compression deterioration due to memory issues: the OS
imposes a limit on the amount of memory available to the
program. When the limit is reached, we stop adding symbol
tables to prevent overflows.

We remark that the symbol table version is intended to
be used as a testbed. It serves as a reference by which the
different strategies can be compared. Contexts longer than five
are not needed to fairly compare the alternatives. Besides, as
we discuss later, the maximum order of five usually leads to
better results.

Table 3 shows information about the 10 files used in this
experiment. The chosen files vary greatly in size, structure and
format. Emphasis is given to textual files (Book1, Bible, Dick-
ens, English, Dict) since LUISA works best when compressing
textual information.

Table 4 shows the results when varying the key generation
strategy. UE and WUE refer to update exclusion and with-
out update exclusion, respectively. The other parameters were
fixed by using baseline values (FSE encoding/frequency update
model).

Keeping already visited symbols does not translate into an
expressive speed-up. On the other hand, the compression ratio
when excluding visited nodes shows a compensating trade-off,
especially when files are small (Book1, Obj1). In those cases,
the contexts are not yet stable, and there is a higher chance
of finding the symbol to encode only in lower orders. The
accumulation of counts from the higher orders increases the
entropy and leads to a degraded bpc. The compression ratio is
similar on larger files (such as English), where the symbol to
encode is likely to be found at the highest order.

Table 5 shows the results when varying the encoding
method. The other parameters were fixed by using baseline val-
ues (frequency update model/key generation with exclusion).
Note that ‘speed’ refers to the number of KBytes processed per
millisecond (KB/ms).

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/doi/10.1093/com
jnl/bxaa074/5868170 by U

niversity of N
ew

 England user on 11 July 2020

https://github.com/ViniGarcia/LUISA
https://github.com/ViniGarcia/LUISA

LUISA: Prediction-Based Compression 9

TABLE 3. A brief description of the files used to evaluate the compression methods.

File (corpus) Size (bytes) Description

Book1 (Calgary) 768 771 Far from the Madding Crowd, by Thomas Hardy
Obj1 (Calgary) 49 379 Compilation of Pascal code
Bible (Canterbury) 4 047 392 The King James version of the Bible
Ecoli (Canterbury) 4 638 690 Complete genome of the E. Coli bacterium
Kennedy (Canterbury) 1 029 744 Excel spreadsheet
Dickens (Silesia) 10 192 446 A Child’s History of England, by Charles Dickens
XML (Silesia) 5 345 280 Collected XML files
ooffice (Silesia) 6 152 192 A dll from Open Office.org 1.01
English (Pizza&Chilli) 52 428 800 English texts from project Gutenberg
Dict 5 074 110 English dictionary expanded from.aff and.dic files of LibreOffice[6] with hunspell software

[6] https://github.co\ignorespacesm/LibreOffice/dictionaries

TABLE 4. Changing the key generation strategy.

File UE WUE

bpc Speed bpc Speed

Dict 2.91 3653 3.11 3722
Book1 2.65 2125 2.86 2183
Obj1 4.23 470 4.47 487
Ooffice 5.24 4434 5.32 4880
English 3.56 14 099 3.58 14 539
XML 1.29 6843 1.34 7035
Ecoli 1.95 26 004 1.96 25 850
Kennedy 2.07 1905 2.61 1966
Bible 2.00 6374 2.09 6547
Dickens 2.32 4649 2.42 4806

TABLE 5. Changing the encoding strategy.

File FSE HUFF0 AE

bpc Speed bpc Speed bpc Speed

Dict 2.91 3653 2.95 3673 2.79 1926
Book1 2.65 2125 2.68 2131 2.62 1213
Obj1 4.23 470 4.19 472 4.18 553
Ooffice 5.24 4434 5.25 4569 4.05 341
English 3.56 14 099 3.59 14 454 2.38 1122
XML 1.29 6843 1.61 6909 1.33 2466
Ecoli 1.95 26 004 2.01 26 970 1.96 3139
Kennedy 2.07 1905 2.34 1907 1.92 829
Bible 2.00 6374 2.11 6420 1.98 1886
Dickens 2.32 4649 2.38 4675 2.31 1354

Note that the usage of dynamic entropy encoding (AE) is
usually associated with greater compression. For the larger file
(English), the compression gain is expressive (∼20%). On the

TABLE 6. Changing the model update strategy

file FREQ TRANSP MTF

bpc Speed bpc Speed bpc Speed

Dict 2.91 3653 2.62 4152 2.08 4199
Book1 2.65 2125 2.75 2382 2.82 2353
Obj1 4.23 470 4.41 484 4.19 478
Ooffice 5.24 4434 5.11 5402 4.82 3412
English 3.56 14 099 3.59 16 341 3.90 13 626
XML 1.29 6843 1.34 7616 1.38 7531
Ecoli 1.95 26 004 1.99 29 480 1.99 27 266
Kennedy 2.07 1905 1.92 1987 0.84 1878
Bible 2.00 6374 2.01 7705 2.07 7344
Dickens 2.32 4649 2.41 5688 2.55 5272

other hand, it is notable that this method leads to a significant
slowdown. The speed reduction varies from file to file, ranging
from 42% to 92%. This result demonstrates the importance of
using non-adaptive entropy encoding to gain response time.
HUFF0 and FSE behave similarly, where the former is faster
and the latter compresses more. It called our attention the fact
that FSE is much better at compressing the XML file. Another
curious fact is that AE beats the competitors in terms of speed
when compressing obj (where the three methods are slow).

Table 6 shows the results when varying the model update
strategy among frequency swap (FREQ), transpose swap
(TRANSP) and MTF swap (MTF). The other parameters
were fixed by using baseline values (FSE/key generation with
exclusion). It is important to notice that ‘speed’ refers to the
number of KBytes processed per millisecond (KB/ms).

The results show an interesting trade-off between FREQ and
TRANSP. When files are small (Book1, Obj1), the frequency
information is more important to estimate the next symbol to
encode. As files get larger, TRANSP gradually moves the most
frequent symbol to the front, reducing the compression gap

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/doi/10.1093/com
jnl/bxaa074/5868170 by U

niversity of N
ew

 England user on 11 July 2020

https://github.co ignorespaces m/LibreOffice/dictionaries

10 V. Garcia and S. Mergen

TABLE 7. Compression ratio on the Bible file.

Method Orders

2 3 4 5

FSE-TRANSP-UE 2.78 2.30 2.10 2.01
FSE-FREQ-UE 2.82 2.35 2.11 2.00
HUFF0-FREQ-UE 2.84 2.39 2.19 2.11
FSE-FREQ-WUE 2.83 2.38 2.16 2.09
FSE-MTF-UE 2.95 2.42 2.19 2.07
AE-FREQ-UE 2.81 2.34 2.10 1.98

to FREQ. In some particular cases, their compression ratio is
practically identical, while TRANSP shows superior speed. For
instance, the compression on the Bible and English files got a
speedup of 20% and 15%, respectively.

Another interesting case is the Ecoli file. The frequency-
based strategy reaches a compression ratio of 1.95, which is
similar to the one obtained by PPMII (1.96 bpc, using the
same five orders). Since the alphabet size is small (basically
four letters representing nucleotides), and the distribution of
the symbols is relatively uniform, both methods end up using
similar frequency tables.

The results also show that the MTF strategy outperforms the
competitors in some particular cases (Dict, Obj1, Ooffice and
Kennedy). These are examples of files where recency is a pre-
vailing factor, being more important than global frequencies.
MTF is particularly suited for this kind of file. The reason is
that a symbol that just occurred in a context will very likely
occur again the next time the context is found, and MTF is able
to quickly promote this symbol to the head of the list.

Surprisingly, Dict and Kennedy compete with PPMII (set
with the same five orders). LUISA requires 2.08 bpc and 0.84
bpc to compress the dictionary and the spreadsheet (kennedy),
respectively, while PPMII requires 2.06 bpc and 0.95 bpc to
compress the same files. Moreover, when using a maximum of
three orders, the dictionary is encoded with only 1.54 bpc. This
improvement is related to the fact that the dictionary is mostly
composed of small grams, like affixes and stems.

We conclude this section with Table 7. It presents the com-
pression ratio on the Bible file, considering all alternatives
mentioned above with a maximum order ranging from 2 to
5. Observe that all methods behave similarly as the number
of orders changes. In this particular case, compression keeps
improving until order 5. More importantly, the strategy based
on symbols transpositions is practically identical to the one
based on frequencies. As with the Tables 5 and 6, ‘speed’ refers
to the number of KBytes processed per millisecond (KB/ms).

One can argue that better results can be achieved using other
methods (for instance, Front-Coding for dictionary files). How-
ever, our primal concern here was not to overcome the strong
competitors, but to show that our context model approach can

FIGURE 6. Compression of textual files from the Pizza&Chilli
corpus.

achieve interesting results without relying on frequency infor-
mation. By keeping the probability model outside the context
model, we can easily conceive alternative strategies to handle
files with a distinguished set of features. As demonstrated, a
simple change was required in the model update module to
handle recency. Other prediction-based methods may struggle
to properly model recency, especially those that rely on the
symbols’ frequency.

4.2. Comparing LUISA With PPM

In this section, we compare the version of LUISA built from
PPMII against the original PPMII. The two compressors use
the same context model (taken from PPMII), but a completely
different encoding. While PPMII encodes symbols based on
local frequencies, LUISA uses FSE and a decoupled global
frequency table to encode the keys that identify the sym-
bols. The decoupling comes as an alternative to classical PPM
implementations that require adaptive entropy encoding. We
expect to achieve greater speed at the expense of a deteriorated
compression ratio. In what follow, we investigate this trade-off.

Figure 6 shows the results of compression ratio (black lines)
and compression speed (red lines) when using the textual files
taken from the Pizza&Chilli corpus (four english files with
sizes of 50MB, 100MB, 200MB and 1024MB). We compressed
the corpus files individually, and the average between their
results is presented as the final result. The maximum order
ranges from 2 to 10. Both methods behave similarly according
to the number of orders increasing. They achieve the greatest
compression when using five orders, where PPMII is around
20% more effective. On the other hand, it is 45% slower.

The compressors speed degrades with higher orders, with
one exception: PPMII shows superior performance when mov-
ing from two to three orders. In this particular case, the amount
of work required for managing longer contexts is compensated

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/doi/10.1093/com
jnl/bxaa074/5868170 by U

niversity of N
ew

 England user on 11 July 2020

LUISA: Prediction-Based Compression 11

FIGURE 7. Compression of files from the Silesia corpus.

by a much more efficient encoding (the compression ratio
increases ∼19% when working with three orders instead of
two).

Figure 7 shows the results of compression ratio (black lines)
and compression speed (red lines) when using all files from
the Silesia corpus. We compressed the corpus files individually,
and the average between their results is presented as the final
result. This corpus is much more diverse than the previous one,
including non-textual files. Again, both methods behave sim-
ilarly. The greatest compression is achieved using five orders,
where PPMII is ∼24% more efficient. On the other hand, it is
58% slower.

Observe that, in both charts, PPMII cannot compete with
LUISA in terms of speed, even when using settings that reduce
compression. In other words, the best performance of PPMII
does not overcome LUISA in its worst performance.

4.3. Comparing against state-of-the-art methods

In this section, we compared LUISA (the one built from
PPMII context model) against representatives from state-of-
the-art loss-less compression methods. The chosen methods
are modern and highly optimized C/C++ codes based on
different compression concepts, such as block-sorting (BZIP2,
BSC), dictionary look-up (7ZIP, ZSTD) and context modeling
(PPMII, SR3).

Most methods allow defining compression levels to trade
between compression ratio and execution time (BZIP2, BSC,
7ZIP, ZSTD). We tried three settings: the default one (identified
with the suffix ‘d’ and configured with standard compression
level setup), the one targeted at compression (identified with
the suffix ‘c’ and configured with maximum compression level)
and the one targeted at speed (identified with the suffix ‘s’ and
configured with minimum compression level). For instance,
ZSTD-c is the ZSTD compressor tuned to achieve the greatest

TABLE 8. Compressors settings for best compression ratio (-c) and
highest speed (-s).

Compressor Default
setup (-d)

Compression
setup (-c)

Speed
setup (-s)

ZSTD -3 -19 -1
7ZIP -mx5 -mx9 -mx1
PPMII -o4 -o7 -o2
LUISA -o 4 -o 7 -o 2
BZIP2 -9 n/a -1
BSC -e1 -e2 -p
SR3 n/a n/a n/a

compression (compression level -19). The standard setting of
BZIP2 is already tuned to achieve the best compression, so
BZIP2-c was discarded. PPMII uses 5 as the default maximum
order. We also tried setting the maximum order to 2 and 7,
to obtain minimum execution time and greater compression
ratio, respectively. LUISA uses the same orders. SR3 does
not offer compression levels. Table 8 summarizes the settings
of default configuration (-d), best compression ratio (-c) and
highest speed (-s).

Execution time results consider the average time (in seconds)
to perform a round trip (compression + decompression). We
observe that LUISA’s compression is symmetric. The execu-
tion time to search the symbol, update the model and apply
the entropy encoding is roughly the same when these modules
are executed in the reverse order. Optimizations in the source
code (discussed in Section 3.4) made it around 15% faster in
decompression. The other context model methods are also sym-
metrical. Block-sorting methods are faster in decompression,
while the methods based on dictionary lookups are much faster
in decompression. This occurs mainly because there is no need
to perform lookups during decompression.

Figure 8 shows a scatter plot comparing round-trip execution
time and compression ratio when compressing/decompressing
a subset of the Calgary corpus composed by small textual
files (Book1, Book2, Paper1,..., Paper6). Furthermore, Table 9
numerically specifies the compression ratio, the compression
execution time and the decompression execution time of pro-
cessing the Calgary corpus. The best results are in the extremes:
PPMII-c offers the greatest compression, but it is the slowest
alternative. Conversely, ZSTD-s is the fastest and has the
poorest compression. It is important to state that LUISA-d is in
the Pareto Frontier. Thus, none of the competitors is at the same
time faster and more effective in compression/decompression.

Figure 9 shows the results achieved when compressing/
decompressing a subset of the Pizza&Chilli corpus composed
by large textual files (English documents with 50MB, 100MB,
200MB and 1024MB). Also, Table 10 numerically defines the
compression ratio, the compression execution time and the
decompression execution time of processing the Pizza&Chilli

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/doi/10.1093/com
jnl/bxaa074/5868170 by U

niversity of N
ew

 England user on 11 July 2020

12 V. Garcia and S. Mergen

FIGURE 8. Avg. execution time/compression ratio results achieved
when compressing/decompressing textual files from the Calgary
corpus.

TABLE 9. Execution time results achieved when compressing/de-
compressing textual files from the Calgary corpus.

Compressor bpc Compression Decompression
exec. time (s) exec. time (s)

ZSTD-d 3.22 0.0084 0.0071
ZSTD-c 2.91 0.0752 0.0077
ZSTD-s 3.47 0.0087 0.0065
7ZIP-d 2.86 0.0434 0.0108
7ZIP-c 2.86 0.0441 0.0108
7ZIP-s 3.07 0.0231 0.0112
PPMII-d 2.47 0.0330 0.0368
PPMII-c 2.42 0.0552 0.0593
PPMII-s 3.06 0.0253 0.0281
LUISA-d 2.98 0.0173 0.0151
LUISA-c 2.95 0.0268 0.0232
LUISA-s 3.47 0.0127 0.0107
BZIP2-d 2.74 0.0261 0.0134
BZIP2-s 2.83 0.0271 0.0131
BSC-d 2.63 0.0237 0.0152
BSC-c 2.60 0.0277 0.0197
BSC-s 2.63 0.0229 0.0141
SR3 3.34 0.0278 0.0323

corpus. When compared to the previous case, some methods
benefit from large textual files, such as BSC and SR3. LUISA
competes with most of the best compressors, except for BSC.
The block sorting compression method shows outstanding
compression and it is among the fastest approaches. The

FIGURE 9. Results achieved when compressing/decompressing
textual files from the Pizza&Chilli corpus.

TABLE 10. Execution time results achieved when compressing/
decompressing textual files from the Pizza&Chilli corpus.

Compressor bpc Compression Decompression
exec. time (s) exec. time (s)

ZSTD-d 2.64 5.2196 1.8633
ZSTD-c 1.94 219.5249 1.6923
ZSTD-s 3.28 3.9007 1.5912
7ZIP-d 1.84 120.0036 1.5333
7ZIP-c 1.75 176.9292 2.0758
7ZIP-s 2.96 6.9308 1.6571
PPMII-d 2.05 29.7625 32.9671
PPMII-c 1.99 81.8390 88.1192
PPMII-s 2.86 31.5487 36.5537
LUISA-d 2.48 17.1037 14.5414
LUISA-c 2.50 38.3281 35.4933
LUISA-s 3.15 11.6247 8.8882
BZIP2-d 2.27 37.8516 14.6214
BZIP2-s 2.64 35.7727 13.5898
BSC-d 1.63 18.0478 8.7282
BSC-c 1.62 20.3927 11.6904
BSC-s 1.69 18.6960 8.6330
SR3 2.36 21.2303 23.6613

symbol rank method (SR3) compresses more than LUISA,
which did not happen when texts were smaller.

Figure 10 shows the results achieved when compressing/
decompressing the Silesia corpus, composed by files of varying
sizes and formats (not only text). Additionally, Table 11 numer-
ically indicates the compression ratio, the compression execu-
tion time and the decompression execution time of processing

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/doi/10.1093/com
jnl/bxaa074/5868170 by U

niversity of N
ew

 England user on 11 July 2020

LUISA: Prediction-Based Compression 13

FIGURE 10. Results achieved when compressing/decompressing the
Silesia corpus.

TABLE 11. Execution time results achieved when compressing/
decompressing textual files from the Silesia corpus.

Compressor bpc Compression Decompression
exec. time (s) exec. time (s)

ZSTD-d 2.98 0.2069 0.0768
ZSTD-c 2.45 7.2652 0.0766
ZSTD-s 3.30 0.1421 0.0703
7ZIP-d 2.25 4.3267 0.2152
7ZIP-c 2.11 4.2711 0.2139
7ZIP-s 2.71 0.2758 0.0848
PPMII-d 2.27 4.6080 5.2237
PPMII-c 2.21 5.6863 6.3638
PPMII-s 2.75 3.7977 4.3435
LUISA-d 2.96 1.4089 1.1790
LUISA-c 2.91 1.8050 1.5718
LUISA-s 3.37 1.0793 0.8635
BZIP2-d 2.34 2.1986 0.6245
BZIP2-s 2.60 1.9059 0.5734
BSC-d 2.07 1.2396 0.6704
BSC-c 2.05 1.4076 0.8954
BSC-s 2.07 1.2382 0.6666
SR3 2.65 1.0908 1.2077

the Silesia corpus. Again, BSC shows unbeaten compression
and competitive execution time. On the other hand, LUISA
does not perform well. As a reference, it is defeated both
in terms of compression and execution time by SR3 (whose
results are reasonable). It demonstrates that the current setting
(FSE+UE+FREQ) is not suited when files are non-textual.

Perhaps, it is possible to build more effective solutions
by using different strategies, especially regarding the model
update. For instance, one can incorporate the SR3 main ideas
into the more general LUISA’s architecture, like giving some
sort of priority to the most recent symbols that appear within a
context. The investigation of complementary techniques is left
for future work.

5. CONCLUSIONS

We have presented LUISA, a PPM-based compression method
that decouples the context model and the frequency model. This
decoupling allows several strategies to be used, trading speed
for compression ratio. The architecture is clear and concise, and
the modules can easily be adjusted to particular compression
situations.

Experiments show that the compression ratio is compelling
and the compression/decompression speed is acceptable. Com-
pared to a well-known prediction-based approach (PPMII), the
speed gain is considerable, which makes LUISA a viable solu-
tion. The proposed method is not a replacement for some strong
compressors that are undefeated at combining acceptable com-
pression ratio and outstanding speed when compressing general
files. However, when files are small or have a low entropy, the
overall performance of LUISA is acceptable.

There is still much to be done to achieve greater compression
and speed. Some paths we consider include building new model
update strategies and executing compression on segmented
parts of the file in parallel. Furthermore, in future works, we
will study alternatives to create a version of LUISA optimized
for text compression. Thus, we will evaluate multiple LUISA
versions compared with semi-static and dynamic word-based
compressors.

REFERENCES

[1] I. P. Andrezza. E C. Borges., and L. V. Batista. Heart arrhythmia
classification using the prediction by partial matching algorithm.
Int. J. Comput. Appl. Technol., 52: 285–291, 2015.

[2] S. Beg, M. F. Khan, and F. Baig. Transference and retrieval of
compress voice message over low signal strength in satellite
communication. Int. J. Syst. Syst. Eng., 4: 174–186, 2013.

[3] Jon L. Bentley and Catherine C. McGeoch. Amortized analy-
ses of self-organizing sequential search heuristics. Comm. ACM,
28: 404–411, 1985.

[4] N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Parama. New
adaptive compressors for natural language text. Softw. Pract.
Exp., 38: 1429–1450, 2008.

[5] J. Cleary and I. Witten. Data compression using adaptive coding
and partial string matching. IEEE Trans. Commun., 32: 396–402,
1984.

[6] Cleary, J.G., Teahan, W.J. and Witten, I.H. Unbounded Length
Contexts for PPM. In Conference on Data Compression, p. 52.
IEEE Computer Society, USA, Washington, DC, USA, 28–30
March 1995.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/doi/10.1093/com
jnl/bxaa074/5868170 by U

niversity of N
ew

 England user on 11 July 2020

14 V. Garcia and S. Mergen

[7] Cyan. Quick look back at huff0: an entropy coder analy-
sis. http://fastcompression.blogspot.com/2011/01/quick-loock-
back-at-huff0-entropy-coder.html, 2011 (accessed January 28,
2019).

[8] S. Deorowicz, J. Walczyszyn, and A. Debudaj-Grabysz. Comsa:
compression of protein multiple sequence alignment files. Bioin-
formatics, 35: 227–234, 2018.

[9] Drinic, M., Kirovski, D. and Potkonjak, M. (2003) PPM Model
Cleaning. In Data Compression Conf., Snowbird, UT, USA,
March 25–27 pp. 163–172. Institute of Electrical and Electronics
Engineers, USA.

[10] Duda, J., Tahboub, K., Gadgil, N.J. and Delp, E.J. (2015) The
Use of Asymmetric Numeral Systems as an Accurate Replace-
ment for Huffman Coding. In Picture Coding Symposium,
Cairns, QLD, Australia, May 31–June 3, pp. 65–69. Institute of
Electrical and Electronics Engineers, USA.

[11] A. Farayez, M. B. I. Reaz, and N. Arsad. Spade: activity predic-
tion in smart homes using prefix tree based context generation.
IEEE Access, 7: 5492–5501, 2019.

[12] P. Fenwick. Symbol ranking text compressors: review and imple-
mentation. Softw. Pract. Exp., 28: 547–559, 1998.

[13] P. Fenwick. Burrows–Wheeler compression: principles and
reflections. Theor. Comput. Sci., 387: 200–219, 2007.

[14] A. Gellert and A. Florea. Web prefetching through efficient
prediction by partial matching. World Wide Web, 19: 921–932,
2016.

[15] P. G. Howard and J. S. Vitter. Design and analysis of fast text
compression based on quasi-arithmetic coding. Inform. Process.
Manag., 30: 777–790, 1994.

[16] Z. Huang, Z. Wen, Q. Deng, Y. Chu, Y. Sun, and Z. Zhu.
Lw-fqzip 2: a parallelized reference-based compression of fastq
files. BMC Bioinform., 18: 179, 2017.

[17] Yunwei Jia, En-hui Yang, Da-ke He, and Steven Chan. A
greedy renormalization method for arithmetic coding. IEEE
Trans. Commun., 55: 1494–1503, 2007.

[18] Y. Liu, H. Peng, L. Wong, and J. Li. High-speed and high-
ratio referential genome compression. Bioinformatics, 33: 3364–
3372, 2017.

[19] M. Mahoney. Data compression programs. http://mattmahoney.
net/dc/, 2019. (accessed November 22, 2019).

[20] McNamee, P. (2016) Language and Dialect Discrimination
Using Compression-Inspired Language Models. In Workshop
on NLP for Similar Languages, Varieties and Dialects, Osaka,

Japan, December 11–12, pp. 195–203. The COLING 2016 Orga-
nizing Committee, Japan.

[21] A. Moffat. Implementing the PPM data compression scheme.
IEEE Trans. Commun., 38: 1917–1921, 1990.

[22] A. Moffat, R.M. Neal, and I. H. Witten. Arithmetic coding
revisited. ACM Trans. Inf. Syst., 16: 256–294, 1998.

[23] Pratas, D., Hosseini, M. and Pinho, A.J. (2019) Compression of
Amino Acid Sequences. In Int. Conf. Practical Applications of
Computational Biology and Bioinformatics, Toledo, Spain, June,
pp. 105–113. Springer International Publishing, USA.

[24] S. Saha and S. Rajasekaran. NRGC: a novel referential genome
compression algorithm. Bioinformatics, 32: 3405–3412, 2016.

[25] A. Sayyed and S. Agarwal. (2017) PPM Revisited With New Idea
on Escape Probability Estimation. In IEEE Int. Conf. Computa-
tional Intelligence and Multimedia Applications, Sivakasi, Tamil
Nadu, India, December 13–15 2007, pp. 152–156. Institute of
Electrical and Electronics Engineers, USA.

[26] Shkarin, D. (2002) PPM: One Step to Practicality. In Data
Compression Conference, Snowbird, UT, USA, April 2–4,
pp. 202–211. Institute of Electrical and Electronics Engineers,
USA.

[27] Skibinski, P. and Grabowski, S. (2004) Variable-Length Contexts
for PPM. In Data Compression Conference, Snowbird, UT, USA,
March 23–25, pp. 409–418. Institute of Electrical and Electron-
ics Engineers, USA.

[28] Skibiński, P. and Swacha, J. (2007) Fast and Efficient Log File
Compression. In CEUR Workshop Proc. 11th East-European
Conf. Advances in Databases and Information Systems (ADBIS),
Varna, Bulgaria, September 29–October 3, pp. 330–342. Associ-
ation for Computing Machinery, USA.

[29] Skibiński, P., Swacha, J. and Grabowski, S. (2008) A Highly Effi-
cient XML Compression Scheme for the Web. In Int. Conf. Cur-
rent Trends in Theory and Practice of Computer Science, Nový
Smokovec, Slovakia, January 19–25, pp. 766–777. Springer
International Publishing, USA.

[30] J. G. Wolff. Information compression as a unifying principle in
human learning, perception, and cognition. Complexity, 2019:
1–38, 2019.

[31] P. Wu and W. J. Teahan. A new PPM variant for Chinese text
compression. Nat. Lang. Eng., 14: 417–430, 2008.

[32] Y. Zhang and D. A Adjeroh. Prediction by partial approximate
matching for lossless image compression. IEEE Trans. Image
Process., 17: 924–935, 2008.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/doi/10.1093/com
jnl/bxaa074/5868170 by U

niversity of N
ew

 England user on 11 July 2020

http://fastcompression.blogspot.com/2011/01/quick-loock-back-at-huff0-entropy-coder.html
http://fastcompression.blogspot.com/2011/01/quick-loock-back-at-huff0-entropy-coder.html
http://mattmahoney.net/dc/
http://mattmahoney.net/dc/

	LUISA: Decoupling the Frequency Model From the Context Model in Prediction-Based Compression
	Introduction
	Prediction by Partial Matching in a Nutshell
	LUISA
	Key generation
	Context update
	Entropy encoding
	Implementation designs

	Experimentation and Results
	Parameter tuning
	Comparing LUISA With PPM
	Comparing against state-of-the-art methods

	Conclusions

