
Distributed Selfish Bin Packing

Flávio K. Miyazawa, André L. Vignatti
Institute of Computing
University of Campinas

Campinas, Brazil 13084-971–6176
Email: {fkm,vignatti}@ic.unicamp.br

Abstract

We consider a game-theoretic bin packing problem with
identical items, and we study the convergence time to a
Nash equilibrium. In the model proposed, users choose their
strategy simultaneously. We deal with two bins and multiple
bins cases. We consider the case when users know the load of
all bins and a case with less information. We consider two
approaches, depending if the system can undo movements
that lead to infeasible states. In the two bins case, we show
an O(log log n) bound when undo movements are allowed.
In multiple bins case, we show an O(log n) and an O(nm)
bounds when undo movements are allowed and when they
are not allowed, resp. In the case with less information, we
show an O(m log n) and an O(n3m) bounds when undo
movements are allowed and when they are not allowed, resp.

1. Introduction

The Internet is formed by several entities, where each
entity has itself one goal, and those entities are related one
to another in many ways. Their relationships are sometimes
cooperative, competitive, or even related in a selfish way.
Each entity (also called users, agents or players) has a set
of strategies and preferences over these strategies, modeled
in an algorithmic way [1].

We are interested in the case where entities are selfish.
A selfish strategy of a user may influence the decision of
other users, making them change their strategies as well.
An important question in this situation is if we can reach a
state that nobody wants to change their strategy. That is, if
we can reach a Nash equilibrium [2] in this system. If the
answer is yes, then how many steps we need to reach it?
And how worse is an equilibrium solution when compared
to the optimal solution?

Our focus is on a game theoretic version of the bin
packing problem when users are selfish. More specifically,
we are interested in the analysis of the convergence time
to reach Nash equilibrium. Another important focus in this
research direction is the study of the quality of a Nash
equilibrium, which is not addressed in this paper, but some
results of this kind can be found on [3], [4].

The model we consider is composed of n items, each one
with size 1 and controlled by exactly one user, and m bins,
each one with capacity C and cost s. At each step, a user
that controls an item, selects a bin to migrate. The cost of a
bin is equally paid by all users that have an item in the bin.
Thus, if all bins have the same cost, a selfish user prefers
to pack its item to a bin that is as full as possible.

We consider a strongly distributed and parallel setting, i.e.,
there is no centralized control mechanism whatsoever, and
all users choose to migrate their items at the same time. This
contrasts with the Elementary Step System (ESS) [5], where
only one user can migrate in each time step. There are some
advantages in considering a parallel setting. First, this model
is closer to practical situations of large scalable distributed
systems, where it may be too expensive, or impossible, to
implement a central control responsible for keeping one mi-
gration in each step, like the ESS model. Another drawback
is that ESS has convergence time bounded by Ω(n).

In the protocols we present, a user action is based on
a probability distribution over the bins. Probabilistic algo-
rithms have some advantages on deterministic ones. First, in
a two bins case, as we suppose that all users do not fit in only
one bin, a deterministic action needs to deterministically
migrate some of the items to the most filled bin, and
deterministically leave other items in the less filled bin,
being an unfair strategy to those who are selected to stay
in the less filled bin. Also, in a multiple bins case, it is
unclear how to design a deterministic protocol, for each
user, to select an improvement action based on the other
users’ actions (although, it would be very simple to design
such protocol if we assume the existence of a centralized
control).

Besides the bin packing is an important problem in
computer science, it has several real-world applications,
especially in cutting and packing. Also, the problem is used
in many areas of computer science, such as multiprocessor
scheduling, networks, parallel and distributed systems. Some
examples includes data trading in peer-to-peer systems [6],
video-on-demand [7], packet scheduling [8], to name only
a few. These applications motivate the study of bin packing
problem from a game-theoretic and distributed approach.
Related Work: A game theoretic model for bin packing was
first proposed by Bilò in [3]. He proved that bin packing

game in the ESS model always converges to Nash equilib-
rium, showing an exponential upper bound in the number of
steps. Also, he proved upper and lower bounds on the price
of anarchy for that problem. In [4], Epstein and Kleinman
obtained better bounds for the price of anarchy, and also
lower and upper bounds for the strong price of anarchy
[9]. To the present, these two papers are the only ones to
address the bin packing problem under the game theoretic
perspective. The bin packing problem is also related with the
load balancing problem. Bilò [3] observed some similarities
between these two problems and used a potential function
[10], [11] to prove convergence time in a similar way as
done for the load balancing problem [5]. The load balancing
papers of [12], [13], [14] are most closely related to our
work. Goldberg [12] shows a weakly distributed protocol
that simulates the ESS. In this protocol, a task choose ma-
chines at random, and migrates if the load is lower. He uses
a potential function to show upper bounds in the number of
steps to reach Nash equilibrium. Even-dar and Mansour [14]
consider the case where all users choose to migrate at the
same time, in a real concurrent model. In their model, tasks
migrate from overloaded to underloaded machines according
to some probabilities computed by considering that they
know the load information of all machines. Berenbrink et
al. [13] propose a strong distributed protocol that needs very
little global information, where a task needs to query the load
of only one other machine; migrating if that machine has a
smaller load. For non-distributed systems, Even-dar et al.
[5] studied convergence time to reach a Nash equilibrium of
load balancing problems in ESS, and show lower and upper
bounds results to many cases.
Our Results: We consider the two bins case and its exten-
sion to multiple bins. As we migrate items simultaneously,
this can lead to an infeasible solution if the number of items
that migrates to a bin exceeds its capacity. To deal with this,
we propose two approaches.

In the first approach, if a bin has its capacity exceeded
in a given time step, then all items that migrated to that bin
in this step undo their migration, returning to the previous
bins. Undo actions are only performed in bins that had
their capacity exceeded. Note, however, that choosing a high
migration probability implies a higher number of infeasible
movements. On the other hand, choosing a low migration
probability implies a higher number of steps to reach the
equilibrium. So, clearly we have a tradeoff between the
chosen probability, the number of infeasible steps and the
number of steps to reach a Nash equilibrium. We show that
in this approach, within O(log log n) steps it is possible
to reach a Nash equilibrium with high probability in the
two bins case, and O(log n) steps in the multiple bins case.
Also, when users have less global information, we obtain an
O(m log n) bound.

Since not every system allows undoing migrations, we
also consider a second approach for which infeasible mi-

grations does not happen, with high probability. It is more
likely that real systems embrace this approach, because in
most systems an infeasible migration would cause the whole
game to become invalid. For multiple bins case, we show an
O(nm) bound when users have the load information of all
bins and O(n3m) when users have less global information,
i.e., a user knows his own bin load and can inspect only one
additional bin to obtain the load information.

Organization: Section 2 presents the two bins case, with
undoing infeasible migrations. In Sections 3 and 4, we
consider the multiple bins case with and without undoing
infeasible migrations, resp. Section 5 presents the case
where users have less global information. We comment an
extension to bins with different cost in Section 6.

Notation and Model Description

We deal with a model composed of a set of n items
x1, . . . , xn, each one with size 1 and controlled by a user,
and a set of m bins b1, . . . , bm, with costs s1, . . . , sm
respectively, and capacity C (i.e., all bins have the same
capacity). We have a notion of time t, initially equal to 1,
denoting the number of steps that had occurred until then.
For a given time step t, when an item xi is assigned to a bin
bk we say that xi is in bk. The total number of items assigned
to bin bk at step t is denoted by nt(bk) and the available
space of bin bk in step t is denoted by Dt(bk) = C−nt(bk).
If a bin b has its capacity exceeded after some migrations in
a given step, we call them as infeasible migrations. An item
pays sk/n(bk) when it is in bin bk. We assume that the users
who control the items are selfish, and therefore they want to
minimize how much they pay, without caring for the system
as a whole. To minimize the price paid, an item can migrate
to another bin in a given step. Thus, in the case of bins with
equal costs, a user wants to be in a most filled bin. Let bki be
the bin to which i is assigned. A state is in α-approximate
Nash equilibrium if for each user i and bin bk 6= bki

, we have
sbki

/n(bki
) ≤ α ·sbk

/(n(bk)+1) ; if α = 1 then we simply
say that a state is in Nash equilibrium. In this paper, we
consider the case where migrations are done simultaneously
in each step. That is, in a given step, all items choose their
strategy (either migrate or stay in the same machine) based
on the probabilities defined in the protocols they use. We
measure the running time of an algorithm by the number of
required steps to reach a Nash equilibrium.

Throughout this paper, we use some technical tools, as
stated in Lemmas 1.1 and 1.2.

Lemma 1.1 (Chernoff bounds [15]). Let X1, . . . , Xn be
binary independent random variables, such that Pr(Xj =

1) = pj . Let X =
∑n
j=1Xj and µ = E[X]. Then

Pr[X > (1 + δ)µ] < e−µδ
2/3 0 < δ ≤ 1;

Pr[X < (1− δ)µ] < e−µδ
2/2 0 < δ < 1.

Pr
(
µ ≤ X +

√
2 ln(1

δ)µ
)
≥ 1− δ 0 ≤ µ ≤ n;

Pr
(
µ ≥ X −

√
3 ln(1

δ)µ
)
≥ 1− δ ln(1/δ)

3 ≤ µ ≤ n.

The following lemma can be proved using the Stirling’s
approximation for factorials.

Lemma 1.2 (probability of hitting the mean). Let
X1, . . . , Xn be binary independent random variables, such
that Pr(Xj = 1) = p and X =

∑n
j=1Xj . If pn is an

integer, then Pr(X = pn) ≥ 1√
2πpn

.

2. Two bins, with Undo of Infeasible Migra-
tions

This section considers the case with two bins of equal
costs and it is allowed to undo infeasible migrations (the
feasible migrations are maintained). We denote a step with
infeasible migrations as an infeasible step. Without loss of
generality, consider an initial configuration where bin b1 is
most filled than bin b2. We assume that users know the load
information of both bins, so users in b1 do not want to
migrate, and users in b2 would like to migrate to b1. We
also consider, w.l.o.g., that n > C, otherwise Algorithm 1
assigns migration probability equal to 1, and finishes with
only one step. As the migrations occur simultaneously, if
all users in b2 decide to migrate to b1, the capacity of b1
is exceeded causing a sequence of infeasible steps. Thus,
Algorithm 1 defines a protocol that all users must follow to
reach a Nash equilibrium.

begin
t = 1
while Dt(b1) > 0 do

forall {j ∈ b2} in parallel do
move j to b1 with probability Dt(b1)

nt(b2)

t = t+ 1
end
Algorithm 1: TwoBins-UndoInfeasibleMigrations

To simplify the notation, we denote by Dt = Dt(b1).
Given a step t, let Xj be a binary random variable that is
equal to 1 if user j in b2 migrates, and 0 otherwise. Let
X =

∑
j Xj . Note that Dt+1 = Dt − X and E[X] =∑

j E[Xj] = Dt. Thus E[Dt+1] = Dt − E[X] = 0.

Lemma 2.1. In step t, we have Pr
(

0 ≤ Dt+1 ≤
√

2 ln 4Dt

)
≥ 1

4 .

Proof: Since X is a binomial random variable, we
have Pr(X > E[X]) < 1

2 . Given δ > 0, we have from
Lemma 1.1 that Pr

(
X ≤ E[X] −

√
2 ln(1/δ)E[X]

)
≤

δ. Hence Pr
(
E[X]−

√
2 ln(1/δ)E[X] ≤ X ≤ E[X]

)
≥

1
2 − δ. As Dt = E[X] and Dt+1 = Dt − X , we con-
clude that Pr

(
E[X]−

√
2 ln(1/δ)E[X] ≤ X ≤ E[X]

)
=

Pr
(√

2 ln(1/δ)Dt ≥ Dt+1 ≥ 0
)
≥ 1

2 − δ. Using δ = 1/4,
we obtain the desired result.

Lemma 2.2. If the current step is t, a Nash equilibrium is
reached in l + 1 additional steps with probability at least(

1
4

)l 1√
4π ln 4·D(1/2)l

t

.

Proof: Applying l times Lemma 2.1, we have Dt+l ≤

2 ln 4 ·D
1
2l

t , with probability at least
(

1
4

)l
. Applying Lemma

1.2, the result follows.

Theorem 2.3. A Nash equilibrium is reached after
O(log2 n log log n) steps, with high probability.

Proof: Since D0 ≤ n, it suffices to apply Lemma 2.2
for a certain l = O(log log n) to have probability at least

1
logn to reach a Nash equilibrium. Repeating this procedure
log2 n times, the probability that a Nash equilibrium is not
obtained is at most ((1 − 1

logn)logn)logn ≤ 1
elog n = o(1).

Theorem 2.3 assumes that we can repeatedly restart the
game while we have an infeasible step. However, this model
not always occurs in a practical situation. In a more practical
framework, it is sufficient to cancel only the infeasible steps,
and a new step is done from the previous state, as we show
in Theorem 2.4

Theorem 2.4. When only infeasible steps are canceled, a
Nash equilibrium is reached in O(log log n) steps, with high
probability.

Proof: After t = 12 log log n feasible steps, Dt be-
comes constant, with high probability. From Lemma 2.1,
the probability to have a feasible step is at least 1/4. Let
Xi be a random variable such that Xi = 1 if the i-th step is
feasible or Xi = 0, otherwise. Let X =

∑4t
i=0Xi. Thus,

E[X] ≥ t. From Lemma 1.1, we have Pr
(
X ≥ 3

2 t
)
≥

Pr
(
X ≥ (1 + 1

2)E[X]
)
≤ e−

(1/4)12 log logn
3 = o(1). When

Dt is constant, we have from Lemma 1.2 that the probability
to hit the mean is constant. Hence after O(log log n) steps
the probability that a Nash equilibrium is not reached is
o(1).

The case with two bins when it is not allowed to undo
infeasible migrations will be presented in the journal version
of the paper.

3. Multiple Bins, with Undo of Infeasible Steps

In this section we extend the two bins case presented
in Section 2 for the multiple bins case. We also assume
that n/C is integer. Algorithm 2 presents a simple protocol
that will be executed in parallel for all users. As in Section
2, this section considers the case where it is possible to
perform undo of infeasible migrations. That is, whenever a
bin has its capacity exceeded, the invalid migrations to that
bin are canceled and the corresponding items return to their
previous bins. In this case, valid migrations in the same step
are maintained.

input: bins b1, . . . , bm sorted in non-increasing order
according to their loads, items x1, . . . , xn

begin
t = 1; A = {b1, . . . , bn/C}; B =
{bn/C+1, . . . , bm}; S =

∑n/C
i=1 Dt(bi)

while {bi ∈ B : n(bi) > 0} 6= ∅ do
forall {j ∈ bi : bi ∈ B} in parallel do

move j to bl ∈ A with probability Dt(bl)
S

Update S; t = t+ 1
end
Algorithm 2: MultBins-UndoInfeasibleMigrations

We show that Algorithm 2 reaches a Nash equilibrium
with high probability in few steps. It is also desirable that
the probability imposed to users in each step leads to a
Nash equilibrium. In this case, users would agree with the
probabilities attributed to them in each step. However, the
probabilities imposed by Algorithm 2 does not characterize a
strategy in Nash equilibrium, as we explain in the following.

Let s be the cost of each bin. Thus, a user using bin bi
has to pay s/nt(bi). In a given step t, a user evaluates the
expected load of each bin in step t+ 1 without considering
its own action, and then choose its strategy. The expectation
E[nt+1(bi)] without considering the action of user xj is
given by

E[nt+1(bi)] = nt(bi) + Dt(bi)
S (S − 1) = C − (C−nt(bi))

S .
(3.1)

That is, the largest expectation (and lower cost for a user) is
obtained by the most filled bins. Therefore, if a selfish user
can choose its own migration probability, it will use a best
response strategy with probability 1 to migrate to the most
filled bin. This behavior will lead to invalid migrations for
all users.

Although Algorithm 2 does not use the best response
strategy (i.e., users do not necessarily migrate to the most
filled bin), it is justified by the fact that it is an improvement
response strategy. That is, in each step items migrate to more
filled bins, diminishing the value paid by the users. More-
over, we prove that the strategy above is a 2-approximate
Nash equilibrium and it reaches a Nash equilibrium in few
steps, with high probability.

Theorem 3.1. In each step, Algorithm 2 is a 2-
approximation Nash equilibrium strategy.

Proof: Consider a user j in a bin of set B in step
t and a bin bi ∈ A. From Equation 3.1, the expectation
E[nt+1(bi)] without considering the action of user j is given
by E[nt+1(bi)] = C − (C−nt(bi))

S ≤ C. We also have that
E[nt+1(bi)] = C − (C−nt(bi))

S ≥ C − C
S ≥ C/2. The last

inequality is valid since S ≥ 2.

In each step of Algorithm 2 it is expected that the bins in
A become completely filled and the bins in B completely
empty. The following theorem presents an upper bound in
the number of steps to reach a Nash equilibrium.

Theorem 3.2. If in each step infeasible migrations can be
cancelled then Algorithm 2 reaches a Nash equilibrium in
O(log n) steps, with high probability.

Proof: Let l = 12 log log n be the number of steps
necessary to find a Nash equilibrium for the case with two
bins with high probability, in Theorem 2.4. We say that a
round is a sequence of l steps. Each bin can be viewed
in a independent way, hence, after one round (see proof
of Theorem 2.4) the probability that a given bin does not
become totally full is at most 1

logn . Thus, after 2 logn
log logn

rounds, a given bin is not totally full with probability 1/n2.
Using the union bound, the probability that some bin is not
totally full in 2 logn

log logn · l = O(log n) steps is at most 1/n.

4. Multiple Bins, with no Infeasible Steps

In this section, we are interested in the case of multiple
bins avoiding infeasible steps (an infeasible step finishes
the game without a solution). Since no step can exceeds
the bin capacity, we use more “conservatives” migration
probabilities in such a way that a bin does not have its
capacity exceeded, with high probability.

In this section, we assume that n/C is an integer. Al-
gorithm 3 presents a simple protocol where each step is
executed in parallel for all players.

input: bins b1, . . . , bm sorted in non-increasing order
according to their loads, items x1, . . . , xn

begin
t = 1; A = {b1, . . . , bn/C}; B =
{bn/C+1, . . . , bm}; S =

∑n/C
i=1 Dt(bi)

while {bi ∈ B : n(bi) > 0} 6= ∅ do
forall {j ∈ bi : bi ∈ B} in parallel do

move j to bl ∈ A with probability:
• 2

3
Dt(bl)

S
if Dt(bl) ≥ 54 ln n

• 1
S
√

nm
if 3 ≤ Dt(bl) < 54 ln n

• 1
Snm

if 1 ≤ Dt(bl) < 3

Update S; t = t+ 1
end

Algorithm 3: MultBins-NoInfeasibleSteps

Throughout this section, we use A and B as defined by
Algorithm 3.

Lemma 4.1. For all bins b such that Dt(b) ≥ 54 lnn, the
probability that one of these bins have its capacity exceeded
in a step is less than 1/n2.

Proof: Let b be a bin such that Dt(b) ≥ 54 lnn. Let Xj

be a binary random variable such that Xj = 1 iff item xj
migrates to bin b in step t and X =

∑
j Xj . For simplicity,

we denote by Dt the value Dt(b). We have that E[X] =
2
3Dt. Thus, from Lemma 1.1, we have Pr(X > Dt) =

Pr
(
X > (1 + 1

2)E[X]
)
< e−

(1/2)2(2/3)54 ln n
3 = e− lnn3

=
1/n3. The proof follows by the union bound.

Lemma 4.2. For all bins b such that 3 ≤ Dt(b) ≤ 54 lnn,
the probability that one of these bins have its capacity
exceeded in a step is at most 2

n2m .

Proof: The probability that a bin receives more items
than its capacity is at most the probability that this bin
receives at least 4 items in a single step, which in turn

is bounded by
∑S
i=4

(
S
i

) (
1

S
√
nm

)i (
1− 1

S
√
nm

)S−i
≤∑S

i=4 S
i · 1

Si(
√
nm)i ·

(
1− 1

S
√
nm

)S−i
≤
∑S
i=4

1
(
√
nm)i ≤

2
n2m2 . The proof follows by the union bound.

Lemma 4.3. For all bins b such that Dt(b) < 3, the
probability that one of these bins have its capacity exceeded
in a step is at most 2

n2m .

Proof: The probability that a bin receives more items
than its capacity is at most the probability that this
bin receives at least 2 items in a single step, which in
turn is bounded by

∑S
i=2

(
S
i

) (
1

Snm

)i (1− 1
Snm

)S−i ≤∑S
i=2

1
(nm)i ≤ 2

n2m2 . The proof follows by the union bound.

Lemma 4.4. If X is the total number of items that migrates
to a bin b ∈ A in a given step t and Dt(b) ≥ 54 lnn then
Pr(X < 1

3Dt(b)) < 1/n4.

Proof: Let Xj be a binary random variable such that
Xj = 1 iff item xj migrates to bin b in step t and let X =∑
j Xj be the total number of items that migrates to b in step

t. For simplicity, we denote by Dt the value Dt(b). Since
Dt ≥ 36 lnn we have E[X] = 2

3Dt. Therefore Pr(X <

1
3Dt) = Pr(X < (1 − 1

2)E[X]) < e−
(1/2)2(2/3)54 lnn

2 ≤
e−4 lnn = 1/n4.

Lemma 4.5. After T = O(logC) steps, some bin b have
DT (b) > 54 lnn with probability at most 1

n2 .

Proof: In this proof, we only refer to bins b ∈ A such
that Dt(b) > 54 lnn, the other bins do not need to be taken
into consideration. Let t be the current step. For a bin b,
Lemma 4.4 states that Dt+1(b) > 2

3Dt(b) with probability
less than 1/n4. Applying the union bound, after a step, some
bin b ∈ A will have Dt+1(b) > 2

3Dt(b) with probability less
than 1

n3 . We know that D0(b) ≤ C. Thus, after O(logC)
steps, the result follows.

Theorem 4.6. After O(nm) steps, Algorithm 3 terminates
with high probability.

Proof: The analysis is divided in three phases, de-
pending on the values of Dt. In the first phase, we have
Dt ≥ 54 lnn. By Lemma 4.5, after O(logC) steps, this
phase ends with high probability. In the second phase, we
have 3 ≤ Dt < 54 lnn. By Lemma 4.2, a step is infea-
sible with probability at most 2

n2m , hence if the algorithm
performs at most nm

2 steps, there is no infeasible step with
high probability (at least 1−1/n). In fact, we show that we
need at most O(

√
nm log n) steps as follows. A bin needs at

most 54 lnn items migrating to it before reaching the third
phase. In each step, it is expected that 1/

√
nm items migrate

to it, therefore, the expected number of steps is
√
nm54 lnn.

Let X be the number of steps required to a bin to reach
the third phase. Using a Chernoff bound (Lemma 1.1), we

have Pr(X ≥ (1 + 1/3)E[X]) ≤ e−
1/9
√
nm54 lnn

3 ≤ 1
n2

.
By the union bound, after 72

√
nm lnn steps, all bins reach

the third phase with high probability. In the third phase, we
have 1 ≤ Dt(b) < 3. By Lemma 4.3, a step is infeasible
with probability at most 2

n2m , hence the algorithm terminates
with high probability (at least 1−1/n) if this phase performs
at most O(nm) steps. Applying the same idea used in the
analysis of the second phase, after O(nm) steps, all bins
will be completely full, with high probability.

5. Multiples Bins and Less Global Information

In Sections 3 and 4, we assume that users know, in each
step, the load information of every bin. This can be a strong
assumption if the interval between each step is constant,
because knowing the load information of every bin takes
O(m) time. In this section, we consider that an item knows

his own bin load and can only inspect the load of one
additional bin that is not totally full or empty, incurring in
a constant time step of the protocol. Once a bin becomes
totally full or empty, it is not considered anymore.

Algorithm 4 defines a protocol that users follow to reach
a Nash equilibrium when the system can undo infeasible
migrations, as in Sections 2 and 3. Later, we present Algo-
rithm 5 for the case where undoing infeasible migrations is
not possible.

In Algorithm 4, bins have labels, each label is a number
in {1, . . . ,m} and no two bins have the same label. Let
`(bi) be the label of bin bi. Also, if a bin becomes totally
full or empty then it will not be considered by players in
subsequent steps. Thus, we define mt as the number of bins
not totally full or empty at time t.

input: bins b1, . . . , bm, items x1, . . . , xn
begin

t = 1;
foreach item xi in parallel do

let bxi
be the current bin of item xi

choose bin bj 6= bxi
uniformly at random

if
(
nt(bj) > nt(bxi

)
)

or
(
nt(bj) = nt(bxi

)

and `(bj) < `(bxi
)
)

then
move xi to bj with probability
min

(
Dt(bj)
nt(bxi

) , 1
)

t = t+ 1
end

Algorithm 4: MultBins-LessInformation

Notice that, in the algorithm, the random choice of bin
is done considering only bins different from bxi

and bins
not totally full or empty. That is, we choose each bin with
probability 1/(mt−1), never choosing the bin in which the
item is assigned or a bin already completely filled or empty.

The algorithm does not incur in a high number of infea-
sible steps, as we explain next.

Lemma 5.1. After one step, the probability that a bin j
receives more items than its capacity is at most 3/4.

Proof: Let j be a bin. We compute the expected number
of items that migrate to j in one step. Let j′ be a bin with
less items or equal number of items but greater label than
j. If Dt(j)

nt(j′)
≤ 1 then j′ sends an expected number of Dt(j)

mt−1

items to j. Otherwise (nt(j) < Dt(j)), j′ sends an expected
number of nt(j)

mt−1 <
Dt(j)
mt−1 items to j. Thus, the most filled

bin with smallest label receives more items, receiving an
expected number of at most Dt(j) items. So, analyzing in
the same way as in Section 2, and by Lemma 2.1, it has
probability at most 3/4 of receiving more items than its
capacity. Since the other bins receive less items than the
most filled bin, the result follows.

Lemma 5.2. After O(log n) steps, at least one bin becomes
filled or empty, with high probability.

Proof: Let b∗(t) be the most filled bin (that is not totally
full) with the smallest label in time t and bo(t) the less filled
bin (not empty) with the greatest label in time t. We have
two cases. (i) If Dt(b

∗(t))
nt(bo(t)) ≥ 1, then Dt(b)

nt(bo(t)) ≥ 1 for any bin
b. Therefore bo(t) do not receive items, and try to migrate
with probability 1 all its items. By Lemma 5.1, it is expected
that at least 1/4 of the items in bo(t) successfully migrates.
Note that bo(t+ 1) may be different to bo(t), but this is not
a problem since if bo(t + 1) 6= bo(t) implies that bo(t + 1)
is less filled than bo(t) after items migrate. Therefore, after
O(log n) steps, bo(t) becomes empty, with high probability.
On the other hand, (ii) if Dt(b

∗(t))
nt(bo(t)) < 1 then Dt(b

∗(t))
nt(b)

< 1 for

any bin b. Thus, each bin is expected to send Dt(b
∗(t))

mt−1 items
to b∗(t). As mt−1 bins send this amount to b∗, it is expected
that j∗ receives Dt(b∗(t)) items. Following the analysis idea
of Section 2, in O(ln lnn) steps b∗(t) becomes filled. Again,
b∗(t+ 1) may be different to b∗(t), but as explained above,
this is not a problem. Note that, as time progresses, case (i)
may turn to case (ii) and vice-versa, but this fact does not
affect the analysis, and the result follows.

The following theorem follows directly from Lemma 5.2

Theorem 5.3. After O(m log n) steps, Algorithm 4 termi-
nates with high probability.

Algorithm 5 is designed for the case where users have
little global information and cannot undo infeasible migra-
tions. As before, bins have labels in {1, . . . ,m} and no two
bins have the same label. Let `(bi) be the label of bin bi.
Also, if a bin becomes totally full or empty then it will
not be considered by players in subsequent steps. Thus, we
define mt as the number of bins not totally full or empty in
time t.

input: bins b1, . . . , bm, items x1, . . . , xn
begin

t = 1;
foreach item xi in parallel do

let bxi
be the current bin of item xi

choose bin bj 6= bxi
uniformly at random

if
(
nt(bj) > nt(bxi)

)
or
(
nt(bj) = nt(bxi) and

`(bj) < `(bxi)
)

then
move xi to bj with probability

• min
(

2
3

Dt(bj)

nt(bxi
)
, 1
)

if Dt(bj) ≥ 108 ln n

• 1
n2nt(bxi

)
if 3 ≤ Dt(bj) < 108 ln n

• 1
n3nt(bxi

)
if 1 ≤ Dt(bj) < 3

t = t+ 1
end
Algorithm 5: MultBins-LessInformation-NoUndo

In what follows, we denote by b∗ the most filled bin (not

totally full) with the smallest label.

Lemma 5.4. For all bins b such that Dt(b) ≥ 108 lnn, the
probability that one of these bins has its capacity exceeded
in a step is less than 1/n5.

Proof: Let Xj be a binary random variable such that
Xj = 1 iff item xj migrates to bin b∗ in step t and
X =

∑
j Xj . For simplicity, we denote by Dt the value

Dt(b∗). Note that E[X] ≤ 2
3Dt, however the highest

probability of exceeding the bin capacity is when E[X] =
2/3Dt. Thus, from Lemma 1.1, we have Pr(X > Dt) ≤
Pr
(
X > (1 + 1

2)E[X]
)
< e−

(1/2)2(2/3)108 ln n
3 = e− lnn6

=
1/n6. All other bins receive less items than b∗, thus they
can be bounded this way. The proof follows by the union
bound.

Lemma 5.5. For all bins b such that 3 ≤ Dt(b) ≤ 108 lnn,
the probability that one of these bins has its capacity
exceeded in a step is at most 2

n4(m−1)3 .

Proof: Let nt(bo) be the load of the less filled
bin (not empty). The probability that b∗ receives more
items than its capacity is at most the probability that b∗

receives at least 4 items in a single step, which in turn is

bounded by
∑n−nt(b

∗)
i=4

(
n−nt(b

∗)
i

) (
1

n2(m−1)nt(bo)

)i
·(

1− 1
n2(m−1)nt(bo)

)n−nt(b
∗)−i

≤∑∞
i=4

(
n
i

) (
1

n2(m−1)

)i
≤

∑∞
i=4 n

i 1
n2i(m−1)i =∑∞

i=4
1

ni(m−1)i ≤ 2
n4(m−1)4 . All other bins receive

less items than b∗, thus they can be bounded this way. By
the union bound (the less filled bin with greatest label never
have its capacity exceeded), the result follows.

Lemma 5.6. For all bins b such that Dt(b) < 3, the
probability that one of these bins has its capacity exceeded
in a step is at most 2

n4(m−1) .

Proof: The probability that b∗ receives more items
than its capacity is at most the probability that b∗ re-
ceives at least 2 items in a single step, which in turn

is bounded by
∑n−nt(b

∗)
i=2

(
n−nt(b

∗)
i

) (
1

n3(m−1)nt(bi)

)i
·(

1− 1
n3(m−1)nt(bi)

)n−nt(b
∗)−i
≤
∑∞
i=2

(
n
i

) (
1

n3(m−1)

)i
≤∑∞

i=2 n
i 1
n3i(m−1)i =

∑∞
i=2

1
n2i(m−1)i ≤ 2

n4(m−1)2 . All
other bins receive less items than b∗, thus they can be
bounded this way. By the union bound (the less filled bin
with greatest label never have its capacity exceeded), the
result follows.

Corollary 5.7 follows from lemmas 5.4, 5.5 and 5.6.

Corollary 5.7. In Algorithm 5, an infeasible step occurs with
probability at most 2

n4(m−1) .

Theorem 5.8. After O(n3m) steps, Algorithm 5 terminates
with high probability.

Proof: By Corollary 5.7, Algorithm 5 must perform
O(n3m) steps to terminates with high probability. In what
follows, we show that, after O(n3) steps, at least one bin
becomes totally full. This is sufficient to prove the result,
because there are m bins. We consider that a bin b goes
through 3 phases until it becomes totally full. In the first,
second and third phases we have, resp., Dt(b) ≥ 108 lnn,
3 ≤ Dt(b) < 108 lnn and Dt(b) < 3. We focus the analysis
at bin b∗. In the second and third phases, it is expected
that b∗ receives, resp., 1/n2 and 1/n3 items in each step.
Therefore, we need O(n2 log n) and O(n3) expected steps
to terminate, resp., second and third phases. It is possible
to show that these number of steps is sufficient to terminate
the both second and third phases with high probability (see
proof of Theorem 4.6). Let bo be the less filled bin (not
empty) with greatest label. In the first phase, we consider
two cases: (i) if 2Dt(b

∗)
3n(bo) > 1 and (ii) otherwise. In case (i),

we have 2Dt(b)
3n(bo) > 1 for each bin b that is not totally full or

empty. Therefore, bo gets empty with high probability in a
single step, because as seen in Corollary 5.7, we have low
probability of error. Because there are m bins, case (i) occurs
at most m times. In case (ii), we have 2Dt(b

∗)
3n(b) ≤ 1 for each

valid bin b. Thus, b∗ receives expected number of 2
3Dt(b∗)

items, and it is possible to show that after O(log n) steps
in case (ii) the first phase terminates with high probability
for bin b∗ (see proof of Lemma 4.5). As noted in Lemma
5.2, case (i) may lead to case (ii) and vice-versa. Therefore,
the first phase terminates in O(m+log n) steps. Adding the
number of steps needed in each phase, b∗ becomes totally
full in O(n3) steps, with high probability.

It is also worth noting that we can extend the results
presented in this section to the case where items consider
totally full or empty bins to migrate. These results will be
presented in the journal version of the paper.

6. Extension to Different Costs

Our protocols also work for bins with different costs.
Let L(bi) = si

nt(bi)
. In the two bins case, let bmin =

argmin (L(b1), L(b2)) and bmax = argmax (L(b1), L(b2)).
Note that items in bmax want to migrate to bmin. It is easy to
see that the same protocol presented in Section 2 works for
bins with different costs simply doing bmin as the most filled
bin and bmax the less filled bin. For multiple bins case, we
use the same idea. Let b1, . . . , bm be the bins sorted in non-
decreasing order according to L(bi). Thus, bins b1, . . . , bn/C
are used on protocols of Sections 3 and 4 as set A, and the
other bins are used as set B. All results remain valid except
Theorem 3.1, which is not valid when bins have different
costs. In algorithms of Section 5, we compare using L(bi)
instead n(bi).

7. Closing Remarks

In this paper, we presented protocols for a bin packing
game when migration is done simultaneously, motivated
by parallel and distributed systems. The simplicity and
efficiency of these protocols make them very attractive.
Without following protocols like the ones presented in this
paper, users know that their selfish strategies will lead to
infeasible steps and invalidate attempts of the system to
reach Nash equilibrium. Some questions that remain open
in our model are related to lower bounds in the number
of steps and other protocols that requires even less global
information.

References

[1] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani,
Algorithmic Game Theory. New York, NY, USA: Cambridge
University Press, 2007.

[2] J. Nash, “Non-cooperative games,” The Annals of Mathemat-
ics, vol. 54, no. 2, pp. 286–295, September 1951.

[3] V. Bilò, “On the packing of selfish items.” in 20th Inter-
nacional Parallel and Distributed Processing Symposium -
IPDPS. IEEE, 2006, pp. 9–18.

[4] L. Epstein and E. Kleiman, “Selfish bin packing,” in ESA ’08:
Proceedings of the sixteenth annual European Symposium on
Algorithms, 2008.

[5] E. Even-Dar, A. Kesselman, and Y. Mansour, “Convergence
time to nash equilibrium in load balancing,” ACM Transac-
tions on Algorithms, vol. 3, no. 3, p. Article 32, 2007.

[6] B. F. Cooper and H. Garcia-Molina, “Peer-to-peer data trading
to preserve information,” ACM Trans. Inf. Syst., vol. 20, no. 2,
pp. 133–170, 2002.

[7] E. C. Xavier and F. K. Miyazawa, “The class constrained
bin packing problem with applications to video-on-demand,”
Theor. Comput. Sci., vol. 393, no. 1-3, pp. 240–259, 2008.

[8] N. Naaman and R. Rom, “Packet scheduling with fragmenta-
tion,” in INFOCOM ’02: Twenty-First Annual Joint Confer-
ence of the IEEE Computer and Communications Societies,
vol. 1, 2002, pp. 427–436.

[9] N. Andelman, M. Feldman, and Y. Mansour, “Strong price
of anarchy,” in SODA ’07: Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms, 2007,
pp. 189–198.

[10] D. Monderer and L. Shapley, “Potential games,” Games and
Economic Behavior, vol. 14, pp. 124–143, 1996.

[11] R. Rosenthal, “A class of games possessing pure-strategy nash
equilibria,” International Journal of Game Theory, vol. 2, pp.
65–67, 1973.

[12] P. W. Goldberg, “Bounds for the convergence rate of ran-
domized local search in a multiplayer load-balancing game,”
in PODC ’04: Proceedings of the twenty-third annual ACM
symposium on Principles of distributed computing, 2004, pp.
131–140.

[13] P. Berenbrink, T. Friedetzky, L. A. Goldberg, P. Goldberg,
Z. Hu, and R. Martin, “Distributed selfish load balancing,”
in SODA ’06: Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm, 2006, pp. 354–363.

[14] E. Even-Dar and Y. Mansour, “Fast convergence of selfish
rerouting,” in SODA ’05: Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, 2005, pp.
772–781.

[15] D. Angluin and L. Valiant, “Fast probabilistic algorithms for
hamiltonian circuits and matchings,” Journal of Computer and
System Sciences, vol. 18, no. 2, pp. 155–193, 1979.

