
Convergence Time to Nash Equilibrium in
Selfish Bin Packing ?

Flávio K. Miyazawa and André L. Vignatti 1

Institute of Computing
University of Campinas

Campinas, Brazil

Abstract

We consider a game-theoretic bin packing problem and we study the convergence
time to a Nash equilibrium. We show that, if the best-response strategy is used,
then the number of steps needed to reach Nash equilibrium is O(mw2

max + nwmax)
and O(nkwmax), where n, m, k and wmax denotes, resp., the number of items, the
number of bins, the number of distinct item sizes, and the size of a largest item.

Keywords: analysis of algorithms, selfish bin packing, convergence time.

1 Introduction

In large-scale systems, e.g. the Internet, it is difficult or impossible to maintain
a central authority who organizes or dictate rules about the actions to be taken
on many systems. In face of that, the actions are taken by entities, called
players, belonging to the system, each with an own goal. Each player chooses
his action based on the current state of the system, which in turn is determined

? This research was partially supported by CNPq.
1 Email:{fkm,vignatti}@ic.unicamp.br

by the actions of other players. Thus, a player updates his action in response
to the actions of others so that a sequence of actions occurs. This sequence
may stop at a steady state where no player wishes to update its action, or
may continue indefinitely. This steady state is called the Nash equilibrium,
and is considered the main concept of solution for non-cooperative games, i.e.,
games where players act in an independent and selfish way.

In this work, we are interested in the bin packing problem where the ex-
istence of a central authority is infeasible. Thus, each item can be seen as
a selfish player who wants to act so as to achieve its goal. More specifically,
we are interested in the number of steps (i.e., updates of actions) to be made
by the system to achieve the Nash equilibrium. In our model, we assume the
elementary stepwise system (ESS), i.e., at each step only one item updates
its action. In bin packing game, we have n items and m bins. All bins have
the same size C and cost equal to one, each item i has integer size wi. Let `j

be the load of bin j, i.e., the total size of items assigned to bin j. An item i
assigned to a bin j pays the fraction of the load he is using, or wi/`j. As i is
selfish and, therefore, wants to minimize his cost, it migrates to another bin j′

if wi + `j′ ≤ C and wi/(wi + `j′) < wi/`j (i.e. wi + `j′ > `j). That is, i moves
from j to j′ if it fits in j′ and its new cost is smaller. The Nash equilibrium is
a feasible packing where no player can reduce its cost moving to another bin.

Related Work: A game theoretic model for bin packing was first proposed
by Bilò in [1]. He proved that bin packing game in the ESS model always
converges to Nash equilibrium, showing an O(P 2) upper bound in the number
of steps, where P is the sum of the sizes of all items. He also proved bounds on
the price of anarchy. In [2], Epstein and Kleiman obtained better bounds for
the price of anarchy. In [5], Yu and Zhang show that computing a pure Nash
equilibrium can be done in polynomial time, although it requires a centralized
algorithm. In [4], Miyazawa and Vignatti show logarithms and polynomial
bounds for the convergence time in a distributed setting of selfish bin packing.
To the present, these four papers are the only ones to address the bin packing
problem under a game theoretic perspective. The bin packing problem is also
related with the load balancing problem. Bilò [1] observed some similarities
between these two problems and used a potential function to prove convergence
time in a similar way as done for the load balancing problem [3]. Even-dar et
al. [3] show lower and upper bounds on the number of steps to reach a Nash
equilibrium of load balancing problems in ESS in many cases.

Our Results: We present two upper bounds of convergence time to Nash
equilibrium in the bin packing game, when using the best-response strategy,
i.e., when a player moves to a bin with the lowest cost for him. We show that

the number of steps needed to reach Nash equilibrium is O(mw2
max + nwmax)

(Theorem 3.7) and O(nkwmax) (Theorem 3.8), where k denotes the number
of distinct item sizes and wmax the size of a largest item. It is worth noting
that our results are the first non-trivial bounds for the problem, and our proof
techniques are different from those in [1,3] and from other papers regarding
covergence time to Nash equilibrium.

2 Model Description

The model is composed by m bins with capacity C, each one with cost 1, and
n items with sizes w1, . . . , wn. Let [n] be the set of items, and [m] the set of
bins. A function A : [n] → [m] represents a configuration of the game if for
any bin j, its load `j is at most C, where `j =

∑
i∈[n]:j=A(i) wi. Each item is

controlled by a player, who wants to assign his item in a selfish way to a less
costly bin. When player i uses bin j, he pays wi

`j
. Let i be an item assigned to

bin j. As i wants to minimize his cost, he will migrate if he finds a bin j′ 6= j
such that wi + `j′ ≤ C and wi/(wi + `j′) < wi/`j (i.e. wi + `j′ > `j).

Throughout the text, we use n, m, wi and `j as defined above. We also
use wmin and wmax to denote, resp., the smallest and the largest size of an
item, and k ≤ n to denote the number of distinct sizes in the set. Let wmin =
s1, . . . , sk = wmax be the k different sizes sorted in increasing order.

To make the notion of time precise, we define a time t as the moment of
the game just after the t-th move. Let W t

i =
∑

j max(0, `j − (C − sk−i)), for
each time t ≥ 0. To simplify the notation, we use Wi in situations regarding
one specific move, where the time t is not needed.

3 Bounds on the Convergence Time

In this section, we prove two bounds for the convergence time to Nash equi-
librium, given in Theorems 3.7 and 3.8. We first present some definitions and
technical results before presenting these two theorems.

Lemma 3.1 During the game, Wi never decreases and is at most msk−i. That
is W 0

i ≤ W 1
i ≤ W 2

i ≤ . . . ≤ msk−i.

Lemma 3.1 is easy to prove and its proof is omitted. From Lemma 3.1, the
number of steps that increase Wi is at most msk−i.

We say that a bin j is light if `j ≤ C − wmax, otherwise, it is said to be
a heavy bin. Thus, there are 4 types of moves: (1) light to light, (2) light

to heavy, (3) heavy to light and (4) heavy to heavy. In the next lemmas, we
bound the number of moves of each type.

Lemma 3.2 There are at most mwmax moves of type (2).

Proof. Consider that the t-th move is of type (2). When an item leaves a light
bin, W t

0 is not changed, and when it arrives in the heavy bin, W t
0 increases at

least the size of the item. The result follows from Lemma 3.1. 2

Lemma 3.3 There are at most mwmax moves of type (3).

Proof. Suppose that the item leaves the heavy bin j and goes to the light
bin j′ in time t. Since items move selfishly, after the move, the load of bin j′

is greater than the load of bin j before the move. Therefore, bin j′ becomes
heavy and the move contribution for W t

0 is at least 1 (even if bin j becomes a
light bin). The result follows from Lemma 3.1. 2

Lemma 3.4 There are at most mw2
max moves of type (4).

Proof. For each bin we assign tokens. A bin can have multiple tokens assigned
to it, and the assignment and creation of the tokens is done as follows. Each
created token is distinct from each other. A token is created in two situations,
(i) when a light bin becomes heavy, we create the token and assign it to this
bin or (ii) when an item from a light bin migrates to a heavy bin, we create a
token and add it to the heavy bin. Note that in both cases, W t

0 increases by
at least 1, and from Lemma 3.1, the total number of created tokens is at most
mwmax. If an item moves from bin j to bin j′, then all the tokens assigned to
j are reassigned to j′. Therefore, the tokens are always moving to more filled
bins. Thus, looking at a specific token, it moves to more filled bins at most
wmax times, and therefore there are at most wmax moves associated with that
token. As we have at most mwmax tokens and for each token we have at most
wmax moves, the result follows. 2

Lemma 3.5 presents a result that will be useful in Theorem 3.8 and to
bound the number of moves of type (1). Before that, we present some defi-
nitions used throughout the text. We define k + 1 loading intervals, denoted
by regions, L0, . . . , Lk, where Li is the region bounded by load greater than
C − sk−i+1 and at most C − sk−i, for i ≥ 1. Region L0 is bounded by load
between 0 and C − sk. Let Hi be the region bounded by load greater than
C − sk−i. Let Li → Lj denote a move of an item from a bin whose load is
in region Li to another bin whose load is in region Lj; similarly, we define
Li → Hj, Hj → Li and Hi → Hj.

Lemma 3.5 There are O(nwmax) moves of type Li → Li.

Proof. Let i ∈ {0, . . . , k}. A bin is said to be underloaded if its load is at
most C−sk−i, otherwise, it is said to be overloaded. The heaviest underloaded
bins are the underloaded bins with the greatest load in an instant of time. Let
j∗ be a pointer to one of the heaviest underloaded bins in an instant of time.
Notice that, after a move, j∗ may need to be updated to point to another bin.

We define three regions a, b, c, where a is the region bounded by load
greater than C − sk−i (“above” Li), b is the region bounded by load greater
than C−sk−i+1 and at most C−sk−i (same as Li), and c is the region bounded
by load between 0 and C − sk−i+1 (“below” Li). Let W =

∑
j:j is underloaded `j,

note that 0 ≤ W ≤ nwmax. We will prove the following: ∆ = W−`j∗ decreases
after a b→ b move (i.e., Li → Li), increases at most nwmax times due to a→ a
moves, and cannot increase by the other moves (a → b, a → c, b → a, b →
c, c → a, c → b, c → c). Consequently, after O(nwmax) moves Li → Li, ∆
reaches its minimum and therefore no more moves Li → Li can occurs.

Fact 3.6 Items with size greater than sk−i do not move in moves of type
Li → Li. Therefore, due to the best-response, a move of type Li → Li always
assign an item to one of the heaviest underloaded bins.

In a Li → Li move, j∗ remains underloaded or becomes an overloaded bin.
If it remains underloaded, then, due to Fact 3.6, `j∗ increases by at least one,
and W do not change, thus, ∆ decreases by at least one. Otherwise, if j∗

becomes overloaded, then W decreases by at least C − sk−i and j∗ will point
to another underloaded bin with load at least 1, thus `j∗ decreases by at most
C − sk−i − 1, therefore, ∆ decreases by at least one.

For a → a moves, suppose that item i goes from bin j− to bin j+. If
`j− − wi ≥ C − sk−i then ∆ do not increases. Otherwise, ∆ may increase as
now W considers bin j− in the sum. In the other hand, Wi increases and,
from Lemma 3.1, Wi increases at most nwmax. Therefore ∆ also increases at
most nwmax times.

After a move of type a → b or a → c, if the load of `j∗ decreases, then
it decreases by at most the value decreased in W , and therefore ∆ do not
increase. In moves of type b → a and c → a, W decreases by the size of the
moved item, and after the pointer j∗ updates, we see that `j∗ decreases by at
most the size of the item moved. Therefore ∆ do not increase. Moves of type
b → c, c → b, and c → c, can be analysed in a similar way as the previous
cases. 2

Theorem 3.7 In the bin packing game using the best-response strategy, the

Nash equilibrium is reached in O(mw2
max + nwmax) steps.

Proof. The result follows from Lemmas 3.2, 3.3, 3.4 and 3.5 (noting that
moves of type (1) are L0 → L0). 2

Theorem 3.8 In the bin packing game using the best-response strategy, the
Nash equilibrium is reached in O(nkwmax) steps.

Proof. Notice that the moves of type Hi−1 → Hi−1 are one of these types:
Li → Li, Li → Hi, Hi → Li and Hi → Hi. Let |Li → Li| be the number of
Li → Li moves; |Li → Hi|, |Hi → Li|, |Hi → Hi| are defined similarly. Thus,
we can write the recurrence

|Hi−1 → Hi−1| = |Li → Li|+ |Li → Hi|+ |Hi → Li|+ |Hi → Hi|

|Hk−1 → Hk−1| ≤ mwmin

where |Hk−1 → Hk−1| ≤ mwmin because each move increases the potencial
by at least wmin, and the maximum potencial above the “imaginary line”
C − wmin is bounded by mw2

min (see [1,3]). The total number of moves is
bounded by |H−1 → H−1|. Solving the recurrence, we have |H−1 → H−1| =∑k−1

i=0 |Li → Li| +
∑k−1

i=0 |Li → Hi| +
∑k−1

i=0 |Hi → Li| + mwmin. In what
follows, we bound each of these sums. Similar to proof of Lemma 3.1, Wi

never decreases and Wi ≤ msk−i. In each move of type Li → Hi, Wi increases
and therefore we have at most msk−i moves of this type (see proof of Lemma
3.2). Thus,

∑k−1
i=0 |Li → Hi| ≤ mS, where S =

∑k
i=1 si. In each move of type

Hi → Li, Wi increases and therefore we have at most msk−i moves of this
type (see proof of Lemma 3.3). Thus,

∑k−1
i=0 |Hi → Li| ≤ mS. Using Lemma

3.5,
∑k−1

i=0 |Li → Li| ≤ knwmax. Adding all the terms, the result follows. 2

References
[1] Bilò, V., On the packing of selfish items, 20th IEEE International Parallel and

Distributed Processing Symposium, IPDPS (2006), 9–18.

[2] Epstein, L. and E. Kleiman, Selfish bin packing, 16th European Symposium on
Algorithms, ESA (2008), 368–380.

[3] Even-Dar, E. and A. Kesselman and Y. Mansour, Convergence time to Nash
equilibrium in load balancing, ACM Trans. on Algorithms. 3 3 (2007), 32-es.

[4] Miyazawa, F. K. and A. L. Vignatti, Distributed Selfish Bin Packing, 24th IEEE
International Parallel and Distributed Processing Symposium, IPDPS (2009),
1–8.

[5] Yu, G. and G. Zhang, Bin Packing of Selfish Items, 4th International Workshop
on Internet and Network Economics, WINE (2008), 446–453.

