
Long-term Digital Archiving Based on Selection of Repositories Over P2P
Networks

Tiago Vignatti, Luis C. E. Bona, Marcos S. Sunye
Federal University of Paraná
Department of Informatics

{vignatti, bona, sunye}@inf.ufpr.br

André L. Vignatti
University of Campinas
Institute of Computing
vignatti@ic.unicamp.br

Abstract

The importance of digital information is constantly in-
creasing in the last years. Such information often needs
to be preserved for a long-term and this is the responsi-
bility of digital archiving systems. This paper proposes a
reliable replication model of immutable digital content to
be used in long-term archiving systems. The archiving sys-
tem is modeled as a set of storage repositories where each
repository has an independent fail probability assigned to
it. Items are inserted with a reliability that is satisfied by
replicating them in subsets of repositories. Through simu-
lation, we evaluated three different proposed strategies to
create replicas. It is also proposed a completely distributed
archiving system using this model over a structured peer-
to-peer (P2P) network. The communication between the
nodes (repositories) of the network is organized in a dis-
tributed hash table and multiple hash functions are used to
select repositories that will keep the replicas of each stored
item. The system is evaluated through experiments in a
real environment. The proposed model and the algorithms,
combined with the structured P2P scalability made possible
the construction of a reliable and totally distributed digital
archiving system.

1. Introduction
The goal of digital archiving systems is to preserve large

volumes of data that need to be stored safely for a indef-
initely long period of time. Digital libraries, Internet ap-
plications such as email, photo sharing and homepages are
some examples of services that need these systems. Archiv-
ing systems can be built using specialized hardware but,
in many cases, this solution can be economically unfeasi-
ble. An alternative is to replicate the information in multi-
ple storage repositories, consisting of conventional and low
cost computers [2]. Peer-to-Peer (P2P) networks appear as
a promising approach to organize systems with these char-
acteristics, since they are highly scalable for the distribution

and retrieval of data. However, the mechanisms of replica-
tion available in most P2P networks are not sufficient to en-
sure the preservation of data over a long period of time. In
the digital archiving environment, it is important to observe
that we are not interested in replicas updates, since we are
only dealing withread-only and staticobjects [11]. When
a replica is created, it becomes immutable in the system.

The main contribution of this work is the creation of a
completely distributed P2P archiving system. In this sys-
tem, the repositories are organized by adistributed hash ta-
ble (DHT) [16, 14, 19, 20] andmultiple hash functionsare
used as mechanisms for replication. The choice of struc-
tured P2P, instead of non-structured, is motivated by its
scalability regarding the number of nodes. Moreover, in
many cases, the search algorithms of non-structured P2P
networks cannot locate rare items, which is unacceptable
in the our context. Multiples hash funcions were used to
perform a selection on specific set of repositories, a feature
not present in non-structured P2P model using DHT. The
system was evaluated through experiments in a real world
environment.

The P2P digital archiving system motivates the definition
of a model for data replication. Thus, we propose a model
for replication where a reliability metric is associated with
each repository. This metric denotes the probability that the
data are not lost or damaged in a given period of time. Fur-
thermore, each item (digital information) needs to be stored
with a desired reliabilitythat reflects the importance of the
item, allowing high or low durability (preservation time)
depending on its importance. To ensure the desired relia-
bility of an item, severalreplicasof the item are created in
the repositories, and the number of replicas needed to pre-
serve an item is determined by the reliability metric of the
repositories. This allows an optimization of the network re-
sources usage, compared to other systems where the num-
ber of replicas is fixed [10, 15], however, more elaborated
strategies for replication should be used in this case. One
of the contributions of this work is to present and compare
three different strategies for the reliable replication prob-

lem.

Figure 1: Repositories labeled with independent reliabilities.

As an example, Figure 1 shows a network with five
repositories, identified by 1, 2, 3, 4 and 5; with reliability
of 40%, 80%, 30%, 60% and 25% respectively. Suppose
that a user wants to insert an item in the network with a
desired reliabilityof 90%. A simple strategy would repli-
cate this item in the order of identifiers of repositories, until
it achieves the desired reliability. Thus, with one replica
in the repository 1, the item has guaranteed a reliability of
40%. Adding a replica in the repository 2, the reliability
guaranteed would be1 − (0.6 × 0.2) = 88%, but still not
reaching the desired reliability of 90%. With an additional
replica in the repository 3, the reliability guaranteed would
be1 − (0.6 × 0.2 × 0.7) = 91.6%, therefore reaching the
desired reliability of the item.
Related Work: In digital preservation and long-term
archiving environments, the information is not updated or
removed [11]. When a replica is created, it isimmutable
in the system. Thus, in this work we are not interested in
strategies and mechanisms for replicas update.

Traditional solutions for backup or data storage, such as
replicated file systems and RAID disks [8] do not provide
a degree of autonomy as the P2P networks do. Unlike the
proposed P2P archiving system of this work, these systems
use a centralized control to manage the content that needs
to be replicated. P2P systems for file sharing such as Kazaa,
eDonkey and Gnutella [12] focus on searching resources in
dynamic collections, and are not focused on the reliability
of the information. In such systems, a file is replicated every
time it is copied into a new node.

CFS [3] and PAST [17] are not able to dynamically
change the number of replicas since they employ replication
in the neighborhood. The number of replicas cannot exceed
the size of the neighbors list, since the number of neighbors
is tied with the DHT protocol. Any digital archiving system
built on these systems could not be able to achieve the de-
sired degree of replication required to preserve their infor-
mation. Other forms of storage that use DHT as OceanStore
[7] and Glacier [1] consider a simpler model where their
nodes have equal probability of failure. BRICKS [15] con-
sider availability instead reliability, associating a single fail
probability to all nodes in the network.

The LOCKSS (Lots of Copies Keep Stuff Safe) [10]

uses a P2P network where computers are controlled by au-
tonomous organizations to preserve the information for a
long period of time. It uses a complex scheme of audit to de-
tect and repair the damage in the replicas. Unlike our model,
the LOCKSS treats its repositories with a single probability
of failure, which does not exactly model real environments.
Also, LOCKSS considers a fixed number of replicas for its
items.
Contributions and Results Obtained:This paper presents
a model for reliable replication of data in digital archiving
systems with immutable data. To cope with the scalability,
we create a structured P2P network for the reliable archiv-
ing, implemented over the model proposed. We also present
three strategies of reliable replication. Simulations were
performed to compare the replication strategies and experi-
ments in real environments have been made to establish the
P2P digital archiving system.

In the proposed model, independent probabilities of fail-
ure are associated with each storage repository. These prob-
abilities allow items to be stored based on their preserva-
tion time needs. Moreover, the repositories have different
storage capacities, i.e., the repositories areheterogeneous.
Thus, due to limited storage capacity, we aim to insert the
maximum number of items in the network; always satisfy-
ing the desired reliability of the items.

To maximize the number of items inserted in the net-
work, we designed the strategies with two (heuristic) goals:
balance the load between the repositories and, at the same
time, minimize the total number of replicas created. This is
justified by two facts: (i) balance the load, as well as mini-
mize the replicas created, avoids the overhead in the repos-
itories. Furthermore, (ii) if the load balancing is not per-
formed, a repository can easily becomes completely filled
and, consequently, the number of repositories that can be
selected decreases, thus decreasing the number of available
options that meet the desired reliability of an item. This, in
turn, implies the creation of a larger number of replicas to
satisfy the desired reliability of an item and hence the total
number of items to be inserted in the network decreases due
to the limited capacity of the repositories.

In the case of heterogeneous repositories that we con-
sider, balancing the load and minimizing the replicas do not
necessarily imply the maximization of the number of items
inserted in the network due to different capacities of each
repository. Even so, we use these two goals, hoping to ap-
proximate the above arguments. Indeed, in Section 2.3, the
experimental results of the simulations confirm that these
are good goals for the heterogeneous case.

In Section 2.2, we present three strategies for creating
replicas, which were empirically stressed in Section 2.3.
All these strategies aim to optimize the number of repli-
cas created and the load balancing. However, each strat-
egy is based on different arguments to justify its use. The

Randomizedstrategy has the load balancing as the main
motivation, justified by theoretical results of ball-and-bins
[13]. Also, in this strategy, we obtained a theoretical bound
in the number of replicas created. TheGreedy over Sub-
setstrategy has the minimization of replicas created as the
main motivation, but adjustments are made to perform a
good load balancing. TheIdeal Subsetstrategy solves the
problem without giving priority to minimizing the replicas
or balancing the load, acting as a “mean” between the two
goals.

Through simulations, in Section 2.3, we found that
among the three strategies presented, the Ideal Subset strat-
egy proved to be the most effective in the creation of repli-
cas and load balancing, and also obtaining the highest num-
ber of inserted objects in the network. This strategy has a
computational complexity that could not be feasible in prac-
tice if not carefully formulated.

Due to high scalability for the distribution and retrieval
of data, structured P2P networks appear as natural candi-
dates to implement the model proposed. Thus, in Section
3, we present a reliable P2P archiving system, which is the
main contribution of this work. The structured P2P net-
works have a difficulty inherent in the method of routing
information which makes difficult the selection of specific
nodes (repositories) for the storage. However, this problem
was overcome by the use ofmultiple hash functions, which
is the main contribution of this section. We describe in de-
tail the algorithms that use multiple hash functions for the
basic operations of the network. The implementation of the
P2P digital archiving system was evaluated in a real envi-
ronment, where digital objects were inserted in a network to
stress the preservation time in function of their importance.
Organization: In Section 2 we present the model of repli-
cation for archiving systems and the strategies used for cre-
ating replicas. Moreover, we compare the strategies through
simulations. In Section 3, we present the reliable P2P
archiving system and use a real environment for evaluation.
The conclusion and future work are presented in Section 4.

2. Model and Proposed Strategies

The model is composed by a setN of |N | = n items
(digital objects). All items have identical size, without loss
of generality, equal to1. Each itemi has associated a prob-
ability 0 < ri < 1, called thedesired reliabilityof the item.
Furthermore, we have a setM = {`1, . . . , `m} of |M | = m

repositories, where each repository`j has associated astor-
age capacitycj and a probability0 < pj < 1, called the
reliability of the repository. To determine this reliability,
we can consider some parameters such as the number of
bugs, the vulnerabilities of the system, human factors, the
frequency at which the machines are repaired, among oth-
ers. The determination of the desired reliability of an item
is not in the scope of this work.

The reliability of the subsetS ⊆ M is defined as1 −
∏

`j∈S(1−pj), which denotes the probability of at least one
repository inS does not lose data in a given time interval.

We define the problem as follows. Items arrive one by
one, i.e., initially there is no item, and the items arrive as
time passes. After an itemi arrives, we have to choose a
subsetSi of repositories where each repository inSi re-
ceives a copy of the item (replica) to satisfy the desired
reliability ri. In other words, we selectSi ⊆ M such that

1 −
∏

`j∈Si

(1 − pj) ≥ ri. (1)

In addition, each repository inSi must have enough free
space to receive the copy. Theload of a repository is the
number of replicas assigned to it. The replicas are never up-
dated, i.e., they are immutable. The objective of the prob-
lem is to maximize the number of items inserted in the net-
work, satisfying the desired reliability of items and the ca-
pacity of the repositories.

As argued before, we focus on two goals: (i) on the one
hand, we want to minimize the total number of replicas cre-
ated, i.e., minimize

∑

∀i |Si|. On the other hand, (ii) at the
same time, the replicas should be placed so as to balance the
load. To measure the load balacing, we evaluate two met-
rics: themakespan, i.e., the load of the most loaded repos-
itory, andstandard deviationof the repositories load. Note
that the minimization of the makespan and the standard de-
viation of the loads are sufficient measures to ensure that all
repositories have a balanced load.

A naive approach would treat both goals in an indepen-
dent way, for example, first solving the minimization of the
replicas and then balancing the load. This is not a good
approach, because the number of replicas created depends
directly from repositories which had allocate the replicas.
As an example, we illustrate a situation where we first solve
the problem of replicas and then solve the load balancing.
Suppose an instance where the repository`j has reliability
pj and all items have desired reliability less thanpj . It suf-
fices to create a single replica of each item in`j . However
`j will be overloaded, and when we start the phase of bal-
ancing the load, we have to remove items from`j. In this
way, we have to select other repositories to accommodate
new replicas of these items to meet their desired reliabil-
ity, lying again on the problem that we thought was solved
before the load balancing.

2.1. Equivalent Definition

Next, we rewrite the desired reliability constraint to ease
the handling of the problem of replicas creation. We present
an equivalent definition of the desired reliability constraint,
replacing the product by a summation. We rewrite the de-

sired reliability constraint as follows:

1 −
∏

`j∈Si

(1 − pj) ≥ ri ≡
∏

`j∈Si

(1 − pj) ≤ 1 − ri

≡
∏

`j∈Si

eln(1−pj) ≤ eln(1−ri)

≡ e
∑

`j∈Si
ln(1−pj)

≤ eln(1−ri).

But

e
∑

`j∈Si
ln(1−pj) ≤ eln(1−ri) ⇐⇒

∑

`j∈Si

ln(1−pj) ≤ ln(1−ri).

As 0 < pj, ri < 1, then the value of the logarithm func-
tion is negative. Thus, for clarity of notation, we rede-
fine the problem variables. Letaj = − ln(1 − pj) and
bi = − ln(1 − ri). Therefore, the desired reliability con-
straint can be rewritten in the following equivalent way,

∑

`j∈Si

aj ≥ bi. (2)

That is, for an itemi we have to selectSi ⊆ M such that
the sum ofaj exceedsbi. Equation 2, besides being easier
to handle, is equivalent to the Equation 1.

2.2. Strategies for Replicas Creation

In what follows, we present three strategies for the cre-
ation of replicas. In all strategies, we do a selection over a
set of repositories. When doing a selection onM , the com-
plexity of the worst case is linear inm, which is a good
theoretical bound. In practice, however, a selection on the
set of all machines of the network is infeasible. Thus, in the
strategies described below, we denote byMo ⊆ M the set
of machines that are available based on a feasible number
of machines that we can select in practical situations. For
each item that arrives to be inserted, we consider thatMo

is selected at random fromM ; in practice, the way thatMo

is selected may depends on the system features. Note that
the strategies presented are generic, i.e., can be used in vari-
ous situations of reliable replication systems. Therefore, the
size ofMo may depends on the features of the real-world
situation that we are considering.

It is worth noting that in all strategies, when a replica
is assigned to a full repository, we ignore it and randomly
select another repository of the considered set.
Randomized Strategy:Here, we present the first proposed
strategy to solve the problem. Algorithm 1 shows the de-
tails.

In this subsection, we usem = |Mo| and assume that
the reliabilities of the repositories are uniformly distributed
in an interval. Formally, the valuespj is chosen according
to thecontinuous uniform distributionin the interval[a, b],
wherea > 0 and b < 1. We assume that the expected

begin
S = ∅
while reliability of S is less thanri do

choosè j ∈Mo uniformly at random
S = S ∪ {`j}

return S
end

Algorithm 1 : Randomized

number of reliable repositories (in a specified time interval)
is at least8 lnm; note that this is not a strong assumption
to the problem, since the expected fraction8 ln m

m
of reliable

repositories goes to0 whenm goes to infinity. For example,
for m = 1000, we assume that the expected fraction of
reliable repositories is8 ln 1000

1000 ≈ 0.05, i.e., we assume that,
in expectation,5% of repositories are reliable.

Let Xj be a random variable that is equal to1 if the
repositorỳ j is reliable in the time interval specified,0 oth-
erwise. LetX =

∑

j∈Mo Xj be the random variable of the
total number of reliable repositories in a given time inter-
val. As we assume that the reliabilities of the repositories
are distributed according to the continuous uniform distri-
bution, thenE[X] = m(a+b)

2 . In a given time interval,X
can be less thanE[X], however, with high probability, it
cannot be much less than the expected value, as shown in
Lemma 2.1.

Lemma 2.1.Let Xj be a random variable that is equal to
1 if the repository`j is reliable, 0 otherwise. LetX =
∑

`j∈Mo Xj be the random variable of the total number of
reliable repositories in a given time interval. ThenPr(X <
1
4E[X]) < 1

m2 .

Proof. Note thatX is a sum of Poisson random variables.
Therefore, we can apply a known Chernoff bound [13],

obtainingPr(X < (1 − 3
4)E[X]) ≤ e−

9E[X]
32 ≤ m−2,

where the last inequality follows from the fact thatE[X] ≥
8 lnm.

Lemma 2.1 tells us that with high probability (i.e., proba-
bility greater than1− 1

m2), a fraction ofa+b
8 of the reposito-

ries are reliable. That is, with high probability, when select-
ing a repository uniformly at random, we have probability at
least a+b

8 that it is a reliable repository. Thus, by choosing
k repositories uniformly at random, the probability that one

or more repositories are reliable is at least1 −
(

1 − a+b
8

)k

and we want that this probability be greater than the desired

reliability ri. Thus, by choosingk =
⌈

8
a+b

ln
(

1
1−ri

)⌉

repositories uniformly at random and place the replicas on
them, the desired reliability of the itemi is satisfied with
high probability, as the Theorem 2.2 claims.

Theorem 2.2.If item i placesk =
⌈

8
a+b

ln
(

1
1−ri

)⌉

repli-

cas ink repositories chosen uniformly at random then, with
high probability, the desired reliability ofi is satisfied.

As an example of Theorem 2.2 application, suppose
that the reliability of the repositories are uniformly dis-
tributed between 50% and something close to 100%. Thus,
an item with desired reliability of 95% needs to choose
⌈

8
0,5+1 ln

(

1
1−0,95

)⌉

= 16 repositories uniformly at ran-

dom to place its replicas.
Regarding the load balancing, we note that in Algorithm

1, a replica always chooses a repository uniformly at ran-
dom. That is, Algorithm 1 simulates the balls-and-bins pro-
cess, well studied in the area of randomized algorithms and
the existing results can be used in our problem [13]. The
results of Theorems 2.3 and 2.4 can be easily obtained from
the results of balls and bins and therefore the demonstra-
tions will be omitted.

Theorem 2.3.If n balls are thrown independently and uni-
formly at random onm bins, then the load of the most
loaded bin is bounded by2e n

m
+ 2 log m with high prob-

ability.

Theorem 2.4.Let n ≥ m log m. If n balls are thrown in-
dependently and uniformly at random onm bins, then the
load of the most loaded bin is bounded byn

m
+

√

8m
n

log m

with high probability.

Theorems 2.3 and 2.4 are related, respectively, to a small
and a large number of balls (in our problem, they are the
items). However, in practical situations, it is likely thatn ≥
m logm and, in this case, Theorem 2.4 tells us that with
high probability the most loaded repository have a constant
number of items in addition to the optimal balance.
Greedy over Subset Strategy:Suppose we want to min-
imize the total number of replicas without worrying about
the load balancing. Thus, using the equivalent definition of
Section 2.1, it suffices to solve the integer linear program
(ILP) below

min
∑

`j∈Mo

xj

s.t.
∑

`j∈Mo

ajxj ≥ bi

xj ∈ {0, 1} ∀`j ∈ Mo

The ILP described can be optimally solved by sorting
the valuesaj in non-increasing order and taking the values
in such order until the sum of the selected values reaches
bi. This greedy strategy, besides being very simple and effi-
cient, optimally solves the ILP as, in a given step, we have
no advantage in selecting a value less than the value in the
sorted order. Algorithm 2 shows the details of this strategy.

Note that this strategy accumulates the replicas on the
repositories inMo with higher reliability, which is not good

begin
sortMo in non-increasing order according to the valuesaj

S = ∅
t = 1
while

∑

`j∈S aj < bi do
S = S ∪ {`t ∈ Mo}
t = t + 1

return S
end

Algorithm 2 : Greedy over Subset

for the load balancing. We know thatMo is randomly cho-
sen in each insertion of an item, but this do not suffices to
improve the load balancing because ifMo is large, we lie
again in the problem of accumulating the replicas in repos-
itories with higher reliability. Moreover, ifMo is small, we
do not have many options to choose or there are not enough
repositories to satisfy the desired reliability of an item.In
Section 2.3, we evaluate several sizes ofMo.
Ideal Subset Strategy:To create the replicas, we select the
subsetS ⊆ Mo that provides the reliability that is closest
to the desired reliability of the item. That is, we choose
S ⊆ Mo that minimizes1−

∏

`j∈S(1−pj)− ri. Using the
equivalent definition of the problem, we need to solve the
following ILP

min
∑

`j∈Mo

ajxj − bi

s.t.
∑

`j∈Mo

ajxj ≥ bi

xj ∈ {0, 1} ∀`j ∈ Mo

Note that, if the solution value is equal to0 then there is a
subset of values that together sums exactlybi; if the solution
value is greater than0, then there is no such subset. Thus,
if we solve this ILP, then we could also solve the SUBSET-
SUM decision problem, which is NP-complete[4]. There-
fore, as the ILP is an optimization problem, then it is NP-
hard; assuming P6= NP, no polynomial algorithm can solves
such problem. However, there is adynamic programming
algorithm which solves this problem in pseudo-polynomial
time, but in practice is satisfactory for the vast majority of
instances [4]. The details of the algorithm are omitted.

The solution of the above ILP do not necessarily pro-
vides a good solution to minimize the number of replicas
created. Nevertheless, the Ideal Subset strategy is motivated
by the fact that in practical situations it is expected to not
create too many replicas and to select different subsets for
each item, so that the distribution of replicas in the reposi-
tories balance their loads. Note that, if we had not used the
equivalent definition, we are not able to model this case as
a subset sum problem, and then we need a real exponencial
algorithm to solves this, which turns out to be an unfeasible
alternative to this case.

2.3. Simulation and Evaluation of the Strategies

Through experiments we compare the three strategies. In
the evaluation, we used a simulator that implements the al-
gorithms. All experiments were performed 10 times and the
average was collected. In all experiments we consider a set
M with 100 repositories. The size of the subset considered
in the simulations reflects the size of the subsetMo defined
in Section 2.2, and for each item inserted,Mo is randomly
selected inM .

In the experiments of number of replicas created, stan-
dard deviation and makespan we assume uncapacitated
repositories.
Number of Replicas Created:In this experiment, we com-
pare the number of replicas created in each strategy. The
simulation was executed for repositories with the average
reliability ranging from 50%, 60%, 70% and 80%, with6%
of standard deviation. We performed the insertion of 1000
items, all items with desired reliability of 99%.

Figure 2 shows the number of replicas created according
to the size ofMo. In the Randomized strategy, the change in
the size ofMo is almost negligible in the result. This is not
true when considering repositories with bounded capacity,
as the experiment of number of items inserted below. Note
that in some cases the line starts only after a given size of
Mo. The reason is that for aMo of small size, the desired
reliability is not satisfied in the insertion of some items.

As the size of the subset of repositories grows, the num-
ber of replicas required to achieve the desired reliabilityde-
creases. This decrease is higher in the Greedy Over Sub-
set, which aims the minimization of replicas created, always
creating them in repositories with the greatest reliabilities.
The Ideal Subset strategy also has a decreasing curve, but
less than the Greedy Over Subset and greater than the Ran-
domized strategy.
Standard Deviation: Figure 3 illustrates the second ex-
periment, showing the standard deviation of the reposito-
ries loads in function of the size of the subsets. We used
an average reliability of 60% for repositories, with 6% of
standard deviation (the same experiment was repeated for
repositories with other reliability values and the result was
proportionally the same).

Just as in the previous experiment, the Randomized strat-
egy is almost not influenced by the size ofMo. In the other
strategies, we see that, asMo increases, the standard devia-
tion also increases. The Greedy Over Subset is the strategy
with the worst load balancing.
Makespan: Figure 4 illustrates the third experiment where
the makespan (i.e., the load of the most loaded repository) is
plotted as a function of the size ofMo. The network setup
for this experiment is the same of the first experiment.

As Mo grows, the makespan also grows in Greedy Over
Subset and Ideal Subset strategies, but the latter has a lower
growth. This behavior is due to the fact that some repos-

4 6 8 10 12 14 16 18 20 22 24 26 28 30
subset size

0

10

20

30

40

50

60

70

80

90

100

st
a
n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f
n
o
d
e
s'

 l
o
a
d

InsertRandomized
InsertGreedy
InsertIdealSubset

Figure 3: Standard deviation of the loads of the repositories in
function of the size ofMo.

itories are always more demanded. In Greedy Over Sub-
set strategy the most demanded repositories are those with
greater reliability. Repositories with low reliability are the
most demanded in Ideal Subset strategy, as repositories with
this feature are used to avoid the “waste” of reliability.
Number of Items Inserted: For repositories with homoge-
neous storage capacity, the makespan is an important met-
ric of evaluation because it evaluates the number of items
inserted. The strategy with the greatest makespan implies
in the smallest number of items inserted. However, in most
real-world environments, the storage capacity of the repos-
itories differ in several orders of magnitude. In such a net-
work, the makespan do not necessarily indicates the same
behavior of the homogeneous case. The goal of this exper-
iment is to measure the number of items inserted in hetero-
geneous repositories. The items were inserted until one fail
in creating replicas due to the lack of space in some repos-
itory. The items have size of 35 MB and desired reliability
of 99%. The storage capacity of the 100 repositories varies
between 100 MB and 100.000 MB, and their average relia-
bility is 67% (standard deviation of 17%).

Depending on the strategy used, changing the size ofMo

causes different results: the greater theMo, greater is the
number of possible solutions and consequently, greater is
the number of items inserted. Table 1 shows the insertion of
items depending on the size ofMo for the three strategies
proposed. Ideal Subset strategy has the best results.

10 20 40 100

Randomized 18569 30228 32464 34138
Greedy over Subset 17544 28182 30891 33899
Ideal Subset 20535 31094 35399 39107

Table 1: Insertion of the items in function of the size of the subset.

Discussion of the Results:Among the three strategies, the
Greedy Over Subset creates the lowest number of replicas.
On the other hand, it has the highest makespan. The Ran-

4 6 8 10 12 14 16 18 20 22 24 26 28 30
subset size

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

n
u
m

b
e
r

o
f

re
p
lic

a
s

in
se

rt
e
d

InsertRandomized
50 %
60 %
70 %
80 %

4 6 8 10 12 14 16 18 20 22 24 26 28 30
subset size

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

n
u
m

b
e
r

o
f

re
p
lic

a
s

in
se

rt
e
d

InsertGreedy

50 %
60 %
70 %
80 %

4 6 8 10 12 14 16 18 20 22 24 26 28 30
subset size

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

n
u
m

b
e
r

o
f

re
p
lic

a
s

in
se

rt
e
d

InsertIdealSubset
50 %
60 %
70 %
80 %

Figure 2: Number of replicas created in function of the size ofM
o.

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
subset size

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

m
a
ke

sp
a
n

InsertRandomized
50 %
60 %
70 %
80 %

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
subset size

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

m
a
ke

sp
a
n

InsertGreedy

50 %
60 %
70 %
80 %

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
subset size

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

m
a
ke

sp
a
n

InsertIdealSubset
50 %
60 %
70 %
80 %

Figure 4: Makespan in function of the size ofM
o.

domized strategy is the strategy with the best load balanc-
ing of replicas, but it is the worst in the number of replicas
created. The “mean” between minimizing the number of
replicas and balancing the load is obtained with Ideal Sub-
set strategy. Moreover, in a set of repositories with hetero-
geneous storage capacities, the Ideal Subset strategy fill the
free spaces of the repositories better than the other strategies
and insert the greatest number of items.

3. A Peer-to-Peer Digital Archiving System

The model proposed in Section 2 is designed in a generic
way and can be implemented on any distributed mechanism
for organizing the storage repositories. In particular, struc-
tured P2P using DHT appears as natural candidate as it is
highly scalable for data distribution and retrieval. However,
a difficulty inherent in structured P2P networks is the accu-
rate selection of nodes (repositories) to store the replicas. It
is not trivial to select a specific subset of nodes using the
routing method from DHTs. Therefore, the implementation
of the digital archiving system needs to define an architec-
ture that accommodates all the features that the model of
Section 2 requires. Thus, we present a scheme of selection
of nodes usingmultiple hash functions, which allows the
selection of a particular set of nodes.

3.1. Architecture

Structured P2P Networks and DHT: The system routes
the messages of the network through structured P2P net-
works, using DHTs. The choice of structured P2P, instead
of non-structured, is motivated by its scalability regarding
the number of nodes. A problem of non-structured P2P
networks is that they often use brute force algorithms to
perform the search (“flooding”) and are more suitable for
popular content. Moreover, in many cases, the search al-
gorithms of non-structured P2P networks cannot locate rare
items, which is unacceptable in the context of digital archiv-
ing where the objects are equally popular [9].

DHTs have a problem with the transient population, i.e.,
maintaining the structure of the routing tables is relatively
expensive inchurnsituations. However, the machines tran-
siency in organizations that intend to preserve digital docu-
ments is not as frequent when compared with machines used
in traditional applications in the non-structured architecture
[10]. Therefore, the necessary adjustments in the topology
of the structured networks does not overload the archiving
system in case of churn.
Specific Selection of Repositories:The strategies pro-
posed in Section 2.2 assume that is possible to do a selection
on specific repositories. However, the DHT by itself does
not provide the mechanisms of selection of a specific node,

due to its method of index keys. So if we are interested
to store the content in a given set of repositories, we must
provide a mechanism that simulates the process of specific
selection. To perform the selection of specific nodes, we
propose the use ofmultiple hash functions, as explained be-
low.

A digital object consists of akey, which is the identifier
of the object; avalue, which is the content of the object;
and a parameter ofdesired reliability, which is the reliabil-
ity that should be achieved when inserting the object in the
network. Leth1, h2, . . . , hr be ther hash functions. The
hash functions have global visibility, i.e., they are the same
for all nodes. Given the keyk of a digital object, we ap-
ply k to the hash functions, i.e.,h1(k), h2(k), . . . , hr(k).
Each of ther generated hash maps to a node in the net-
work. Thus, for each object to be inserted, we getr nodes
where we can place replicas (i.e., the setMo). From this
set ofr nodes, we use a strategy of replica creation (e.g.,
the strategies of Section 2.2) to define the subset of theser

nodes that receives the replicas. It is not difficult to obtain
a family of such hash functions. One way is to use a single
hash functionh and append a numberi = 1, . . . , r to the
key of the object, which is used as argument to the func-
tion h. For instance, if the object key is the stringfoo, then
h(foo1), h(foo2), . . . , h(foor) would give usr hashes of
this object.

Figure 5 illustrates the selection of repositories per-
formed by three different objects. In the figure,object_a,
object_b andobject_c are keys, and the dotted lines
denotes the set of nodes associated with each key after ap-
plying r = 6 hash functions. As we have6 hash functions,
the resulted hashes maps to6 nodes of the network. From
each subset of nodes associated with an object, the strategy
of creating replicas is applied to determine the nodes that
receive the replicas. The black circles represent the reposi-
tories that have been chosen to put the replicas.

Figure 5: Subsets of repositories associated with their respective
digital objects.

It is worth noting that performing a selection amongall
nodes of the network (or equivalently, usingm hash func-
tions) is not a good approach because, in this case, an in-
stance would have the size of the network, which is unfeasi-
ble in real world situations. On the other hand, considering
a subset of small size is a feasible option of implementa-

tion even in face of the scalability of the network. Thus,
based on the results of Section 2.3, we can choose the opti-
mal size of the subset and, therefore, decide how many hash
functions to use.

The main advantage of using multiple hash functions is
the ability to select specific nodes. Without this, the strate-
gies proposed in Section 2.2 could not be implemented in
structured P2P networks using DHT. Moreover, an advan-
tage of using the strategy of multiple hash functions is the
ability to use any DHT protocol to route messages in the
network, unlike the strategies for replication in P2P using
theneighborhoodor thepath[6], which are tied to the pro-
tocol. Multiple hash functions also allow flexibility for dig-
ital objects to have different numbers of replicas, which is
not possible in thesymmetricstrategy of replication [5]. An-
other feature is the easy retrieving of a given replica without
necessarily retrieve another one previously, making it easy
to develop a retrieving algorithm. In thecorrelated hash
strategy [6], all the keys of a given object are correlated
with the first key, thus not allowing this feature.

The selection of repositories proposed above involves
no centralized information about the location of the stored
replicas. An alternative would be the use of a super-node
that had a “directory” which could be consulted about the
information of the exact location of replicas of a given ob-
ject. However, this super-node would be a contention point.
Our system avoids super-nodes, adopting a completely dis-
tributed approach where no information is centralized.

3.2. Algorithms for System Operation

To operate the P2P digital archiving system, we need to
define some basic operations of the system. In this section,
we present the algorithmsinsert andretrieve, used
respectively for the insertion and retrieving of a digital ob-
ject in the system. These algorithms implement multiple
hash functions discussed earlier. It is important to note that
both algorithms are executed locally in each node. For ex-
ample, a user who wishes to insert or retrieve an object con-
tacts any node of the network, which in turn initiates the
process of routing the message of the DHT.

input : key, value, reliability ri

begin
Mo = ∅
for i = 1 to r do

Mo = Mo ∪ {`hi(key)}

S = insertion_strategy(Mo, ri)
foreachs ∈ S do

j ← hash function number ofs
put(hj(key), value)

end

Algorithm 3 : insert (key, value, reliability)

To insert an object, the routineinsert(key,
value, reliability) is used, as shown in Algorithm

3. When inserting an object in the network, the desired re-
liability of the object is previously chosen by the user. Ini-
tially, Mo starts empty. The first loop selects the subsetMo

of sizer associated to the key of the object;`hi(key) is an
abuse of notation which denotes the node pointed by thei-th
hash of the key. In this loop, we implicitly save the values
i used for each node; this will be used later. After that, the
function insertion_strategy(Mo, ri) is executed,
which returns the subsetS ⊆ Mo of nodes that will re-
ceive the replicas. The functioninsertion_strategy
can be replaced by any strategy of replication, for example,
those presented in Section 2.2. In our implementation, the
reliability of the nodes are stored in the DHT. The last loop
is where the insertion occurs. The valuej denotes the hash
function number of the objects considered; as stated previ-
ously, these values were saved in the first loop. The routine
put(hj(key), value) puts a replica of the object in
the chosen location.

The implementation of the algorithm takes care of not
assigning more than two replicas of the same object in one
node.

input : key

begin
for i = 1 to r do

value← get(hi(key))
if value is not null then

return value

return −1 /* not found */
end

Algorithm 4 : retrieve (key)

To retrieve the object, the user performs the function
retrieve(key), wherekey is the key of the object to
be retrieved, as shown in Algorithm 4. The idea of the al-
gorithm is to search in allr nodes for a replica of the item,
using the hash functions for that. There are two cases where
the DHT does not return the object: when the node is not
present or the node does not contain a replica of the object.

3.3. Experimental Results

The P2P archiving system was implemented and eval-
uated through experiments carried out in a real world en-
vironment. The implementation uses theOverlay Weaver
environment to build networks [18]. Overlay Weaver pro-
vides great flexibility in the choice of DHT protocols
and other high-level services implemented as overlay net-
works. In particular, this environment supports Chord, Pas-
try, Tapestry and Kademlia. In our experiments we use
Chord. It is worth noting that Overlay Weaver has itself
a mechanism of replication that has been turned off for the
evaluation of our experiments. The experiments were con-
ducted in a network with 12 nodes; this quantity is enough
to validate the ability of long-term archiving and the mech-
anism of creation of replicas.

0 5 10 15 20 25 30
system's life years

0

1

2

3

4

5

6

7

#
 o

f
o
b
je

ct
s

a
b
le

 t
o
 r

e
tr

ie
v
e

99%
90%
70%
50%
30%

Figure 6: Number of objects able to retrieving information de-
pending on the age of the system.

The reliability of each node was considered to be the
probability of the node do not lose information during the
period of 1 year. Thus, we can simulate the state of the
network regarding the preservation of information over the
years. In our experiments, we do not evaluate changes in
the reliability of the nodes over the years.

The experiment starts with a network where various ob-
jects are inserted. Objects are inserted with different relia-
bilities. For the replication of objects we used the Ideal Sub-
set strategy, with the size of the subsets equal to 6. Initially
all nodes are reliable (online). When a node becomes unre-
liable, it loses its information and is disconnected from the
network (offline). We purposely did not implement a strat-
egy to recover offline nodes because we want to stress that
objects with high desired reliability are preserved longer.

Figure 6 shows the results. Of the total of 12 nodes, 2
of them have 30% of reliability, 2 have 50%, 2 have 70%,
3 have 80%, and the remaining 3 have 90% of reliability.
Initially, in the first year, we include a total of 25 objects,
divided into 5 groups, each group containing objects with
desired reliability respectively, 30%, 50%, 70%, 90% and
99%.

After the first year of existence of the system, a node
of reliability equal to 30%, a node with 50% and another
with 90% failed. Even with these fails, all the 25 objects
were able to be retrieved. At the end of the fifth year of the
system, two nodes (30% and 70% of reliability) get discon-
nected from the network. In the fifth year, it was not possi-
ble to retrieve the 3 objects with 30% of desired reliability,
4 objects of 50%, 1 of 70% and 1 of 90%. In the tenth year,
three additional nodes getsoffline. They are nodes with re-
liability of 70%, 80% and 90%, respectively. It was unable
to locate a total of 3 objects of 30% of desired reliability, 4
objects of 50%, 4 of 70% and 2 of 90%. At the end of the fif-
teenth year, a node with 80% of reliability was disconnected
and the same objects of the tenth year were possible to be
retrieved. In the twentieth year, 1 node of 50% was discon-
nected and only one node of 80% and another of 90% left

the system. In this age of the system, it was able to locate all
objects of 99% of desired reliability and 1 object with 90%;
all other objects were lost. In the twenty-fifth year, the node
of 80% failed and it was still possible to retrieve 4 objects
of 99% and 1 of 90%. In the thirtieth year the last node
were disconnected from the network and no further replicas
existed.

4. Conclusions and Future Work
The experiments conducted in this work demonstrate the

ability of the system proposed to preserve information for a
long period of time. The importance for the preservation of
each digital object - measured in the model by the desired
reliability - impacts on different lifetime of this object.Ob-
jects that were inserted with a high desired reliability had
a greater lifetime. Thus, through experiments, we can con-
clude two main characteristics of the P2P system and the
replication model proposed:
Independence of object preservation:different informa-
tion requires different storage time. Collections of photos,
journals and articles may need few years of storage; other
information such as digital objects in museums and libraries
requires hundreds of years. Our system allows flexibility in
the choice of lifetime of objects to be preserved;
Optimization of the storage resources:storage reposito-
ries may suffer many types of damages on their contents,
so each repository has a different reliability. Allowing each
storage repository with a parameter capable of measuring
the independent probability of failure is the closest way to
model real networks. This approach allows the flexibility
in the time of preservation of each object and therefore dif-
ferent numbers of replicas for them, impacting on a better
usage of network storage repositories.

Future works include the implementation of a complete
digital preservation system. In order to this, the system
should be concerned with the auditory of the replicas and
other threats such as software obsolescence, not considered
in this work. Furthermore, very little emphasis was given
to the retrieving of the items. Possibly, we can use our
model of digital archiving on systems such as LOCKSS and
BRICKS, and evaluate their feasibility is also an interesting
future work.

References
[1] Glacier: highly durable, decentralized storage despite mas-

sive correlated failures. InIn proceedings of NSDI’05,
Berkeley, CA, USA, 2005. USENIX Assoc.

[2] B. Cooper and H. Garcia. Creating trading networks of
digital archives. InJCDL ’01: Proceedings of the 1st
ACM/IEEE-CS joint conference on Digital libraries. ACM,
2001.

[3] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. InPro-
ceedings of the 18th ACM Symposium on Operating Sys-

tems Principles (SOSP ’01), Chateau Lake Louise, Banff,
Canada, Oct. 2001.

[4] M. R. Garey and D. S. Johnson.Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. 1979.

[5] A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric replica-
tion for structured peer-to-peer systems. InDBISP2P, pages
74–85, 2005.

[6] S. Ktari, M. Zoubert, A. Hecker, and H. Labiod. Perfor-
mance evaluation of replication strategies in DHTs under
churn. InIn proceedings of MUM ’07. ACM, 2007.

[7] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells,
and B. Zhao. Oceanstore: an architecture for global-scale
persistent storage. InIn Proceedings of ASPLOS-IX, New
York, NY, USA, 2000. ACM.

[8] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, and
L. Shrira. Replication in the harp file system.SIGOPS,
1991.

[9] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and replication in unstructured peer-to-peer networks. InIn
proceedings of SIGMETRICS ’02. ACM, 2002.

[10] P. Maniatis, M. Roussopoulos, T. Giuli, D. Rosenthal, and
M. Baker. The LOCKSS peer-to-peer digital preservation
system.ACM Trans. Comput. Syst., 23, 2005.

[11] V. Martins, E. Pacitti, and P. Valduriez. Survey of datarepli-
cation in P2P systems. Technical report, INRIA, 2006.

[12] D. S. Milojicic, V. Kalogeraki, R. Lukose, and K. Nagarajan.
Peer-to-peer computing. Technical report, HP Labs, 2002.

[13] M. Mitzenmacher and E. Upfal.Probability and Computing
: Randomized Algorithms and Probabilistic Analysis. 2005.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
Proceedings of the SIGCOMM ’01, New York, NY, USA,
2001. ACM.

[15] T. Risse and P. Knezevic. A self-organizing data store for
large scale distributed infrastructures. InICDEW ’05: Pro-
ceedings of the 21st International Conference on Data En-
gineering Workshops, Washington, DC, USA, 2005. IEEE
Computer Society.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems.Lecture Notes in Computer Science, 2001.

[17] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility, 2001.

[18] K. Shudo, Y. Tanaka, and S. Sekiguchi. Overlay weaver: An
overlay construction toolkit.Comput. Commun., 2008.

[19] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable Peer-To-Peer lookup service for
internet applications. InProceedings of the SIGCOMM ’01,
pages 149–160, 2001.

[20] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. D. Kubiatowicz. Tapestry: A resilient global-scale
overlay for service deployment.IEEE Journal on Selected
Areas in Communications, January 2004.

