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We consider a game-theoretic bin packing problem with identical items, and we study
the convergence time to a Nash equilibrium. In the model proposed, users choose their
strategy simultaneously. We deal with two bins and multiple bins cases. We consider the
case when users know the load of all bins and cases with less information. We consider
two approaches, depending if the system can undo movements that lead to infeasible
states. Let n and m be, respectively, the number of items and bins. In the two bins
case, we show an O(log logn) and an O(n) bounds when undo movements are allowed
and when they are not allowed, resp. In multiple bins case, we show an O(logn) and
an O(nm) bounds when undo movements are allowed and when they are not allowed,
resp. In the case with less information, we show an O(m logn) and an O(n3m) bounds
when undo movements are allowed and when they are not allowed, resp. Also, in the
case with less information where the information about completely filled/empty bins is
not available, we show an O(m2 logn) and an O(n3m3) bounds when undo movements

are allowed and when they are not allowed, resp.
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1. Introduction

The Internet is formed by several entities, where each entity has itself one goal,

and those entities are related one to another in many ways. Their relationships are
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sometimes cooperative, competitive, or even related in a selfish way. Each entity

(also called users, agents or players) has a set of strategies and preferences over

these strategies, modeled in an algorithmic way [14].

We are interested in the case where entities are selfish. A selfish strategy of a

user may influence the decision of other users, making them change their strategies

as well. An important question in this situation is if we can reach a state that

nobody wants to change their strategy. That is, if we can reach a Nash equilibrium

[13] in this system. If the answer is yes, then how many steps we need to reach it?

And how worse is an equilibrium solution when compared to the optimal solution?

Our focus is on a game theoretic version of the bin packing problem when users

are selfish. More specifically, we are interested in the analysis of the convergence

time to reach Nash equilibrium. Another important focus in this research direction

is the study of the quality of a Nash equilibrium, which is not addressed in this

paper, but some results of this kind can be found on [4, 6].

The model we consider is composed of n items, each one with size 1 and con-

trolled by exactly one user, and m bins, each one with capacity C and cost s. At

each step, a user that controls an item selects a bin to migrate. The cost of a bin

is equally paid by all users that have an item in the bin. Thus, if all bins have the

same cost, a selfish user prefers to pack its item to a bin that is as full as possible.

We consider a strongly distributed and parallel setting, i.e., there is no central-

ized control mechanism whatsoever, and all users choose to migrate their items at

the same time. This contrasts with the Elementary Step System (ESS) [7], where

only one user can migrate in each time step. There are some advantages in consid-

ering a parallel setting. First, this model is closer to practical situations of large

scalable distributed systems, where it may be too expensive, or impossible, to im-

plement a central control responsible for keeping one migration in each step, like

the ESS model. Another drawback is that ESS has convergence time bounded by

Ω(n).

In the protocols we present, a user action is based on a probability distribution

over the bins. Probabilistic algorithms have some advantages on deterministic ones.

First, in a two bins case, as we suppose that all users do not fit in only one bin,

a deterministic action needs to deterministically migrate some of the items to the

most filled bin, and deterministically leave other items in the less filled bin, being

an unfair strategy to those who are selected to stay in the less filled bin. Also, in

a multiple bins case, it is unclear how to design a deterministic protocol, for each

user, to select an improvement action based on the other users’ actions (although,

it would be very simple to design such protocol if we assume the existence of a

centralized control).

Besides the bin packing is an important problem in computer science, it has

several real-world applications, especially in cutting and packing. Also, the prob-

lem is used in many areas of computer science, such as multiprocessor scheduling,

networks, parallel and distributed systems. Some examples includes data trading

in peer-to-peer systems [5], video-on-demand [16], packet scheduling [12], to name
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only a few. These applications motivate the study of bin packing problem from a

game-theoretic and distributed approach.

Related Work: A game theoretic model for bin packing was first proposed by

Bilò in [4]. He proved that bin packing game in the ESS model always converges

to Nash equilibrium, showing an exponential upper bound in the number of steps.

Also, he proved upper and lower bounds on the price of anarchy for that problem.

In [6], Epstein and Kleinman obtained better bounds for the price of anarchy, and

also lower and upper bounds for the strong price of anarchy [1]. To the present,

these two papers are the only ones to address the bin packing problem under the

game theoretic perspective. The bin packing problem is also related with the load

balancing problem. Bilò [4] observed some similarities between these two problems

and used a potential function [11, 15] to prove convergence time in a similar way as

done for the load balancing problem [7]. The load balancing papers of [9, 3, 8] are

most closely related to our work. Goldberg [9] shows a weakly distributed protocol

that simulates the ESS. In this protocol, a task choose machines at random, and mi-

grates if the load is lower. He uses a potential function to show upper bounds in the

number of steps to reach Nash equilibrium. Even-dar and Mansour [8] consider the

case where all users choose to migrate at the same time, in a real concurrent model.

In their model, tasks migrate from overloaded to underloaded machines according to

some probabilities computed by considering that they know the load information of

all machines. Berenbrink et al. [3] propose a strong distributed protocol that needs

very little global information, where a task needs to query the load of only one

other machine; migrating if that machine has a smaller load. For non-distributed

systems, Even-dar et al. [7] studied convergence time to reach a Nash equilibrium

of load balancing problems in ESS, and show lower and upper bounds results to

many cases.

Our Results: We consider the two bins case and its extension to multiple bins.

As we migrate items simultaneously, this can lead to an infeasible solution if the

number of items that migrates to a bin exceeds its capacity. To deal with this, we

propose two approaches.

In the first approach, if a bin has its capacity exceeded in a given time step,

then all items that are migrated to that bin in this step undo their migration,

returning to the previous bins. Undo actions are only performed in bins that had

their capacity exceeded. Note, however, that choosing a high migration probability

implies a higher number of infeasible movements. On the other hand, choosing a low

migration probability implies a higher number of steps to reach the equilibrium. So,

clearly we have a trade-off between the chosen probability, the number of infeasible

steps and the number of steps to reach a Nash equilibrium. We show that in this

approach, within O(log logn) steps it is possible to reach a Nash equilibrium with

high probability in the two bins case, and O(log n) steps in the multiple bins case.

Also, we obtain an O(m log n) bound when users have less global information, i.e.,

a user knows his own bin load and can inspect only one additional bin to obtain

the load information. If users have less global information and the information
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about which bins are completely filled or empty is not available, then we obtain an

O(m2 logn) bound.

Since not every system allows undoing migrations, we also consider a second

approach for which infeasible migrations do not happen, with high probability. It

is more likely that real systems embrace this approach, because in most systems an

infeasible migration would cause the whole game to become invalid. We show that

in this approach, within O(n) steps it is possible to reach a Nash equilibrium with

high probability in the two bins case. For multiple bins case, we show an O(nm)

bound when users have the load information of all bins and O(n3m) when users have

less global information. If users have less global information and the information

about which bins are completely filled or empty is not available, then we obtain an

O(n3m3) bound.

Organization: Sections 2 and 3 present the two bins case, with and without un-

doing infeasible migrations, resp. In Sections 4 and 5, we consider the multiple bins

case with and without undoing infeasible migrations, resp. Section 6 presents the

case where users have less global information. Section 7 considers the case with even

less information, where the information of which bins are completely filled/empty

is not available. We comment an extension to bins with different cost in Section 8.

Notation and Model Description

We deal with a model composed of a set of n items x1, . . . , xn, each one with size

1 and controlled by a user, and a set of m bins b1, . . . , bm, with costs s1, . . . , sm
respectively, and capacity C (i.e., all bins have the same capacity). We have a notion

of time t, initially equal to 1, denoting the number of steps that had occurred until

then. For a given time step t, when an item xi is assigned to a bin bk we say that xi

is in bk. The total number of items assigned to bin bk at step t is denoted by nt(bk)

and the available space of bin bk in step t is denoted by Dt(bk) = C − nt(bk). If a

bin b has its capacity exceeded after some migrations in a given step, we call them

infeasible migrations. When an item is in bin bk, the user who controls the item pays

sk/n(bk). We assume that the users who control the items are selfish, and therefore

they want to minimize how much they pay, without caring for the system as a whole.

To minimize the price paid, an item can migrate to another bin in a given step.

Thus, in the case of bins with equal costs, a user wants to be in a most filled bin. Let

bki be the bin to which xi is assigned. A state is in α-approximate Nash equilibrium

if for each user i and bin bk 6= bki , we have sbki /n(bki) ≤ α · sbk/(n(bk) + 1) ; if

α = 1 then we simply say that a state is in Nash equilibrium. In this paper, we

consider the case where migrations are done simultaneously in each step. That is,

in a given step, all items choose their strategy (either migrate or stay in the same

machine) based on the probabilities defined in the protocols they use. We measure

the running time of an algorithm by the number of required steps to reach a Nash

equilibrium.

Throughout this paper, we use some technical tools, as stated in Lemmas 1

and 2.
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Lemma 1 (Chernoff bounds [2]) Let X1, . . . , Xn be binary independent random

variables, such that Pr(Xj = 1) = pj. Let X =
∑n

j=1 Xj and µ = E[X ]. Then

Pr[X > (1 + δ)µ] < e−µδ2/3 0 < δ ≤ 1;

Pr[X < (1− δ)µ] < e−µδ2/2 0 < δ < 1.

Pr
(

µ ≤ X +
√

2 ln(1δ )µ
)

≥ 1− δ 0 ≤ µ ≤ n, 0 < δ < 1;

Pr
(

µ ≥ X −
√

3 ln(1δ )µ
)

≥ 1− δ ln(1/δ)
3 ≤ µ ≤ n, 0 < δ < 1.

The following lemma can be proved using the Stirling’s approximation for fac-

torials.

Lemma 2 (probability of hitting the mean) Let X1, . . . , Xn be binary inde-

pendent random variables, such that Pr(Xj = 1) = p and X =
∑n

j=1 Xj. If pn is

an integer, then Pr(X = pn) ≥ 1√
2πpn

.

Lemma 3 ([10]) The median of a binomial distribution with integer mean is equal

to the mean.

2. Two bins, with Undo of Infeasible Migrations

This section considers the case with two bins of equal costs and it is allowed to

undo infeasible migrations (the feasible migrations are maintained). When we undo

a migration, the item returns to the bin that it was before the migration happens, as

if the migration did not have happened. We denote a step with infeasible migrations

an infeasible step. Without loss of generality, consider an initial configuration where

bin b1 is more filled than bin b2. We assume that users know the load information

of both bins, so users in b1 do not want to migrate, and users in b2 would like to

migrate to b1. We also consider, w.l.o.g., that n > C, otherwise Algorithm 1 assigns

migration probability equal to 1, and finishes with only one step. As the migrations

occur simultaneously, if all users in b2 decide to migrate to b1, the capacity of b1 is

exceeded causing a sequence of infeasible steps. Thus, Algorithm 1 defines a protocol

that all users must follow to reach a Nash equilibrium.

begin
t = 1;
while Dt(b1) > 0 do

forall {j ∈ b2} in parallel do

move j to b1 with probability
Dt(b1)
nt(b2)

;

t = t+ 1;

end

Algorithm 1: TwoBins-UndoInfeasibleMigrations

To simplify the notation, we denote Dt(b1) by Dt. Given a step t, let Xj be a

binary random variable that is equal to 1 if user j in b2 migrates, and 0 otherwise.
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Let X =
∑

j Xj. Note that Dt+1 = Dt − X and E[X ] =
∑

j E[Xj ] = Dt. Thus

E[Dt+1] = Dt − E[X ] = 0.

Lemma 4. In step t, we have Pr
(

0 ≤ Dt+1 ≤
√
2 ln 4Dt

)

≥ 1
4 .

Proof. Note that X is a binomial random variable with integer mean. Thus, from

Lemma 3, we have that Pr(X ≤ E[X ]) ≥ 1
2 and therefore Pr(X > E[X ]) ≤ 1

2 .

Given δ > 0, we have from Lemma 1 that Pr
(

X < E[X ]−
√

2 ln(1/δ)E[X ]
)

≤ δ.

Hence Pr
(

E[X ]−
√

2 ln(1/δ)E[X ] ≤ X ≤ E[X ]
)

≥ 1
2 − δ. As Dt = E[X ] and

Dt+1 = Dt − X , we conclude that Pr
(

E[X ]−
√

2 ln(1/δ)E[X ] ≤ X ≤ E[X ]
)

=

Pr
(

√

2 ln(1/δ)Dt ≥ Dt+1 ≥ 0
)

≥ 1
2 − δ. Using δ = 1/4, we obtain the desired

result.

Lemma 5. If the current step is t, a Nash equilibrium is reached in l+1 additional

steps with probability at least
(

1
4

)l 1
√

4π ln 4·D(1/2)l

t

.

Proof. Applying l times Lemma 4, we have Dt+l ≤ 2 ln 4 · D
1
2l
t , with probability

at least
(

1
4

)l
. Applying Lemma 2, the result follows.

Theorem 6. A Nash equilibrium is reached after O(log(1+ε) n log logn) steps, with

high probability.

Proof. Since D0 ≤ n, it suffices to apply Lemma 5 for a certain l = O(log logn) to

have probability at least 1
logn to reach a Nash equilibrium. Repeating this procedure

log(1+ε) n times, the probability that a Nash equilibrium is not obtained is at most

((1 − 1
logn )

logn)log
ε n ≤ e− logε n = o(1).

Theorem 6 assumes that we can repeatedly restart the game while we have an

infeasible step. However, this model does not always occurs in a practical situation.

In a more practical framework, it is sufficient to cancel only the infeasible steps,

and a new step is done from the previous state, as we show in Theorem 7.

Theorem 7. When only infeasible steps are canceled, a Nash equilibrium is reached

in O(log logn) steps, with high probability.

Proof. After t = log logn feasible steps, according to Lemma 4, Dt becomes con-

stant. As we will see, after 16t steps, we have at least t feasible steps, with high

probability. From Lemma 4, the probability to have a feasible step is at least

1/4. Let Xi be a random variable such that Xi = 1 if the i-th step is feasible

or Xi = 0, otherwise. Let X =
∑16t

i=0 Xi. Thus, E[X ] ≥ 4t. From Lemma 1, we

have Pr (X ≤ t) ≤ Pr
(

X ≤ (1− 3
4 )E[X ]

)

≤ e−
(9/16)4 log logn

2 = o(1). When Dt is
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constant, we have from Lemma 2 that the probability to hit the mean is constant.

Hence after O(log logn) steps the probability that a Nash equilibrium is not reached

is o(1).

3. Two Bins, with no Infeasible Steps

This section considers the case with two bins of equal costs where it is not allowed

to undo infeasible steps. That is, if an infeasible step occurs, then the game is over

without reaching the Nash equilibrium. Also, we introduce the proof scheme used

in cases where the undo actions are not allowed. We extend the analysis using the

same scheme in Sections 5 and 6, where we consider the cases with multiples bins

with more and less global information, respectively.

Like the previous section, we consider that b1 have more items than b2 in the

initial configuration. Algorithm 2 defines a protocol that all users must follow to

reach a Nash equilibrium.

begin
t = 1;

while Dt(b1) > 0 do

forall {j ∈ b2} in parallel do
move j to b1 with probability:;

• 2
3
Dt(b1)
nt(b2)

if Dt(b1) ≥ 36 lnn

• 1
nt(b2)

√
n

if 3 ≤ Dt(b1) < 36 lnn

• 1
nt(b2)n

if 1 ≤ Dt(b1) < 3

t = t+ 1;

end

Algorithm 2: TwoBins-NoInfeasibleSteps

To simplify the notation, we denote by Dt(b1) by Dt.

Lemma 8. If Dt ≥ 36 lnn, then the probability that b1 has its capacity exceeded in

a step is less than 1/n2.

Proof. Let Xj be a binary random variable such that Xj = 1 iff item xj migrates

to bin b1 in step t and X =
∑

j Xj. We have that E[X ] = 2
3Dt. Thus, from Lemma

1, we have Pr(X > Dt) = Pr
(

X > (1 + 1
2 )E[X ]

)

< e−
(1/2)2(2/3)36 lnn

3 = e− lnn2

=

1/n2.

Lemma 9. If 3 ≤ Dt ≤ 36 lnn, then the probability that b1 has its capacity exceeded

in a step is at most 2
n2 .

Proof. The probability that a bin receives more items than its capacity is at most

the probability that this bin receives at least 4 items in a single step, which in turn
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is bounded by
∑nt(b2)

i=4

(

nt(b2)
i

)

(

1
nt(b2)

√
n

)i (

1− 1
nt(b2)

√
n

)nt(b2)−i

≤ ∑nt(b2)
i=4 nt(b2)

i ·
1

nt(b2)i(
√
n)i

·
(

1− 1
nt(b2)

√
n

)nt(b2)−i

≤ ∑nt(b2)
i=4

1
(
√
n)i

≤ 2
n2 .

Lemma 10. If Dt(b) < 3, then the probability that b1 has its capacity exceeded in

a step is at most 2
n2 .

Proof. The probability that a bin receives more items than its capacity is at most

the probability that this bin receives at least 2 items in a single step, which in turn

is bounded by
∑nt(b2)

i=2

(

nt(b2)
i

)

(

1
nt(b2)n

)i (

1− 1
nt(b2)n

)nt(b2)−i

≤ ∑nt(b2)
i=2

1
ni ≤ 2

n2 .

Lemma 11. Let X be the total number of items that migrates to bin b1 in a step

such that Dt ≥ 36 lnn. Then Pr(X < 1
3Dt(b)) < 1/n3.

Proof. Since Dt ≥ 36 lnn we have E[X ] = 2
3Dt. Therefore Pr(X < 1

3Dt) =

Pr(X < (1 − 1
2 )E[X ]) < e−

(1/2)2(2/3)36 lnn
2 ≤ e−3 lnn = 1/n3.

Theorem 12. After O(n) steps, Algorithm 2 terminates without infeasible steps,

with high probability.

Proof. The analysis is divided in three phases, depending on the values of Dt. In

the first phase, we have Dt ≥ 36 lnn. Lemma 11 states that Dt+1 > 2
3Dt with

probability less than 1/n3. We know that D0 ≤ C. Thus, after T = O(logC) steps,

we haveDT > 36 lnn with probability at most 1
n2 . That is, after O(logC) steps, this

phase ends with high probability. In the second phase, we have 3 ≤ Dt < 36 lnn.

By Lemma 9, a step is infeasible with probability at most 2
n2 , hence if the algorithm

performs at most n
2 steps, there is no infeasible step with high probability (at least

1− 1/n). In fact, we show that
√
n logn steps are sufficient, with high probability.

Bin b1 needs at most 36 lnn items migrating to it before reaching the third phase.

In each step, it is expected that 1/
√
n items migrate to it, therefore, the expected

number of steps is
√
n36 lnn. The probability that no item migrates in a step is

given by (1− 1
nt(b2)

√
n
)nt(b2) ≤ e−1/

√
n. So, in

√
n steps, the probability that at least

one item migrates is at least 1− 1
e ≥ 1

2 . As done before, this phase is finished with√
n144 logn steps with high probability. In the third phase, we have 1 ≤ Dt < 3.

By Lemma 10, a step is infeasible with probability at most 2
n2 , hence the algorithm

terminates with high probability (at least 1−1/n) if this phase performs O(n) steps.

Applying the same idea used in the analysis of the second phase, after O(n) steps,

b1 will be completely full, with high probability.

4. Multiple Bins, with Undo of Infeasible Steps

In this section we extend the two bins case presented in Section 2 for the multiple

bins case. We also assume that n/C is an integer. Algorithm 3 presents a simple
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protocol that will be executed in parallel for all users. As in Section 2, this section

considers the case where it is possible to perform undo of infeasible migrations.

That is, whenever a bin has its capacity exceeded, the invalid migrations to that

bin are canceled and the corresponding items return to their previous bins. In this

case, valid migrations in the same step are maintained.

input: bins b1, . . . , bm sorted in non-increasing order according to their

loads, items x1, . . . , xn

begin

t = 1; A = {b1, . . . , bn/C}; B = {bn/C+1, . . . , bm}; S =
∑n/C

i=1 Dt(bi);

while {bi ∈ B : n(bi) > 0} 6= ∅ do

forall {j ∈ bi : bi ∈ B} in parallel do

move j to bl ∈ A with probability Dt(bl)
S ;

Update S; t = t+ 1;

end

Algorithm 3: MultBins-UndoInfeasibleMigrations

In Algorithm 3, S is defined as the total free space of bins in A. Note the S is

also the exactly number of items in B that want to migrate to bins in A. Therefore,

when computing the expectation, we expect to completely fill the gap of bins in A.

We show that Algorithm 3 reaches a Nash equilibrium with high probability in

few steps. It is also desirable that the probability imposed to users in each step

leads to a Nash equilibrium. In this case, users would agree with the probabilities

attributed to them in each step. However, the probabilities imposed by Algorithm 3

does not characterize a strategy in Nash equilibrium, as we explain in the following.

Let s be the cost of each bin. Thus, a user using bin bi has to pay s/nt(bi).

In a given step t, a user evaluates the expected load of each bin in step t + 1

without considering its own action, and then choose its strategy. The expectation

E[nt+1(bi)] without considering the action of user xj is given by

E[nt+1(bi)] = nt(bi) +
Dt(bi)

S (S − 1) = C − (C−nt(bi))
S . (1)

That is, the largest expectation (and lower cost for a user) is obtained by the most

filled bins. Therefore, if a selfish user can choose its own migration probability, it

will use a best response strategy with probability 1 to migrate to the most filled

bin. This behavior will lead to invalid migrations for all users.

Although Algorithm 3 does not use the best response strategy (i.e., users do not

necessarily migrate to the most filled bin), it is justified by the fact that it is an

improvement response strategy. That is, in each step items migrate to more filled

bins, diminishing the value paid by the users. Moreover, we prove that the strategy

above is a 2-approximate Nash equilibrium and it reaches a Nash equilibrium in

few steps, with high probability.

Theorem 13. In each step, Algorithm 3 is a 2-approximation Nash equilibrium

strategy.
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Proof. Consider a user j in a bin of set B in step t and a bin bi ∈ A. From Eq.

1, the expectation E[nt+1(bi)] without considering the action of user j is given by

E[nt+1(bi)] = C− (C−nt(bi))
S ≤ C. We also have that E[nt+1(bi)] = C− (C−nt(bi))

S ≥
C − C

S ≥ C/2. The last inequality is valid since S ≥ 2.

In each step of Algorithm 3 it is expected that the bins in A become completely

filled and the bins in B completely empty. The following theorem presents an upper

bound on the number of steps to reach a Nash equilibrium.

Theorem 14. If in each step infeasible migrations can be cancelled then Algorithm

3 reaches a Nash equilibrium in O(log n) steps, with high probability.

Proof. Let l = O(log logn) be the number of steps necessary to find a Nash equi-

librium for the case with two bins with high probability, in Theorem 7. We say

that a round is a sequence of l steps. Each bin can be viewed in a independent

way, hence, after one round (see proof of Theorem 7) the probability that a given

bin does not become completely full is at most 1
logn . Thus, after

2 logn
log logn rounds, a

given bin is not completely full with probability 1/n2. Using the union bound, the

probability that some bin is not completely full in 2 logn
log log n · l = O(log n) steps is at

most 1/n.

5. Multiple Bins, with no Infeasible Steps

In this section, we are interested in the case of multiple bins avoiding infeasible steps

(an infeasible step finishes the game without a solution). Since no step can exceeds

the bin capacity, we use more “conservative” migration probabilities in such a way

that a bin does not have its capacity exceeded, with high probability.

In this section, we assume that n/C is an integer. Algorithm 4 presents a simple

protocol where each step is executed in parallel for all players.

input: bins b1, . . . , bm sorted in non-increasing order according to their

loads, items x1, . . . , xn

begin

t = 1; A = {b1, . . . , bn/C}; B = {bn/C+1, . . . , bm}; S =
∑n/C

i=1 Dt(bi);

while {bi ∈ B : n(bi) > 0} 6= ∅ do

forall {j ∈ bi : bi ∈ B} in parallel do
move j to bl ∈ A with probability:;

• 2
3
Dt(bl)

S if Dt(bl) ≥ 54 lnn

• 1
S
√
nm

if 3 ≤ Dt(bl) < 54 lnn

• 1
Snm if 1 ≤ Dt(bl) < 3

;

Update S; t = t+ 1;

end

Algorithm 4: MultBins-NoInfeasibleSteps
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Throughout this section, we use A and B as defined by Algorithm 4.

Lemma 15. For all bins b such that Dt(b) ≥ 54 lnn, the probability that one of

these bins have its capacity exceeded in a step is less than 1/n2.

Proof. Let b be a bin such that Dt(b) ≥ 54 lnn. Let Xj be a binary random

variable such that Xj = 1 iff item xj migrates to bin b in step t and X =
∑

j Xj .

For simplicity, we denote by Dt the value Dt(b). We have that E[X ] = 2
3Dt. Thus,

from Lemma 1, we have Pr(X > Dt) = Pr
(

X > (1 + 1
2 )E[X ]

)

< e−
(1/2)2(2/3)54 lnn

3 =

e− lnn3

= 1/n3. The proof follows by the union bound.

Lemma 16. For all bins b such that 3 ≤ Dt(b) ≤ 54 lnn, the probability that one

of these bins have its capacity exceeded in a step is at most 2
n2m .

Proof. The probability that a bin receives more items than its capacity is at

most the probability that this bin receives at least 4 items in a single step, which

in turn is bounded by
∑S

i=4

(

S
i

)

(

1
S
√
nm

)i (

1− 1
S
√
nm

)S−i

≤ ∑S
i=4 S

i · 1
Si(

√
nm)i

·
(

1− 1
S
√
nm

)S−i

≤ ∑S
i=4

1
(
√
nm)i

≤ 2
n2m2 . The proof follows by the union bound.

Lemma 17. For all bins b such that Dt(b) < 3, the probability that one of these

bins have its capacity exceeded in a step is at most 2
n2m .

Proof. The probability that a bin receives more items than its capacity is at most

the probability that this bin receives at least 2 items in a single step, which in turn

is bounded by
∑S

i=2

(

S
i

) (

1
Snm

)i (
1− 1

Snm

)S−i ≤ ∑S
i=2

1
(nm)i ≤ 2

n2m2 . The proof

follows by the union bound.

Lemma 18. If X is the total number of items that migrates to a bin b ∈ A in a

given step t and Dt(b) ≥ 54 lnn then Pr(X < 1
3Dt(b)) < 1/n4.

Proof. Let Xj be a binary random variable such that Xj = 1 iff item xj migrates

to bin b in step t and let X =
∑

j Xj be the total number of items that migrate to

b in step t. For simplicity, we denote by Dt the value Dt(b). Since Dt ≥ 54 lnn

we have E[X ] = 2
3Dt. Therefore Pr(X < 1

3Dt) = Pr(X < (1 − 1
2 )E[X ]) <

e−
(1/2)2(2/3)54 lnn

2 ≤ e−4 lnn = 1/n4.

Lemma 19. After T = O(logC) steps, some bin b have DT (b) > 54 lnn with

probability at most 1
n2 .

Proof. In this proof, we only refer to bins b ∈ A such that Dt(b) > 54 lnn, the

other bins do not need to be taken into consideration. Let t be the current step. For
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a bin b, Lemma 18 states that Dt+1(b) >
2
3Dt(b) with probability less than 1/n4.

Applying the union bound, after a step, some bin b ∈ A will have Dt+1(b) >
2
3Dt(b)

with probability less than 1
n3 . We know that D0(b) ≤ C. Thus, after O(logC) steps,

the result follows.

Theorem 20. After O(nm) steps, Algorithm 4 terminates without infeasible steps,

with high probability.

Proof. The analysis is divided in three phases, depending on the values of Dt.

In the first phase, we have Dt ≥ 54 lnn. By Lemma 19, after O(logC) steps, this

phase ends with high probability. In the second phase, we have 3 ≤ Dt < 54 lnn. By

Lemma 16, a step is infeasible with probability at most 2
n2m , hence if the algorithm

performs at most nm
2 steps, there is no infeasible step with high probability (at

least 1− 1/n). In fact, we show that we need at most
√
nm logn steps as follows. A

bin needs at most 54 lnn items migrating to it before reaching the third phase. In

each step, it is expected that 1/
√
nm items migrate to it, therefore, the expected

number of steps is
√
nm54 lnn. The probability that no item migrates to bin i in a

step is given by (1− 1
n′

t

√
nm

)n
′

t ≤ e−1/
√
nm, where n′

t = n−nt(bi). So, in
√
nm steps,

the probability that at least one item migrates is at least 1− 1
e ≥ 1

2 . Therefore, this

phase is finished with
√
nm216 logn steps with high probability. In the third phase,

we have 1 ≤ Dt(b) < 3. By Lemma 17, a step is infeasible with probability at most
2

n2m , hence the algorithm terminates with high probability (at least 1− 1/n) if this

phase performs at most O(nm) steps. Applying the same idea used in the analysis

of the second phase, after O(nm) steps, all bins will be completely full, with high

probability.

6. Multiples Bins and Less Global Information

In Sections 4 and 5, we assume that users know, in each step, the load information

of every bin. This can be a strong assumption if the interval between each step is

constant, because knowing the load information of every bin takes O(m) time. In

this section, we consider that an item knows his own bin load and can only inspect

the load of one additional bin that is not completely full or empty, incurring in a

constant time step of the protocol. Once a bin becomes completely full or empty, it

is not considered anymore.

Algorithm 5 defines a protocol that users follow to reach a Nash equilibrium

when the system can undo infeasible migrations, as in Sections 2 and 4. Later, we

present Algorithm 6 for the case where undoing infeasible migrations is not possible.

In Algorithm 5, bins have labels, each label is a number in {1, . . . ,m} and no

two bins have the same label. Let `(bi) be the label of bin bi. Also, if a bin becomes

completely full or empty then it will not be considered by players in subsequent

steps. Thus, we define mt as the number of bins not completely full or empty at

time t.
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input: bins b1, . . . , bm, items x1, . . . , xn

begin
t = 1;;

foreach item xi in parallel do
let bxi be the current bin of item xi;

choose bin bj 6= bxi uniformly at random;

if
(

nt(bj) > nt(bxi)
)

or
(

nt(bj) = nt(bxi) and `(bj) < `(bxi)
)

then

move xi to bj with probability min
(

Dt(bj)
nt(bxi

) , 1
)

;

t = t+ 1;

end

Algorithm 5: MultBins-LessInformation

Notice that, in the algorithm, the random choice of bin is done considering only

bins different from bxi and bins not completely full or empty. That is, we choose

each bin with probability 1/(mt − 1), never choosing the bin in which the item is

assigned or a bin already completely filled or empty.

The algorithm does not incur in a high number of infeasible steps, as we explain

next.

Lemma 21. After one step, the probability that a bin j receives more items than

its capacity is at most 3/4.

Proof. Let j be a bin. We compute the expected number of items that migrate to

j in one step. Let j′ be a bin with less items or equal number of items but greater

label than j. If Dt(j)
nt(j′)

≤ 1 then j′ sends an expected number of Dt(j)
mt−1 items to j.

Otherwise (nt(j) < Dt(j)), j
′ sends an expected number of nt(j)

mt−1 < Dt(j)
mt−1 items

to j. Thus, the most filled bin with smallest label receives more items, receiving

an expected number of at most Dt(j) items. So, analyzing in the same way as in

Section 2, and by Lemma 4, it has probability at most 3/4 of receiving more items

than its capacity. Since the other bins receive less items than the most filled bin,

the result follows.

Lemma 22. After O(log n) steps, at least one bin becomes filled or empty, with

high probability.

Proof. Let b∗(t) be the most filled bin (that is not completely full) with the smallest

label in time t and bo(t) the less filled bin (not empty) with the greatest label in

time t. We have two cases. (i) If Dt(b
∗(t))

nt(bo(t))
≥ 1, then Dt(b)

nt(bo(t))
≥ 1 for any bin b.

Therefore bo(t) do not receive items, and try to migrate with probability 1 all its

items. By Lemma 21, it is expected that at least 1/4 of the items in bo(t) successfully

migrates. Note that bo(t+1) may be different to bo(t), but this is not a problem since

if bo(t+1) 6= bo(t) implies that bo(t+1) is less filled than bo(t) after items migrate.
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Therefore, after O(log n) steps, bo(t) becomes empty, with high probability. On the

other hand, (ii) if Dt(b
∗(t))

nt(bo(t))
< 1 then Dt(b

∗(t))
nt(b)

< 1 for any bin b. Thus, each bin is

expected to send Dt(b
∗(t))

mt−1 items to b∗(t). As mt − 1 bins send this amount to b∗, it

is expected that j∗ receives Dt(b
∗(t)) items. Following the analysis idea of Section

2, in O(ln lnn) steps b∗(t) becomes filled. Again, b∗(t+1) may be different to b∗(t),

but as explained above, this is not a problem. Note that, as time progresses, case

(i) may turn to case (ii) and vice-versa, but this fact does not affect the analysis,

and the result follows.

The following theorem follows directly from Lemma 22.

Theorem 23. After O(m log n) steps, Algorithm 5 terminates with high probability.

Algorithm 6 is designed for the case where users have little global information

and cannot undo infeasible migrations. As before, bins have labels in {1, . . . ,m}
and no two bins have the same label. Let `(bi) be the label of bin bi. Also, if a

bin becomes completely full or empty then it will not be considered by players in

subsequent steps. Thus, we define mt as the number of bins not completely full or

empty in time t.

input: bins b1, . . . , bm, items x1, . . . , xn

begin
t = 1;;

foreach item xi in parallel do
let bxi be the current bin of item xi;

choose bin bj 6= bxi uniformly at random;

if
(

nt(bj) > nt(bxi)
)

or
(

nt(bj) = nt(bxi) and `(bj) < `(bxi)
)

then

move xi to bj with probability;

• min
(

2
3

Dt(bj)
nt(bxi

)
, 1
)

if Dt(bj) ≥ 126 lnn

• 1
n2nt(bxi

)
if 3 ≤ Dt(bj) < 126 lnn

• 1
n3nt(bxi

)
if 1 ≤ Dt(bj) < 3

;

t = t+ 1;

end

Algorithm 6: MultBins-LessInformation-NoUndo

In what follows, we denote by b∗ the most filled bin (not completely full) with

the smallest label.

Lemma 24. For all bins b such that Dt(b) ≥ 126 lnn, the probability that one of

these bins has its capacity exceeded in a step is less than 1/n6.

Proof. Let Xj be a binary random variable such that Xj = 1 iff item xj migrates

to bin b∗ in step t and X =
∑

j Xj. For simplicity, we denote by Dt the value
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Dt(b
∗). Note that E[X ] ≤ 2

3Dt, however the highest probability of exceeding the

bin capacity is when E[X ] = 2/3Dt. Thus, from Lemma 1, we have Pr(X > Dt) ≤
Pr

(

X > (1 + 1
2 )E[X ]

)

< e−
(1/2)2(2/3)126 lnn

3 = e− lnn7

= 1/n7. All other bins receive

less items than b∗, thus they can be bounded this way. The proof follows by the

union bound.

Lemma 25. For all bins b such that 3 ≤ Dt(b) ≤ 126 lnn, the probability that one

of these bins has its capacity exceeded in a step is at most 2
n4(mt−1)3 .

Proof. Let nt(b
o) be the load of the less filled bin (not empty). The proba-

bility that b∗ receives more items than its capacity is at most the probability

that b∗ receives at least 4 items in a single step, which in turn is bounded by
∑n−nt(b

∗)
i=4

(

n−nt(b
∗)

i

)

(

1
n2(mt−1)nt(bo)

)i

·
(

1− 1
n2(mt−1)nt(bo)

)n−nt(b
∗)−i

≤
∑∞

i=4

(

n
i

)

(

1
n2(mt−1)

)i

≤ ∑∞
i=4 n

i 1
n2i(mt−1)i =

∑∞
i=4

1
ni(mt−1)i ≤ 2

n4(mt−1)4 . All

other bins receive less items than b∗, thus they can be bounded this way. By the

union bound (the less filled bin with greatest label never have its capacity exceeded),

the result follows.

Lemma 26. For all bins b such that Dt(b) < 3, the probability that one of these

bins has its capacity exceeded in a step is at most 2
n4(mt−1) .

Proof. The probability that b∗ receives more items than its capacity is

at most the probability that b∗ receives at least 2 items in a single

step, which in turn is bounded by
∑n−nt(b

∗)
i=2

(

n−nt(b
∗)

i

)

(

1
n3(mt−1)nt(bi)

)i

·
(

1− 1
n3(mt−1)nt(bi)

)n−nt(b
∗)−i

≤ ∑∞
i=2

(

n
i

)

(

1
n3(mt−1)

)i

≤ ∑∞
i=2 n

i 1
n3i(mt−1)i =

∑∞
i=2

1
n2i(mt−1)i ≤ 2

n4(mt−1)2 . All other bins receive less items than b∗, thus they

can be bounded this way. By the union bound (the less filled bin with greatest label

never have its capacity exceeded), the result follows.

Corollary 27 follows from Lemmas 24, 25 and 26.

Corollary 27. In Algorithm 6, an infeasible step occurs with probability at most
2

n4(mt−1) .

Theorem 28. After O(n3m) steps, Algorithm 6 terminates with high probability.

Proof. We show that, after O(n3) steps, at least one bin becomes completely full.

This fact, together with Corollary 27, is sufficient to prove the result, because there

are m bins. We consider that a bin b goes through 3 phases until it becomes com-

pletely full. In the first, second and third phases we have, resp., Dt(b) ≥ 126 lnn,

3 ≤ Dt(b) < 126 lnn and Dt(b) < 3. We focus the analysis at bin b∗. In the sec-

ond and third phases, it is expected that b∗ receives, resp., 1/n2 and 1/n3 items in
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each step. Therefore, we need O(n2 logn) and O(n3) expected steps to terminate,

resp., second and third phases. It is possible to show that these number of steps

is sufficient to terminate the both second and third phases with high probability

(see proof of Theorem 20). Let bo be the less filled bin (not empty) with greatest

label. In the first phase, we consider two cases: (i) if 2Dt(b
∗)

3n(bo) > 1 and (ii) otherwise.

In case (i), we have 2Dt(b)
3n(bo) > 1 for each bin b that is not completely full or empty.

Therefore, bo gets empty with high probability in a single step, because as seen in

Corollary 27, we have low probability of error. As there are m bins, case (i) occurs

at most m times. In case (ii), we have 2Dt(b
∗)

3n(b) ≤ 1 for each valid bin b. Thus, b∗

receives expected number of 2
3Dt(b

∗) items, and it is possible to show that after

O(log n) steps in case (ii) the first phase terminates with high probability for bin b∗

(see proof of Lemma 19). As noted in Lemma 22, case (i) may lead to case (ii) and

vice-versa. Therefore, the first phase terminates in O(m+ logn) steps. Adding the

number of steps needed in each phase, b∗ becomes completely full in O(n3) steps,

with high probability.

7. Even Less Global Information

In Section 6, the random choice of bin is done without considering completely full or

empty bins. Thus, we need a certain degree of global information regarding the bins

that become full or empty. This section discuss the case where such information is

not available. In this case, the random choice is done considering all bins. Thus, the

expected number of items that migrates to the “correct” bins are smaller than the

case considered before, which leads to greater bounds to reach the equilibrium. In

the rest of this section, we point some modifications in the proofs or protocols of

the Section 6 to deal with this lack of information.

In Algorithm 5, we just need to point some modifications in the proofs. As the

expected number of items that migrates to another bin is smaller than the case of

Section 6, the probability that a bin have its capacity exceeded is lower. Therefore,

Lemma 21 remains valid. The proof of Lemma 22 is divided in two cases. In case (i),

it is expected that at least 1
4m of the items in bo(t) successfully migrates, instead

of 1/4. Thus, after O(m log n) steps, bo(t) becomes empty, with high probability. In

case (ii), it is expected that j∗ receives Dt(b
∗(t))/m items. Thus, after O(m log n)

steps b∗(t) becomes filled. Therefore, after O(m logn) steps, at least one bin becomes

filled or empty, with high probability. As there arem bins, we can bound the number

of steps needed to reach the equilibrium, as shown in Theorem 29.

Theorem 29. If all bins are considered for migration, then after O(m2 logn) steps,

Algorithm 5 terminates with high probability.

In Algorithm 6, we modify the probability of the case where 1 ≤ Dt(bj) < 3

from 1
n3nt(bxi

) to 1
n3mnt(bxi

) . Thus, the proof of Lemma 26 is modified, stating that

the probability that one of the bins has its capacity exceeded in a step is at most
2

n4(m−1)3 . We can now rewrite Corollary 27 as follows.
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In the modified version of Algorithm 6, an infeasible step occurs with probability

at most 2
n4(m−1)3 .

Theorem 31 presents the result using the modification proposed.

Theorem 31. If all bins are considered for migration, then after O(n3m3) steps,

the modified version of Algorithm 6 terminates with high probability.

Proof. This proof is a modification of the proof of Theorem 28. We show that,

after O(n3m2) steps, at least one bin becomes totally full. This fact, together with

Corollary 27, is sufficient to prove the result, because there are m bins. We consider

that a bin b goes through 3 phases until it becomes totally full. In the first, second

and third phases we have, resp., Dt(b) ≥ 126 lnn, 3 ≤ Dt(b) < 126 lnn and Dt(b) <

3. We focus the analysis at bin b∗. In the second and third phases, it is expected that

b∗ receives, resp., 1
n2m and 1

n3m2 items in each step. Therefore, we need O(n2m logn)

and O(n3m2) expected steps to terminate, resp., second and third phases. In the

first phase, we consider two cases: (i) if 2Dt(b
∗)

3n(bo) > 1 and (ii) otherwise. In case (i),

we have 2Dt(b)
3n(bo) > 1 for each bin b that is not totally full or empty. Thus, at least a

fraction of 1/m of the load of bo migrates to a valid bin, and after O(m logn) steps

bo gets empty with high probability. In case (ii), we have 2Dt(b
∗)

3n(b) ≤ 1 for each valid

bin b. Thus, b∗ receives expected number of 2
3mDt(b

∗) items, and it is possible to

show that after O(m log n) steps in case (ii) the first phase terminates with high

probability for bin b∗ (see proof of Lemma 19). Therefore, the first phase terminates

in O(m log n) steps. Adding the number of steps needed in each phase, b∗ becomes

totally full in O(n3m2) steps, with high probability.

8. Extension to Different Costs

Our protocols also work for bins with different costs. Let L(bi) =
si

nt(bi)
. In the two

bins case, let bmin = argmin (L(b1), L(b2)) and bmax = argmax (L(b1), L(b2)). Note

that items in bmax want to migrate to bmin. It is easy to see that the same protocol

presented in Section 2 works for bins with different costs simply doing bmin as the

most filled bin and bmax the less filled bin. For multiple bins case, we use the same

idea. Let b1, . . . , bm be the bins sorted in non-decreasing order according to L(bi).

Thus, bins b1, . . . , bn/C are used on protocols of Sections 4 and 5 as set A, and the

other bins are used as set B. All results remain valid except Theorem 13, which

is not valid when bins have different costs. In algorithms of Section 6, we compare

using L(bi) instead n(bi).

9. Closing Remarks

In this paper, we presented protocols for a bin packing game when migration is done

simultaneously, motivated by parallel and distributed systems. The simplicity and

efficiency of these protocols make them very attractive. Without following protocols
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like the ones presented in this paper, users know that their selfish strategies will lead

to infeasible steps and invalidate attempts of the system to reach Nash equilibrium.

Some questions that remain open in our model are related to lower bounds in the

number of steps and other protocols that requires even less global information.
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