
Int J Digit Libr (2012) 12:13–26
DOI 10.1007/s00799-012-0080-5

Extending OAI-PMH over structured P2P networks
for digital preservation

Everton F. R. Seára · Marcos S. Sunye · Luis C. E. Bona ·
Tiago Vignatti · Andre L. Vignatti · Anne Doucet

Published online: 28 February 2012
© Springer-Verlag 2012

Abstract Open archives initiative (OAI) allows both
libraries and museums create and share their own low-cost
digital libraries (DL). OAI DL are based on OAI-PMH
protocol which, although is consolidated as a pattern for
disseminating metadata, does not rely on either digital pres-
ervation and availability of content, essential requirements
in this type of system. Building new mechanisms that guar-
antee improvements, at no or low cost increases, becomes
a great challenge. This article proposes a distributed archiv-
ing system based on a P2P network, that allows OAI-based
libraries to replicate digital objects to ensure their reliability
and availability. The proposed system keeps and extends the
current OAI-PMH protocol characteristics and is designed as
a set of OAI repositories, where each repository has an inde-
pendent fail probability assigned to it. Items are inserted with
a reliability that is satisfied by replicating them in subsets of
repositories. Communication between the nodes (reposito-
ries) of the network is organized in a distributed hash table

E. F. R. Seára (B) ·M. S. Sunye · L. C. E. Bona · T. Vignatti
Department of Informatics, Federal University of Paraná,
Curitiba, Brazil
e-mail: rufino@inf.ufpr.br

M. S. Sunye
e-mail: sunye@inf.ufpr.br

L. C. E. Bona
e-mail: bona@inf.ufpr.br

T. Vignatti
e-mail: vignatti@inf.ufpr.br

A. L. Vignatti
Institute of Computing, University of Campinas, Campinas, Brazil
e-mail: vignatti@ic.unicamp.br

A. Doucet
Département DAPA, Université PARIS VI, LIP6, Paris, France
e-mail: anne.doucet@lip6.fr

and multiple hash functions are used to select repositories that
keep the replicas of each stored item. The OAI characteristics
combined with a structured P2P digital preservation system
allow the construction of a reliable and totally distributed dig-
ital library. The archiving system has been evaluated through
experiments in a real environment and the OAI-PMH exten-
sion validated by the implementation of a proof-of-principle
prototype.

Keywords Digital library · Long-term preservation ·
Digital archiving · Peer-to-peer

1 Introduction

As the amount of content in the World Wide Web has been
rapidly increased during the last years, users are able to rely
on particularized tools to navigate through the vast volumes
of data, and several information retrieval systems and tools
have been proposed to fulfill such a need. The arrival of XML
provided the structured organization of contents and made
possible a great growth of digital libraries (DL) in several
areas.

To create a standard mechanism for information interop-
erability among DL repositories, the open archives initiative
(OAI) [22] proposed the protocol for Metadata Harvesting —
OAI-PMH [14]. OAI DL, also known as data providers (DP),
are repositories responsible for both storing digital objects
and exposing its structured metadata via OAI-PMH frame-
work. Each metadata follows the Dublin Core schema [34]
and describes a digital object. Service providers then make
OAI-PMH service requests for harvesting metadata and also
offers a global search.

The OAI harvesting protocol is compatible with many
of open source softwares, like EPrints and Dspace [21,29].

123

14 E. F. R. Seára et al.

Nowadays, commercial library administration software like
Virtua TLS [33] became OAI-PMH compliant and search
engines, like Google, are collecting metadata from OAI
repositories. An OAI federation is able to offer a global search
over a set of DL that share their metadata.

In OAI-PMH each repository stores its digital objects in an
independent way. Although this approach keeps the protocol
quite simple, because only metadata is shared, it does not rely
on digital data preservation, i.e., digital objects can be easily
lost if there is no external backup mechanisms assigned to
each repository. Moreover, the large necessity for disk space
and the cost involved to use specialized hardware makes this
solution economically limited. An alternative to digital pres-
ervation of content is to replicate the information in multiple
storage repositories, which consists on conventional and low-
cost computers [5].

Thus, we considered that OAI DL have the same goal,
which could be the dissemination of digital content on the
Internet. Therefore, OAI might collaborate for the creation
of a long-term data preservation environment that ensures
reliability and availability of their objects. To enable that col-
laboration, we proposed an OAI-PMH extension—explained
in details in Sect. 3—that keeps current OAI-PMH protocol
characteristics and organize DP over a distributed system,
allowing to replicate a digital object between nodes in the
system.

It is important to note that in our extension, we are inter-
ested in replicating only object’s content but not its meta-
data, as the OAI-PMH harvesting mechanism performs this
job efficiently. However, considering that objects are repli-
cated among DP, which can store content from several other
repositories, we created a new OAI-PMH verb in the service
provider side, called GetRecord. This verb enables DP to
recover any object’s metadata in the entire OAI federation.

Besides the storage of replicated objects, our OAI-PMH
extension promotes a user-transparent access to them over a
Round Robin DNS, which performs requests only to avail-
able nodes in the system. With this solution, objects can be
recovered from the system even if the original data provider
has failed.

Although the proposed extension can be carried out over
any distributed system, in as much as it was generically
defined, Peer-to-Peer (P2P) networks appear as a promis-
ing approach to organize these kinds of systems, as they are
highly scalable for the distribution and retrieval of data. At
the same time, the available replication mechanisms in most
P2P networks are not sufficient to ensure the preservation of
data over a long period of time.

To solve this problem, we created a totally distributed
P2P archiving system. In this system, OAI repositories are
organized by a distributed hash table (DHT) [23,26,28,37]
and multiple hash functions are used as mechanisms for rep-
lication. The choice of structured P2P, instead of non-struc-

tured, is motivated by its scalability regarding the number
of nodes. Moreover, the search algorithms of non-structured
P2P networks cannot locate rare items, which is unacceptable
in our context. Multiples hash functions are used to perform a
selection on specific set of repositories. This is an absent fea-
ture in non-structured P2P model using DHT. The system was
evaluated through experiments in a real-world environment.

The P2P digital archiving system motivates the definition
of a model for data replication, described in Sect. 4. Thus,
we propose a model for replication where a reliability met-
ric is associated with each repository. This metric denotes the
probability that the data will not be lost or damaged in a given
period of time. Furthermore, each item (digital information)
needs to be stored with a desired reliability that reflects its
importance, allowing high or low durability (preservation
time). To ensure the desired reliability of an item, several
replicas of it are created in different repositories. The number
of replicas needed to preserve a specific item is determined
by the reliability metric of each repository. This allows an
optimization of the network resources usage, compared to
other systems where the number of replicas is fixed [17,24],
however, more elaborated strategies for replication should
be used in this case. Another contribution of this study is to
present and compare three different strategies for the reliable
replication problem.

For example, in Fig. 1, a network with five repositories,
identified by 1, 2, 3, 4, and 5; with reliability of 40, 80, 30, 60,
and 25% respectively. Suppose that an user wants to insert
an item in the network with a desired reliability of 90%. A
simple strategy would replicate this item in the order of the
repositories identifiers, until it achieves the desired reliability.
Thus, with one replica in the repository 1, the item has guar-
anteed a reliability of 40%. Adding a replica in the repository
2, the reliability guaranteed would be 1−(0.6×0.2) = 88%,
but still not reaching the desired reliability of 90%. With an
additional replica in the repository 3, the guaranteed reli-
ability would be 1 − (0.6 × 0.2 × 0.7) = 91.6%, therefore
reaching the desired reliability of the item.

1.1 Contributions and results obtained

This article presents an OAI-PMH extension that defines
some new functionalities for both service and DP, to enable

Fig. 1 Repositories labeled with independent reliabilities

123

Extending OAI-PMH over structured P2P networks 15

digital content preservation in an OAI federation, and uses a
Round Robin DNS to promote an user-transparent access to
the objects. This extension allows users to see the entire sys-
tem as a single server, and transparently insert and retrieve
objects from the P2P archiving system. Moreover, the pro-
posed OAI extension enables DP to retrieve object’s metadata
from service providers, making possible to gain access to the
object even if its original data provider is crashed. The imple-
mentation of a proof-of-principle prototype show a complete
integration between OAI extension and P2P archiving sys-
tem, ensuring reliability and availability in OAI DL.

We also present a model for reliable replication of data in
digital archiving systems with immutable data. To cope with
the scalability, we create a structured P2P network for the
reliable archiving, carried out over the proposed model. We
also present three strategies of reliable replication. Experi-
ments in real environments have been made to establish the
P2P digital archiving system.

In the proposed model, independent probabilities of fail-
ure are associated with each storage repository. These prob-
abilities allow items to be stored based on their preservation
time needs. Moreover, the repositories have different storage
capacities, i.e., the repositories are heterogeneous. Thus, due
to limited storage capacity, we aim to insert the maximum
number of items in the network; always satisfying the desired
reliability of the items.

To maximize the number of items inserted in the network,
we designed the strategies with two (heuristic) goals: bal-
ance the load among the repositories and, at the same time,
minimize the total number of replicas created. This is justi-
fied by two facts: (i) balance the load, as well as minimize
the replicas created, avoids the overhead in the repositories.
Furthermore, (ii) if the load balancing is not performed, a
repository can easily becomes completely filled and, con-
sequently, the number of repositories that can be selected
decreases, thus decreasing the number of available options
that meet the desired reliability of an item. This, in turn,
infers the creation of a larger number of replicas to satisfy
the desired reliability of an item and hence the total number
of items to be inserted in the network decreases due to the
limited capacity of the repositories.

In the case of heterogeneous repositories that we consider,
balancing the load and minimizing the replicas do not neces-
sarily imply the maximization of the number of items inserted
in the network due to different capacities of each repository.
Even so, we use these two goals, hoping to approximate the
above arguments. Indeed, experimental results of the simu-
lations, presented in [32] confirm that these are good goals
for the heterogeneous case.

In Sect. 4.2, we present three strategies for creating repli-
cas. All these strategies aim to optimize the number of repli-
cas created and the load balancing. However, each strategy is
based on different arguments to justify its use. The Random-

ized strategy has the load balancing as the main motivation,
justified by theoretical results of ball-and-bins [20]. Also, in
this strategy, we obtained a theoretical bound in the number
of replicas created. The Greedy over Subset strategy has the
minimization of replicas created as the main motivation, but
adjustments are made to perform a good load balancing. The
Ideal Subset strategy solves the problem without giving pri-
ority to minimizing the replicas or balancing the load, acting
as a “mean” between the two goals.

Through simulations, presented in [32], we found that
among the three strategies presented, the Ideal Subset strat-
egy proved to be the most effective in the creation of replicas
and load balancing, and also obtaining the highest number
of inserted objects in the network. This strategy has a com-
putational complexity that could not be feasible in practice
if not carefully formulated.

Due to high scalability for the distribution and retrieval
of data, structured P2P networks appear as natural candi-
dates to implement the model proposed. Thus, in Sect. 5, we
present a reliable P2P archiving system, which is one main
contribution in this study. The structured P2P networks have
a difficulty inherent in the method of routing information
which makes difficult the selection of specific nodes (reposi-
tories) for the storage. However, this problem was overcome
by using multiple hash functions, which is the main contribu-
tion of this section. We describe in detail the algorithms that
use multiple hash functions for the basic operations of the
network. The implementation of the P2P digital archiving
system was evaluated in a real environment, where digital
objects were inserted in a network to stress the preservation
time in function of their importance.

1.2 Organization

Section 2 presents some related work and their differences
from our study. Section 3 gives a short background about
OAI-PMH framework and explain in details the architecture
of the OAI extension and how it inserts and recovers object
from the system. Section 4 presents the model of replication
for archiving systems and the strategies used for creating rep-
licas. In Sect. 5, we present the reliable P2P archiving system
and use a real environment for evaluation. The conclusion and
future study are presented in Sect. 6.

2 Related work

The usage of P2P networks to create distributed digital
libraries has been addressed in several works [2–4,36]. In
general, the goal of those approaches is to create mechanisms
to search content in distributed repositories.

Freelib [4] is digital library framework based on P2P. It
works as a standalone client that once installed on user’s

123

16 E. F. R. Seára et al.

machine, connects itself to a P2P network and automatically
create connections among people who share common inter-
ests, i.e., have similar searches. Likewise, Flexible CAN [36]
is used for information managing and retrieving, and also
detecting groups of users with the same interest, creating
communities and allowing them to share their resources.

OAI-P2P [3] proposes a P2P network formed by DP to
support distributed search over all connected metadata repos-
itories. In this solution, as our study also proposes, DP are
organized in a P2P network but, as Freelib and Flexible CAN,
no solution to preserve digital content is proposed.

When considering digital preservation and long-term
archiving environments, it is very important to emphasize
that information is not updated or removed [18], i.e., a rep-
lica of an object is immutable in the system. Thus, in this
study, we are not interested in strategies and mechanisms for
replicas update.

Traditional solutions for backup or data storage, such as
replicated file systems and RAID disks [15] do not pro-
vide a degree of self-management as the P2P networks do.
Unlike the proposed P2P archiving system of this study,
these systems use a centralized control to manage the con-
tent that needs to be replicated. P2P systems for file shar-
ing such as Kazaa, eDonkey, and Gnutella [19] focus on
searching resources in dynamic collections, and are not
focused on the reliability of the information. In such sys-
tems, a file is replicated every time it is copied into a new
node.

Other mechanisms, such as CFS [7] and PAST [25] are
not able to change the number of replicas dynamically, as
they employ replication in the neighborhood. The number
of replicas, in fact, cannot exceed the size of the neighbors
lists, once the number of neighbors is tied to the DHT pro-
tocol. Any digital archiving system built on these systems
could not be able to achieve the desired degree of replica-
tion required to preserve their information. Other forms of
storage that uses DHT as OceanStore [13] and Glacier [11]
consider a simpler model where their nodes have equal prob-
ability of failure. BRICKS [24] consider availability instead
reliability, associating a single fail probability to all nodes in
the network.

The lots of copies keep stuff safe (LOCKSS) [17] uses
a P2P network where nodes are controlled by autonomous
organizations to preserve the information for a long period.
It uses a complex scheme of audit to detect and repair the
damage in the replicas. Unlike our model, the LOCKSS sys-
tem treats its repositories with a single probability of failure,
which does not exactly model real environments. Further-
more, LOCKSS considers a fixed number of replicas for its
items and does not integrate with OAI-PMH in a real-time
environment.

After studying and evaluating the solutions described
above, we believe that our solution has a great difference

from the others, which is to join a P2P digital archiving sys-
tem (with a desired reliability for each item inserted) in con-
sonance with OAI-PMH framework, ensuring reliability and
availability in OAI DL.

3 Extending OAI-PMH for digital preservation

This section describes an OAI-PMH extension which,
together with a distributed archiving system based on P2P
networks (Sect. 5), allows OAI-based libraries to replicate
digital objects and ensure their reliability and availability.
Such extension makes possible communication among DP
and allows OAI DL to preserve their digital content with low
cost.

To contextualize the reader about the important features in
OAI-PMH framework, we briefly present the protocol (Sub-
section 3.2), and then explain our extension.

3.1 Open archives initiative and protocol

Self-archiving includes storing copies of digital documents
on the Internet, to offer open access to it. As this idea has
started in 1992, with arXiv System [1], several software
have been created to organize the exposure of scientific work
on the World Wide Web [21,29]. To provide a centralized
search among individual archives, the open archives initia-
tive [22] proposed, in 2001, the Open Archives Initiative
Protocol for Metadata Harvesting (OAI-PMH) [14]. The
OAI-PMH framework provides an application-independent
interoperability based on metadata harvesting, where two
classes of participants are found [14]: (i) DP and (ii) service
providers.

DP, or OAI repositories, are network accessible servers
responsible for storing digital objects and exposing its meta-
data to harvesters. All DP supply metadata in a common for-
mat—the Dublin Core Metadata Element Set [34]—thus can
address interoperability and extensibility. Each digital object
in a data provider has a digital object identifier (DOI)—in
uniform resource identifier (URI) syntax—that is used, in
OAI-PMH requests, for identifying the object and extracting
its metadata from the repository.

Service providers (SP), or harvesters, are client applica-
tions that issue OAI-PMH requests for harvesting either new
or out-of-date metadata from a set of DP and store them in
a unique database. As shown in Fig. 2, a user access ser-
vice providers to perform a global search over metadata
from an unlimited number of DP. When the user finds the
desired metadata in the service provider, a Handle Server
maps the data provider where the object is stored from its
DOI. Handle servers [30,31] are needed to keep the iden-
tifier tolerant to DP changes (server name or even domain
name).

123

Extending OAI-PMH over structured P2P networks 17

Fig. 2 Global search over a set of OAI repositories

Fig. 3 OAI-PMH extension topology

3.1.1 Problems with this topology

OAI-PMH promotes a very efficient dissemination of meta-
data on the internet, however, objects are stored in a single
data provider, therefore, can become unavailable if this spe-
cific computer is offline. Moreover, if the computer crashes,
content can be permanently lost. To solve these problems, we
combine the advantages of OAI-PMH framework and P2P
networks to preserve, with low cost, digital content in OAI
DL.

3.2 OAI-PMH extension architecture

Many challenges are related to the creation a long-term digi-
tal preservation system. In our study, we are mainly interested
in keeping digital objects available and reliable for long peri-
ods of time, even in the presence of adverse situations.

To achieve this goal, we organize DP as nodes in a P2P
digital archiving system, as illustrated in Fig. 3. It means that,
despite their original functions (share metadata and store
itself content), DP are able to replicate and store replicas
of other libraries, reducing the chances of losing the content.
Replicas of an object can be stored in several DP, but metada-
ta are maintained and managed only in its original repository,
i.e., metadata is not replicated. This decision is justified by
the fact that metadata are likely to be modified, and the cost
to keep multiple synchronized copies is high.

To ensure that metadata will not be lost and be available
whenever we need, our extension requires at least one ser-
vice provider to regularly harvest metadata from all DP in the
federation. Thus, a user access the service providers and per-
form a global search. When a user finds the desired metadata,
he gets the DOI and is able to gain access to the object.

It is important to note that in conventional OAI-PMH sys-
tems, the DOI normally addresses either a specific data pro-
vider or a Handle Server, which redirects to the data provider.
If this data provider is offline, it is not possible to gain access
to the object. To solve this problem, in our extension the DOI
does not address to a specific data provider, but to an unique
URI that is resolved by a Round Robin DNS (see Fig. 3). This
DNS knows which nodes are alive in the network, thus, redi-
rects the user to one of these nodes. When a node receives
the request, it shows the object’s information and recover the
content from the P2P digital archiving system. Requests for
any objects can be received from any node.

Next, we show the responsibilities of each component in
our extension and how an object is inserted and retrieved in
the system.

3.2.1 Data provider

In OAI-PMH framework a data provider is responsible for
sharing metadata and providing access to its objects. Our
extension defines that a data provider, in addition to its origi-
nal functions, is part of a P2P digital archiving system, which
allows the replication of its objects in other repositories and
the collaboration to find objects in any other data provider in
the federation.

DP are also responsible for creating both object’s DOI and
metadata when an object is inserted in the system. The DOI
is formed by a unique URI which identifies the federation
(stored in a configuration file in the DP), a number that iden-
tifies the DP—generated when it is registered in the open
archives initiative—and a serial number that locally identi-
fies the object, as presented in Fig. 4. After created, the DOI
is inserted in the metadata and is used as key to insert and
retrieve the object in the archiving system.

In addition, DP are responsible for identifying the desired
reliability for the object and send this information to the P2P

Fig. 4 Digital object identifier structure

123

18 E. F. R. Seára et al.

archiving system when the object is inserted. This informa-
tion defines the number of replicas in the system, as presented
in Sects. 4 and 5. Finally, if necessary, we extended DP to con-
tact service providers, via the verb GetRecord, and retrieve
the object’s metadata (see Sect. 3.4).

3.2.2 Service provider

In OAI-PMH framework, service providers are responsible
for harvesting metadata from a set of DP and offer a global
search. In our extension, service providers continue perform-
ing the same job, however, a group of service providers,
called masters, should harvest all metadata in the Federa-
tion. This is needed because in this case the masters are also
metadata suppliers to DP. A list identifying the masters is
maintained by DP.

To perform this, service providers accept requests via the
verb GetRecord. This verb follows the same definition of its
original, implemented in the data provider side. It receives the
DOI as a parameter and returns the corresponding metadata.
Requests are made via hypertext transfer protocol (HTTP)
and the metadata is delivered following the Dublin Core
Metadata Element Set [34].

It is important to note that if either an error or an excep-
tion is found, the masters should return a message, in XML
format, describing the problem. This message follows the
GetRecord specification described in [14].

This solution ensures that metadata is not easily lost,
because they are stored in several masters, and allows DP
to gain access to metadata when they are not “owners”.

3.3 How to insert an object

Inserting a new object in our system is quite simple. First, a
data provider reads, from a system administrator, all infor-
mation that composes the metadata. The content that will be
inserted and its desired reliability are also required.

After getting these information, the data provider cre-
ates the DOI, following the standard presented in Fig. 4, and
inserts it in the object’s metadata. Once created, the metadata
can be harvested by service providers.

Finally, the data provider invokes the function insert,
implemented in the P2P digital archiving system, whose rep-
licates the content over the network until reaches its desired
reliability. The Algorithm 1 illustrated those steps.

input: metadata_in f o, content , reliabili t y
begin

DO I ← U RI + D P Number + sequence /*Creates the DOI */
metadata = metadata_in f o+ DO I
P2P .insert(DO I, content, reliabili t y)

end

Algorithm 1: Insert by Data Provider

3.4 How to retrieve an object

The first step to retrieve an object from the system is to access
a service provider and recovers its DOI. As a DOI is a sim-
ple URI, users can use a web browser to obtain information
about the object and access its content.

To address a specific computer, a URI is normally resolved
by a domain name system (DNS). In our extension, a Round
Robin DNS is used to perform this. A Round Robin DNS [6]
is a technique of load balancing, or fault-tolerance for redun-
dant internet protocol service hosts (e.g., web servers) by
managing the DNS responses to address requests from client
computers according to an appropriate statistical model.

There are many implementations of Round Robin DNS, in
its simplest form, it works by responding to DNS requests not
only with a single IP address, but with a list of IP addresses
of several servers that host identical services. Thus, when
a user access the DOI he is redirected to an available data
provider. Available nodes are maintained by a node checker,
which regularly checks the nodes activity. If a node is offline,
it is removed from the list until recover its normal operation.

When a data provider receives the request for an object, it
verifies if the object’s metadata is locally stored. If it is not,
the data provider requests the metadata for the service pro-
vider, via GetRecord verb, using the DOI as input. Once the
metadata is recovered, the data provider presents its infor-
mation to the user and recovers the content from the P2P
digital archiving system using the DOI as key, as illustrated
in Algorithm 2.

input: DO I
begin

metadata = get_metadata_local(DO I)
if metadata not found then

metadata = ServiceProvider.getRecord(DO I)
if metadata not found then

return “Object does not exist”

/*shows object’s information to the user */
showMetadata(metadata)
return P2P .retrieve(DO I)

end

Algorithm 2: Retrieve by Data Provider

3.5 Integration tests

To evaluate our OAI extension, we implemented a proof-
of-principle prototype. This prototype was implemented in
Java programming language and XML documents were used
to store metadata and information to configure the system.
Messages between the components were sent and received
by Sockets [35].

The main purpose of these tests is to show that OAI-PMH
extension works in together with P2P digital archiving sys-
tem, explained in Sect. 5. To achieve this goal, we create a set

123

Extending OAI-PMH over structured P2P networks 19

Fig. 5 Data provider log: illustrate an object being recovered

of logs during the execution of Algorithms 1 and 2. Figure 5
shows a log, from a data provider, which illustrates an object
being recovered.

It is important to note that we mapped several different
behaviors with logs. In [8], it is possible to find other exper-
iments that helped us to validate our proposed extension.
In a real-world environment, it can be implemented over a
number of open source softwares, like EPrints and Dspace
[21,29].

4 Data replication model and proposed strategies

The model is composed by a set N of |N | = n items (dig-
ital objects). All items have identical size, without loss of
generality, equal to 1. Each item i has associated a proba-
bility 0 < ri < 1, called the desired reliability of the item.
Furthermore, we have a set M = {�1, . . . , �m} of |M | = m
repositories, where each repository � j has associated a stor-
age capacity c j and a probability 0 < p j < 1, called the reli-
ability of the repository. To determine this reliability, we can
consider some parameters, such as the number of bugs, the
vulnerabilities of the system, human factors, the frequency at
which the machines are repaired, among others. The deter-
mination of the desired reliability of an item is not in the
scope of this study.

The reliability of the subset S ⊆ M is defined as
1− ∏

� j∈S(1− p j), which denotes the probability of at least
one repository in S does not lose data in a given time interval.

We define the problem as follows. Items arrive one by
one, i.e., initially there is no item, and the items arrive as
time passes. After an item i arrives, we have to choose a sub-
set Si of repositories where each repository in Si receives a
copy of the item (replica) to satisfy the desired reliability ri .
In other words, we select Si ⊆ M such that

1−
∏

� j∈Si

(1− p j) ≥ ri . (1)

In addition, each repository in Si must have enough free space
to receive the copy. The load of a repository is the number

of replicas assigned to it. The replicas are never updated,
i.e., they are immutable. The objective of the problem is to
maximize the number of items inserted in the network, satis-
fying the desired reliability of items and the capacity of the
repositories.

As argued before, we focus on two goals: (i) on the one
hand, we want to minimize the total number of replicas cre-
ated, i.e., minimize

∑
∀i |Si |. On the other hand, (ii) at the

same time, the replicas should be placed so as to balance the
load. To measure the load balancing, we evaluate two metrics:
the makespan, i.e., the load of the most loaded repository, and
standard deviation of the repositories load. Note that the min-
imization of the makespan and the standard deviation of the
loads are sufficient measures to ensure that all repositories
have a balanced load.

In what follows, we make some comments regarding to
the feasibility of the problem

Observation 1 Assigning two or more replicas of the same
item to a repository does not bring any benefits.

By Observation 1, in the worst case we create m replicas
for each item.

Observation 2 There are instances which are not feasible
solutions to the problem.

To illustrate Observation 2, suppose that all repositories
have a low reliability, e.g., 1/(m + 1). By Observation 1, we
do not take advantage in creating more than m replicas. Thus,
when creating replicas of a given item in all m repositories,
we guarantee the following reliability.

1−
(

1− 1
m+1

)m ≤ 1− 1
e ≤ 2/3.

In other words, it is impossible to guarantee a desired reli-
ability of an item that requires a reliability greater than 2/3. In
view of Observation 2, we would like to identify conditions
that make an instance of the problem feasible/infeasible. A
necessary and sufficient condition (i.e., an “if and only if”
condition) would be ideal in this case.

Observation 3 Due to the on-line nature of the input, it is
impossible to decide if an instance of the problem is feasi-
ble/infeasible.

By Observation 3, we can only say that an instance is
infeasible if the item that came last makes it infeasible,
excluding the existence of a necessary and sufficient condi-
tion for detecting feasibility. However, without “looking into
the future” and look only at the items that already arrived, the
problem is feasible if and only if 1−∏

� j∈Si
(1− p j) ≥ ri ,

∀i ∈ N .
A naive approach would treat both goals in an independent

way, for example, first solving the minimization of the repli-
cas and then balancing the load. This is not a good approach,

123

20 E. F. R. Seára et al.

because the number of replicas created depends directly from
repositories which had allocated the replicas. As an exam-
ple, we illustrate a situation where we first solve the problem
of replicas and then solve the load balancing. Suppose an
instance where the repository � j has reliability p j and all
items have desired reliability less than p j . It suffices to cre-
ate a single replica of each item in � j . However, � j will be
overloaded, and when we start the phase of balancing the
load, we have to remove items from � j . In this way, we have
to select other repositories to accommodate new replicas of
these items to meet their desired reliability, lying again on
the problem that we thought was solved before the load bal-
ancing.

4.1 Equivalent definition

Next, we rewrite the desired reliability constraint to ease
the handling of the problem of replicas creation. We present
an equivalent definition of the desired reliability constraint,
replacing the product by a summation. We rewrite the desired
reliability constraint as follows:

1−
∏

� j∈Si

(1− p j) ≥ ri ≡
∏

� j∈Si

(1− p j) ≤ 1− ri

≡
∏

� j∈Si

eln(1−p j) ≤ eln(1−ri)

≡ e
∑

� j∈Si
ln(1−p j) ≤ eln(1−ri).

But

e
∑

� j∈Si
ln(1−p j)≤eln(1−ri) ⇐⇒

∑

� j∈Si

ln(1− p j)≤ ln(1− ri).

As 0 < p j , ri < 1, then the value of the logarithm function is
negative. Thus, for clarity of notation, we redefine the prob-
lem variables. Let a j = − ln(1− p j) and bi = − ln(1− ri).
Therefore, the desired reliability constraint can be rewritten
in the following equivalent way,
∑

� j∈Si

a j ≥ bi . (2)

That is, for an item i we have to select Si ⊆ M such that
the sum of a j exceeds bi . Equation 2, besides being easier to
handle, is equivalent to the Eq. 1.

4.2 Strategies for replicas creation

In what follows, we present three strategies for the creation
of replicas. In all strategies, we do a selection over a set of
repositories. When doing a selection on M , the complexity
of the worst case is linear in m, which is a good theoreti-
cal bound. In practice, however, a selection on the set of all
machines of the network is infeasible. Thus, in the strategies
described below, we denote by Mo ⊆ M the set of machines

that are available based on a feasible number of machines
that we can select in practical situations. For each item that
arrives to be inserted, we consider that Mo is selected at
random from M ; in practice, the way that Mo is selected
may depends on the system features. Note that the strategies
presented are generic, i.e., can be used in various situations of
reliable replication systems. Therefore, the size of Mo may
depends on the features of the real-world situation that we
are considering.

It is worth noting that in all strategies, when a replica is
assigned to a full repository, we ignore it and randomly select
another repository of the considered set.

4.2.1 Randomized strategy

Here, we present the first proposed strategy to solve the prob-
lem. Algorithm 3 shows the details.

begin
S = ∅
while reliability of S is less than ri do

choose � j ∈ Mo uniformly at random
S = S ∪ {� j }

return S
end

Algorithm 3: Randomized

In this subsection, we use m = |Mo| and assume that
the reliabilities of the repositories are uniformly distributed
in an interval. Formally, the values p j is chosen according
to the continuous uniform distribution in the interval [a, b],
where a > 0 and b < 1. We assume that the expected num-
ber of reliable repositories (in a specified time interval) is
at least 8 ln m; note that this is not a strong assumption to
the problem, as the expected fraction 8 ln m

m of reliable repos-
itories goes to 0 when m goes to infinity. For example, for
m = 1,000, we assume that the expected fraction of reli-
able repositories is 8 ln 1,000

1,000 ≈ 0.05, i.e., we assume that, in
expectation, 5% of repositories are reliable.

Let X j be a random variable that is equal to 1 if the repos-
itory � j is reliable in the time interval specified, 0 otherwise.
Let X = ∑

j∈Mo X j be the random variable of the total
number of reliable repositories in a given time interval. As
we assume that the reliabilities of the repositories are distrib-
uted according to the continuous uniform distribution, then
E[X] = m(a+b)

2 . In a given time interval, X can be less than
E[X], however, with high probability, it cannot be much less
than the expected value, as shown in Lemma 1.

Lemma 1 Let X j be a random variable that is equal to
1 if the repository � j is reliable, 0 otherwise. Let X =∑

� j∈Mo X j be the random variable of the total number of
reliable repositories in a given time interval. Then Pr(X <
1
4 E[X]) < 1

m2 .

123

Extending OAI-PMH over structured P2P networks 21

Proof Note that X is a sum of Poisson random variables.
Therefore, we can apply a known Chernoff bound [20],

obtaining Pr(X < (1− 3
4)E[X]) ≤ e−

9E[X]
32 ≤ m−2, where

the last inequality follows from the fact that E[X] ≥ 8 ln m.

Lemma 1 tells us that with high probability (i.e., probabil-
ity greater than 1− 1

m2), a fraction of a+b
8 of the repositories

are reliable. That is, with high probability, when selecting
a repository uniformly at random, we have probability at
least a+b

8 that it is a reliable repository. Thus, by choosing
k repositories uniformly at random, the probability that one
or more repositories are reliable is at least 1 − (1 − a+b

8)k

and we want that this probability be greater than the desired
reliability ri . Thus, by choosing k = � 8

a+b ln(1
1−ri

)� repos-
itories uniformly at random and place the replicas on them,
the desired reliability of the item i is satisfied with high prob-
ability, as the Theorem 1 claims.

Theorem 1 If item i places k = � 8
a+b ln(1

1−ri
)� replicas in

k repositories chosen uniformly at random then, with high
probability, the desired reliability of i is satisfied.

As an example of Theorem 1 application, suppose that
the reliability of the repositories are uniformly distributed
between 50% and something close to 100%. Thus, an item
with desired reliability of 95% needs to choose a minimum
of � 8

0,5+1 ln(1
1−0,95)� = 16 repositories uniformly at random

to place its replicas.
Regarding the load balancing, we note that in Algorithm 3,

a replica always chooses a repository uniformly at random.
That is, Algorithm 3 simulates the balls-and-bins process,
well studied in the area of randomized algorithms and the
existing results can be used in our problem [20]. The results
of Theorems 2 and 3 can be easily obtained from the results
of balls and bins and therefore the demonstrations will be
omitted.

Theorem 2 If n balls are thrown independently and uni-
formly at random on m bins, then the load of the most loaded
bin is bounded by 2e n

m + 2 log m with high probability.

Theorem 3 Let n ≥ m log m. If n balls are thrown indepen-
dently and uniformly at random on m bins, then the load of

the most loaded bin is bounded by n
m +

√
8 m

n log m with high

probability.

Theorems 2 and 3 are related, respectively, to a small and
a large number of balls (in our problem, they are the items).
However, in practical situations, it is likely that n ≥ m log m
and, in this case, Theorem 3 tells us that with high probability
the most loaded repository have a constant number of items
in addition to the optimal balance.

4.2.2 Greedy over subset strategy

Suppose we want to minimize the total number of replicas
without worrying about the load balancing. Thus, using the
equivalent definition of Sect. 4.1, it suffices to solve the inte-
ger linear program (ILP) below

min
∑

� j∈Mo

x j

s.t.
∑

� j∈Mo

a j x j ≥ bi

x j ∈ {0, 1} ∀� j ∈ Mo.

The ILP described can be optimally solved by sorting the
values a j in non-increasing order and taking the values in
such order until the sum of the selected values reaches bi .
This greedy strategy, besides being very simple and efficient,
optimally solves the ILP as, in a given step, we have no advan-
tage in selecting a value less than the value in the sorted order.
Algorithm 4 shows the details of this strategy.

begin
sort Mo in non-increasing order according to the values a j
S = ∅
t = 1
while

∑
� j∈S a j < bi do

S = S ∪ {�t ∈ Mo}
t = t + 1

return S
end

Algorithm 4: Greedy over Subset

Note that this strategy accumulates the replicas on the
repositories in Mo with higher reliability, which is not good
for the load balancing. We know that Mo is randomly chosen
in each insertion of an item, but this do not suffices to improve
the load balancing because if Mo is large, we lie again in the
problem of accumulating the replicas in repositories with
higher reliability. Moreover, if Mo is small, we do not have
many options to choose or there are not enough repositories
to satisfy the desired reliability of an item. Several sizes of
Mo are evaluated in [32].

4.2.3 Ideal subset strategy

To create the replicas, we select the subset S ⊆ Mo that
provides the reliability that is closest to the desired reliabil-
ity of the item. That is, we choose S ⊆ Mo that minimizes
1−∏

� j∈S(1− p j)− ri . Using the equivalent definition of
the problem, we need to solve the following ILP

min
∑

� j∈Mo

a j x j − bi

123

22 E. F. R. Seára et al.

s.t.
∑

� j∈Mo

a j x j ≥ bi

x j ∈ {0, 1} ∀� j ∈ Mo

Note that if the solution value is equal to 0 then there
is a subset of values that together sums exactly bi ; if the
solution value is greater than 0, then there is no such sub-
set. Thus, if we solve this ILP, then we could also solve
the SUBSET-SUM decision problem, which is NP-complete
[9]. Therefore, as the ILP is an optimization problem, then
it is NP-hard; assuming P �=NP, no polynomial algorithm
can solve such problem. However, there is a dynamic pro-
gramming algorithm which solves this problem in pseudo-
polynomial time, but in practice is satisfactory for the vast
majority of instances [9]. The details of the algorithm are
omitted.

The solution of the above ILP do not necessarily provides
a good solution to minimize the number of replicas created.
Nevertheless, the ideal subset strategy is motivated by the
fact that in practical situations it is expected to not create too
many replicas and to select different subsets for each item,
so that the distribution of replicas in the repositories balance
their loads. Note that, if we had not used the equivalent def-
inition, we are not able to model this case as a subset sum
problem, and then we need a real exponential algorithm to
solve this, which turns out to be an unfeasible alternative to
this case.

5 A peer-to-peer digital archiving system

The model proposed in Sect. 4 is designed in a generic way
and can be implemented on any distributed mechanism for
organizing the storage repositories. In particular, structured
P2P using DHT appears as natural candidate as it is highly
scalable for data distribution and retrieval. However, a dif-
ficulty inherent in structured P2P networks is the accurate
selection of nodes (repositories) to store the replicas. It is
not trivial to select a specific subset of nodes using the rout-
ing method from DHTs. Therefore, the implementation of
the digital archiving system needs to define an architecture
that accommodates all the features that the model of Sect. 4
requires. Thus, we present a scheme of selection of nodes
using multiple hash functions, which allows the selection of
a particular set of nodes.

5.1 Architecture

5.1.1 Structured P2P networks and DHT

The system routes the messages of the network through
structured P2P networks, using DHTs. The choice of struc-
tured P2P, instead of non-structured, is motivated by its

scalability regarding the number of nodes. A problem of
non-structured P2P networks is that they often use brute
force algorithms to perform the search (“flooding”) and are
more suitable for popular content. Moreover, in many cases,
the search algorithms of non-structured P2P networks can-
not locate rare items, which is unacceptable in the context
of digital archiving where the objects are equally popular
[16].

DHTs have a problem with the transient population, i.e.,
maintaining the structure of the routing tables is relatively
expensive in churn situations. However, the machines tran-
siency in organizations that intend to preserve digital docu-
ments is not as frequent when compared with machines used
in traditional applications in the non-structured architecture
[17]. Therefore, the necessary adjustments in the topology
of the structured networks does not overload the archiving
system in case of churn.

5.1.2 Specific selection of repositories

The strategies proposed in Sect. 4.2 assume that is possible
to do a selection on specific repositories. However, the DHT
by itself does not provide the mechanisms of selection of a
specific node, due to its method of index keys. So if we are
interested to store the content in a given set of repositories,
we must provide a mechanism that simulates the process of
specific selection. To perform the selection of specific nodes,
we propose the use of multiple hash functions, as explained
below.

A digital object consists of a key, which is the identifier
of the object; a value, which is the content of the object;
and a parameter of desired reliability, which is the reliability
that should be achieved when inserting the object in the net-
work. Let h1, h2, . . . , hr be the r hash functions. The hash
functions have global visibility, i.e., they are the same for
all nodes. Given the key k of a digital object, we apply k to
the hash functions, i.e., h1(k), h2(k), . . . , hr (k). Each of the
r generated hash maps to a node in the network. Thus, for
each object to be inserted, we get r nodes where we can place
replicas (i.e., the set Mo). ¿From this set of r nodes, we use
a strategy of replica creation (e.g., the strategies of Sect. 4.2)
to define the subset of these r nodes that receive the replicas.
It is not difficult to obtain a family of such hash functions.
One way is to use a single hash function h and append a num-
ber i = 1, . . . , r to the key of the object, which is used as
argument to the function h. For instance, if the object key is
the string foo, then h(f oo1), h(f oo2), . . . , h(f oor) would
give us r hashes of this object.

Figure 6 illustrates the selection of repositories which are
performed by three different objects. In the figure, keys are
represented by object_a, object_b, and object_c,
and the dotted lines denotes the set of nodes associated with
each key after applying r = 6 hash functions. As we have 6

123

Extending OAI-PMH over structured P2P networks 23

Fig. 6 Subsets of repositories associated with their respective digital
objects

hash functions, the resulted hashes maps to 6 nodes of the net-
work. From each subset of nodes associated with an object,
the strategy of creating replicas is applied to determine the
nodes that receive the replicas. The black circles represent
the repositories that have been chosen to put the replicas.

It is worth noting that performing a selection among all
nodes of the network (or equivalently, using m hash func-
tions) is not a good approach because an instance would
have the size of the network, which is unfeasible in real-
world situations. On the other hand, considering a subset of
small size is a feasible option of implementation even in face
of the scalability of the network. Thus, based on the results
showed in [32], we can choose the optimal size of the subset
and, therefore, decide how many hash functions to use.

The main advantage of using multiple hash functions is
the ability to select specific nodes. Without this, the strategies
proposed in Sect. 4.2 could not be implemented in structured
P2P networks using DHT. Moreover, an advantage of using
the strategy of multiple hash functions is the ability to use
any DHT protocol to route messages in the network, unlike
the strategies for replication in P2P using the neighborhood
or the path [12], which are tied to the protocol. Multiple hash
functions also allow flexibility for digital objects to have dif-
ferent numbers of replicas, which is not possible in the sym-
metric strategy of replication [10]. Another feature is the
easy retrieving of a given replica without necessarily retrieve
another one previously, making it easy to develop a retrieving
algorithm. In the correlated hash strategy [12], all the keys
of a given object are correlated with the first key, thus not
allowing this feature.

The selection of repositories proposed above involves no
centralized information about the location of the stored rep-
licas. An alternative would be the use of a super-node that
had a “directory” which could be consulted about the infor-
mation of the exact location of replicas of a given object.
However, this super-node would be a contention point. Our
system avoids super-nodes, adopting a completely distrib-
uted approach where no information is centralized.

5.2 Algorithms for system operation

To operate the P2P digital archiving system, we need to define
some basic operations of the system. In this section, we pres-
ent the algorithms insert and retrieve, used respec-
tively for the insertion and retrieving of a digital object in
the system. These algorithms implement multiple hash func-
tions discussed earlier. Note that both algorithms are executed
locally in each node. For example, a user who wishes to insert
or retrieve an object contacts any node of the network, which
in turn initiates the process of routing the message of the
DHT.

input: key, value, reliabili t y ri
begin

Mo = ∅
for i = 1 to r do

Mo = Mo ∪ {�hi (key)}
S = insertion_strategy(Mo, ri)
foreach s ∈ S do

j ← hash function number of s
put(h j (key), value)

end

Algorithm 5: insert (key, value, reliability)

To insert an object, the routineinsert(key, value,
reliability) is used, as shown in Algorithm 5. When
inserting an object in the network, the desired reliability of
the object is previously chosen by the user. Initially, Mo

starts empty. The first loop selects the subset Mo of size
r associated to the key of the object; �hi (key) is an abuse of
notation which denotes the node pointed by the i th hash of
the key. In this loop, we implicitly save the values i used
for each node; this will be used later. After that the func-
tion insertion_strategy (Mo, ri) is executed, which
returns the subset S ⊆ Mo of nodes that will receive the repli-
cas. The functioninsertion_strategy can be replaced
by any strategy of replication, for example, those presented in
Sect. 4.2. In our implementation, the reliability of the nodes
are stored in the DHT. The last loop is where the insertion
occurs. The value j denotes the hash function number of
the object s considered; as stated previously, these values
were saved in the first loop. The routine put[h j(key),
value] puts a replica of the object in the chosen location.

The implementation of the algorithm takes care of not
assigning more than two replicas of the same object in one
node.

To retrieve the object, the user performs the function
retrieve(key), where key is the key of the object to
be retrieved, as shown in Algorithm 6. The idea of the algo-
rithm is to search in all r nodes for a replica of the item,
using the hash functions for that. There are two cases where
the DHT does not return the object: when the node is not
present or the node does not contain a replica of the object.

123

24 E. F. R. Seára et al.

input: key
begin

for i = 1 to r do
value← get(hi (key))

if value is not null then
return value

return −1 /*not found */
end

Algorithm 6: retrieve (key)

5.3 Experimental results

The P2P archiving system was implemented and evaluated
through experiments carried out in a real-world environment.
The implementation uses the Overlay Weaver environment
to build networks [27]. Overlay Weaver provides great flex-
ibility in the choice of DHT protocols and other high-level
services implemented as overlay networks. In particular, this
environment supports Chord, Pastry, Tapestry, and Kadem-
lia. In our experiments we use Chord. It is worth noting
that Overlay Weaver has itself a mechanism of replication
that has been turned off for the evaluation of our experi-
ments. The experiments were conducted in a network with
12 nodes; this quantity is enough to validate the ability of
long-term archiving and the mechanism of creation of repli-
cas.

The reliability of each node was considered to be the prob-
ability of the node do not lose information during the period
of 1 year. Thus, we can simulate the state of the network
regarding the preservation of information over the years. In
our experiments, we do not evaluate changes in the reliability
of the nodes over the years.

The experiment starts with a network where various
objects are inserted. Objects are inserted with different
reliabilities. For the replication of objects we used the
ideal subset strategy, with the size of the subsets equal to
6. Initially, all nodes are reliable (online). When a node
becomes unreliable, it loses its information and is discon-
nected from the network (offline). We purposely did not
implement a strategy to recover offline nodes because we
want to stress that objects with high desired reliability are
preserved longer.

Figure 7 shows the results. Of the total of 12 nodes, 2 of
them have 30% of reliability, 2 have 50%, 2 have 70%, 3 have
80%, and the remaining 3 have 90% of reliability. Initially, in
the first year, we include a total of 25 objects, divided into 5
groups, each group containing objects with desired reliability
respectively, 30, 50, 70, 90, and 99%.

After the first year of existence of the system, a node of
reliability equal to 30%, a node with 50% and another with
90% failed. Even with these fails, all the 25 objects were able
to be retrieved. At the end of the fifth year of the system, two
nodes (30 and 70% of reliability) get disconnected from the
network. In the fifth year, it was not possible to retrieve the 3

Fig. 7 Number of objects able to retrieving information depending on
the age of the system

objects with 30% of desired reliability, 4 objects of 50%, 1 of
70%, and 1 of 90%. In the tenth year, three additional nodes
gets offline. They are nodes with reliability of 70, 80, and
90%, respectively. It was unable to locate a total of 3 objects
of 30% of desired reliability, 4 objects of 50%, 4 of 70%,
and 2 of 90%. At the end of the fifteenth year, a node with
80% of reliability was disconnected and the same objects of
the tenth year were possible to be retrieved. In the twentieth
year, 1 node of 50% was disconnected and only one node of
80% and another of 90% left the system. In this age of the
system, it was able to locate all objects of 99% of desired
reliability and 1 object with 90%; all other objects were lost.
In the twenty-fifth year, the node of 80% failed and it was
still possible to retrieve 4 objects of 99% and 1 of 90%. In
the thirtieth year, the last node were disconnected from the
network and no further replicas existed.

6 Conclusions and future study

The experiments conducted in this study demonstrate that
OAI-based DL, together with a P2P archiving system, can
preserve information for a long period of time. The impor-
tance of the preservation of each digital object—measured
in the model by the desired reliability—impacts on different
lifetime of this object. Objects that were inserted with a high
desired reliability had longer lifetime. Thus, we can conclude
three main characteristics for our system:

6.1 OAI-PMH integration

It is intended for OAI-based systems to keep unchanged all
OAI-PMH functionalities. This feature is important, as OAI-
PMH is widely used and it can be considered a standard to
build DL.

123

Extending OAI-PMH over structured P2P networks 25

6.2 Independence of object preservation

Different information requires different storage time. Collec-
tions of photos, journals, and articles might need few years of
storage; other information such as digital objects in museums
and libraries requires hundreds of years. Our system allows
flexibility in the choice of lifetime of objects to be preserved.

6.3 Optimization of the storage resources

Storage repositories may suffer many types of damages on
their contents, so each repository has a different reliability.
Allowing each storage repository with a parameter capable
of measuring the independent probability of failure is the
closest way to model real networks. This approach allows
the flexibility in the time of preservation of each object and
therefore different numbers of replicas for them, impacting
on a better usage of network storage repositories.

Future studies include the implementation of a complete
digital preservation system. To do this, the system should be
concerned with the auditory of the replicas and other threats
such as software obsolescence, not considered in this study.
Furthermore, very little emphasis was given to the items
retrieving. Possibly, we can use our model of digital archiv-
ing on systems such as LOCKSS and BRICKS, and evaluate
their feasibility. Finally, when the complete digital preser-
vation system is finished, we intent to implement a whole
distributed digital library, based on this study, in a real-world
environment.

References

1. arXiv.org e-Print archive. www.arxiv.org. Accessed 30 Jan 2012
2. Agosti, M., Hans Jörg, H., Türker, C.: Digital library architec-

tures: peer-to-peer, grid, and service-orientation. In: Pre-proceed-
ings of the sixth thematic workshop of the EU network of excellence
DELOS, S. Margherita di Pula, Cagliari, Italy, 24–25 June, 2004.
Edizioni Libreria Progetto, Padova (2004). Accessed 24 July 2010

3. Ahlborn, B: OAI-P2P: A peer-to-peer network for open archives.
In: ICPPW ’02: Proceedings of the 2002 international conference
on parallel processing workshops, p. 462. IEEE Computer Society,
Washington, DC (2002). Accessed 24 July 2010

4. Amrou, A., Maly, K., Zubair, M.: Freelib: peer-to-peer-based dig-
ital libraries. In: AINA ’06: Proceedings of the 20th international
conference on advanced information networking and applications,
vol. 1 (AINA’06), pp. 9–14. IEEE Computer Society, Washington,
DC (2006). Accessed 30 Jan 2012

5. Brian, C., Hector, G.: Creating trading networks of digital archives.
In: JCDL ’01: Proceedings of the 1st ACM/IEEE-CS joint confer-
ence on digital libraries. ACM, New York (2001). Accessed 30 Jan
2012

6. Brisco, T.: DNS Support for load balancing. www.dl.acm.org. April
1995. Accessed 30 Jan 2012

7. Dabek, F., Frans Kaashoek, M., Karger, D., Morris, R., Stoica,
I.: Wide-area cooperative storage with CFS. In: Proceedings of
the 18th ACM symposium on operating systems principles (SOSP
’01). Chateau Lake Louise, Banff, Canada, October (2001)

8. Flávio Rufino Seára, E.: Uma arquitetura OAI para Preservação
Digital utilizando redes Peer-to-Peer Estruturadas. Master’s thesis,
Federal University of Paraná (2008)

9. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide
to the theory of NP-completeness. W.H. Freeman and Company,
New York (1979)

10. Ghodsi, A., Alima, L.O., Haridi, S.: Symmetric replication for
structured peer-to-peer systems. In: Proceedings of DBISP2P, pp.
74–85 (2005)

11. Haeberlen, A., Mislove, A., Druschel, P. Glacier: highly durable,
decentralized storage despite massive correlated failures. In: Pro-
ceedings of NSDI’05. USENIX Association, Berkeley, CA (2005)

12. Ktari, S., Zoubert, M., Hecker, A., Labiod, H.: Performance evalua-
tion of replication strategies in DHTs under churn. In: Proceedings
of MUM ’07. ACM, New York (2007)

13. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P.,
Geels, D., Gummadi, R., Rhea, S., Weatherspoon, H., Wells, C.,
Zhao, B.: Oceanstore: an architecture for global-scale persistent
storage. In: Proceedings of ASPLOS-IX. ACM, New York (2000)

14. Lagoze, C., Van de Sompel, H.: The open archives initiative: build-
ing a low-barrier interoperability framework. In: JCDL ’01: Pro-
ceedings of the 1st ACM/IEEE-CS joint conference on digital
libraries, pp. 54–62. ACM, New York (2001)

15. Liskov, B., Ghemawat, S., Gruber, R., Johnson, P., Shrira, L.: Rep-
lication in the harp file system. In: Proceedings of ACM SIGOPS,
Pacific Grove, CA (1991)

16. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and repli-
cation in unstructured peer-to-peer networks. In: Proceedings of
SIGMETRICS ’02. ACM, New York (2002)

17. Maniatis, P., Roussopoulos, M., Giuli, T., Rosenthal, D., Baker,
M.: The LOCKSS peer-to-peer digital preservation system. ACM
Trans. Comput. Syst. 23, 2–50 (2005)

18. Martins, V., Pacitti, E., Valduriez, P.: Survey of data replication in
P2P systems. Technical report, INRIA (2006)

19. Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagarajan, K.: Peer-
to-peer computing. Technical report, HP Labs, Bristol (2002)

20. Mitzenmacher, M., Upfal, E.: Probability and computing : random-
ized algorithms and probabilistic analysis. Cambridge University
Press, Cambridge (2005)

21. Open access and institutional repositories with eprints. www.
eprints.org

22. Open Archives Initiative. www.openarchives.org
23. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A

scalable content-addressable network. In: Proceedings of the SIG-
COMM ’01. ACM, New York (2001)

24. Risse, T., Knezevic, P.: A self-organizing data store for large scale
distributed infrastructures. In: ICDEW ’05: Proceedings of the
21st international conference on data engineering workshops. IEEE
Computer Society, Washington, DC (2005)

25. Rowstron, A., Druschel, P.: Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility. In: Pro-
ceedings of ACM SOSP′01. Banff, Canada (2001)

26. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. Lecture
Notes in Computer Science (2001)

27. Shudo, K., Tanaka, Y., Sekiguchi, S.: Overlay weaver: an overlay
construction toolkit. Comput. Commun. 31, 402–412 (2008)

28. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.:
Chord: A scalable peer-to-peer lookup service for internet applica-
tions. In: Proceedings of the SIGCOMM ’01, pp. 149–160 (2001)

29. Tansley, R., Bass, M., Stuve, D., Branschofsky, M., Chudnov, D.,
McClellan, G., Smith, M.: The D space institutional digital repos-
itory system: current functionality. In: JCDL ’03: Proceedings
of the 3rd ACM/IEEE-CS joint conference on Digital libraries,
pp. 87–97. IEEE Computer Society, Washington, DC (2003)

30. The Digital Object Identifier System. www.doi.org

123

www.arxiv.org
www.dl.acm.org
www.eprints.org
www.eprints.org
www.openarchives.org
www.doi.org

26 E. F. R. Seára et al.

31. The Handle System. www.handle.net
32. Vignatti, T., Bona, L.C.E., Vignatti, A.L., Sunye, M.S.: Long-term

digital archiving based on selection of repositories over P2P net-
works. In: IEEE P2P’09: Ninth international conference on peer-
to-peer computing (2009)

33. Virtua tls. www.vtls.com.
34. Weibel, S., Kunze, J., Lagoze, C., Wolf, M.: Dublin core metadata

for resource discovery, The Internet Society (1998)
35. Winett, J.: Definition of a socket, May (1971)

36. Xu, Y.: A P2P based personal digital library for community. In:
PDCAT ’05: Proceedings of the sixth international conference on
parallel and distributed computing applications and technologies,
pp. 796–800. IEEE Computer Society, Washington, DC (2005)

37. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D.,
Kubiatowicz, J.D.: Tapestry: a resilient global-scale overlay for
service deployment. IEEE J. Sel. Areas Commun. 22(1) January
(2004)

123

www.handle.net
www.vtls.com

	Extending OAI-PMH over structured P2P networks for digital preservation
	Abstract
	1 Introduction
	1.1 Contributions and results obtained
	1.2 Organization

	2 Related work
	3 Extending OAI-PMH for digital preservation
	3.1 Open archives initiative and protocol
	3.1.1 Problems with this topology

	3.2 OAI-PMH extension architecture
	3.2.1 Data provider
	3.2.2 Service provider

	3.3 How to insert an object
	3.4 How to retrieve an object
	3.5 Integration tests

	4 Data replication model and proposed strategies
	4.1 Equivalent definition
	4.2 Strategies for replicas creation
	4.2.1 Randomized strategy
	4.2.2 Greedy over subset strategy
	4.2.3 Ideal subset strategy

	5 A peer-to-peer digital archiving system
	5.1 Architecture
	5.1.1 Structured P2P networks and DHT
	5.1.2 Specific selection of repositories

	5.2 Algorithms for system operation
	5.3 Experimental results

	6 Conclusions and future study
	6.1 OAI-PMH integration
	6.2 Independence of object preservation
	6.3 Optimization of the storage resources

	References

