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Abstract

In the p-hub median problem we are given a set of clients V , a set of demands
D ⊆ V × V , a cost function ρ : V × V → R

+, and an integer p > 0. The objective
is to select terminals T ⊆ V , where |T | ≤ p, and assign each demand to a terminal,
in order to minimize the total cost between demands and terminals. We present
the first approximation bounds for the problem: a 1 + 2/e lower bound if NP
⊂ DTIME(nO(log logn)), and a (4α)-approximation algorithm if we are allowed to

open at most
(

2α
2α−1

)
p terminals, where α > 1 is a trade off parameter.

Keywords: approximation algorithms, linear programming, hub location
problems, p-hub median problem.

1 Introduction

In hub location problems (HLP), hubs or terminals are facilities that connect
source and destination points and commute flows between them. The objec-
tive is to open terminals in order to make these connections cheaper or more
efficient rather than connecting them directly. This article deals with a variant
of HLPs, which we call p-hub median problem (pHM).

1 Email: {cfbordini,vignatti}@inf.ufpr.br

Available online at www.sciencedirect.com

Electronic Notes in Discrete Mathematics 62 (2017) 183–188

1571-0653/© 2017 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

https://doi.org/10.1016/j.endm.2017.10.032

http://www.elsevier.com/locate/endm
https://doi.org/10.1016/j.endm.2017.10.032
https://doi.org/10.1016/j.endm.2017.10.032
http://www.sciencedirect.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.endm.2017.10.032&domain=pdf


Definition 1.1 In the p-hub median problem (pHM), we have a set of clients
V , a cost function ρ : V × V → R

+, a set of demands D ⊆ V × V , and an
integer p > 0. The objective is to select a subset T ⊆ V of terminals, where
|T | ≤ p, and an assignment φ : D → T that minimizes the total connection
cost between demands and terminals, i.e.

∑
(u,v)∈D ρ(u, φ(u, v))+ρ(v, φ(u, v)).

Also, clients are points in a metric space, and ρ obeys the triangle inequality.

In the 1980’s, particularly due to O’Kelly [9], the first articles on hub lo-
cation problems have appeared. O’Kelly presents the first formulations and
solutions for HLPs. Since then many papers have been published on the sub-
ject. According to Farahani et al. [5], while several approximation algorithms
are already studied for location problems in general, in the case of HLPs, the
efforts are on heuristics, metaheuristics or exacts methods. After O’Kelly,
Campbell [2] proposes multiple mathematical formulations for HLPs in order
to consider objective functions similar to the several classical facility location
problems. More recently, Alumur and Kara [1] analyze and categorize some
research articles among whose, we can consider the efforts of Campbell et al.
[3] and Farahani and Hekmatfar [4] as the main references to the fundamen-
tal definitions, classifications, mathematical models, and solution methods for
HLPs. Regarding the classification of HLPs, different versions are considered,
and we deal with the version where all nodes are terminal candidates. The ob-
jective is to minimize the total cost of connection. We have a limited number
of terminals to be opened, each demand must be assigned to a single terminal,
and the terminals capacity is unlimited. Also, the most common way to deal
with HLPs is when all nodes are demands ([1]), but instead we consider the
case where the demands are a subset of pair of nodes. E.g., an application of
our case is choosing cities where airports will be built (terminals) to connect
flights between pairs of cities (demands). We show a lower bound on the ap-
proximation ratio by a reduction from the metric k-median problem, and a
(4α)-approximation algorithm that opens at most

(
2α

2α−1
)
p terminals, where

α > 1 is a trade off parameter. It is worth noting that, as far as we know, our
results are the first approximation bounds for this problem.

2 Lower Bound and LP Formulation for pHM

Theorem 2.1 presents a reduction from the well-known metric k-median prob-
lem (which is NP-Hard, see [7]) to pHM.

Theorem 2.1 The metric k-median problem is reducible to the pHM problem.

Proof (sketch). For each vertex s of the k-median problem, we create vertices
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v, v′ on the pHM problem, such that (v, v′) ∈ D and ρ(v, v′) = 0. This way,
the pHM problem can solve any instance of the k-median problem. �

Theorem 2.1 shows that k-median is a particular case of pHM. Therefore,
using the results by Jain et al. [6] on hardness of approximating for the k-
median problem, we enunciate Corollary 2.2.

Corollary 2.2 The pHM problem does not admit an algorithm with an ap-
proximation ratio better than 1 + 2/e, unless NP ⊂ DTIME(nO(log logn)).

The goal of pHM is to minimize the total cost between demands and clients,
but function ρ relates two clients. So we preprocess the input, defining a new
cost function ρ̂ such that ρ̂(d, i) = ρ(u, i) + ρ(i, v), ∀d = (u, v) ∈ D, i ∈ V .

As our algorithm uses linear programming (LP) rounding, we present the
integer program (IP) formulation for pHM:

minimize
∑

d∈D
∑

i∈V xdi ρ̂(d, i) (1a)

subject to
∑

i∈V yi ≤ p (1b)
∑

i∈V xdi = 1, ∀d ∈ D (1c)

xdi ≤ yi, ∀d ∈ D, i ∈ V (1d)

xdi ∈ {0, 1}, ∀d ∈ D, i ∈ V (1e)

yi ∈ {0, 1}, ∀i ∈ V . (1f)

(1)

In IP (1), yi = 1 if i ∈ V is chosen to be in T , 0 otherwise, and xdi = 1
if i ∈ V is assigned to demand d ∈ D, 0 otherwise. Note that the objective
function is now defined in term of ρ̂. Constraints (1b), (1c), (1d) ensure that
at most p terminal are open, each demand is assigned to exactly one terminal,
and each demand is assigned to an open terminal, respectively.

Finally, our algorithm uses the LP relaxation of IP (1), where xdi ≥ 0 and
yi ≥ 0, ∀d ∈ D, i ∈ V .

3 Rounding Algorithm

Our algorithm uses the filtering technique of Lin and Vitter [8]. As a con-
sequence of their technique, an approximation factor is obtained, but not
without violating some constraint of the LP. Nevertheless, this same tech-
nique allows to quantifies the amount of such violation. So, in our case, we
obtain a 4α-approximation solution such that at most

(
2α

2α−1
)
p terminals are

opened. Here, α > 1 works as a trade off parameter, as increasing it causes
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an increasing on the approximation factor and a decreasing in the number of
open terminals, and vice-versa.

For each d ∈ D, let Cd =
∑

i∈V xdi ρ̂(d, i). By constraint (1c) of the LP
formulation, the values xdi can be interpreted as a probability distribution for
each d. Therefore, Cd can be seen as the expected cost from clients to d. Note
that the LP objective function is equal to

∑
d∈D Cd.

For each u ∈ V , let B(u, αCd) = {u′ ∈ V : ρ(u, u′) ≤ αCd}. For each
d = (u, v) ∈ D, let Id = {u′ ∈ V : u′ ∈ B(u, αCd) ∩ B(v, αCd)}, we call Id the
neighborhood of d. By the definition of Id, we have the following.

Lemma 3.1 If d=(u, v) ∈ D, then ∀i ∈ Id, ρ(u, i) ≤ αCd and ρ(v, i) ≤ αCd.

Finally, for each d ∈ D, let Vd = {(u′, v′) ∈ V 2 : (u′, v′) ∈ D and Id ∩
I(u′,v′) 
= ∅}. We call Vd the extended neighborhood of d, motivated by the
following idea: for d = (u, v), if we select u or v as a terminal, we can use it to
cover any other demand d′=(u′, v′) ∈ D such that (u′, v′) ∈ Vd, because d and
d′ are “close” to each other, and also, if we consider only the neighborhoods
I, we do not have disjoint neighborhoods, a fact that is useful in Theorem 3.3.
Also, notice that if α ≤ 1, we may have B(u, αCd) ∩B(v, αCd) = ∅ and there
is no extended neighborhood for demand d.

Next, we present Algorithm 1. Note that, if we obtain T , then the assign-
ment φ is already defined since, without loss of generality, a demand is always
assigned to the nearest open terminal in an optimal solution.

Algorithm 1
Solve the LP and use it to compute the Cd values; Set T := {} and D := D
while D 
= ∅ do

Choose d = (u, v) ∈ D with the lowest value of Cd; Set T := T ∪ {u}
for (u′, v′) ∈ D do

if (u′ ∈ Vd) and (v′ ∈ Vd) then D := D \ (u′, v′)
Set D := D \ (u, v)

return T

Theorem 3.2 Algorithm 1 is a (4α)-approximation algorithm, with α > 1.

Proof. Let OPT and OPTLP be the optimal values, resp., for an instance of
the problem, and an instance of the (relaxed) LP formulation. Let d=(u, v) ∈
D, we abuse notation, using u ∈ d to express that u is one of the vertices of
d. Assume that d = (u, v) ∈ D is the demand selected by the algorithm in a
given step with the lowest value Cd and u ∈ d is chosen to be included in T .
Let d′ = (u′, v′) such that (u′, v′) ∈ Vd; so d′ is removed from D. Denote the
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terminal u to which d′ has been assigned by kd′ . At the time d is selected,
both d and d′ are in D, and Cd ≤ Cd′ . Let C(alg) be the cost of Algorithm
1, Calg

d′ the cost incurred by a demand d′ in Algorithm 1 and x∗ the optimal

solution of the LP. Thus, C(alg) =
∑

d′∈D Calg
d′ =

∑
d′∈D ρ̂(d′, kd′), which is

=
∑

d′∈D
[
ρ(u′, kd′) + ρ(v′, kd′)

]

≤ ∑
d′∈D

[(
ρ(u′, s) + ρ(s, kd′)

)
+
(
ρ(v′, s) + ρ(s, kd′)

)]

≤ ∑
d′∈D [(αCd′ + αCd) + (αCd′ + αCd)] ≤

∑
d′∈D[2αCd′ + 2αCd′ ]

= 4α
∑

d′∈D
∑

i∈V x∗d′iρ̂(d
′, i) = (4α)OPTLP ≤ (4α)OPT

where the first inequality uses the triangle inequality and, because (u′, v′) ∈ Vd,
implies that there is some s in both Id′ and Id, and the second inequality follows
from Lemma 3.1. �

In order to bound |T |, we count the number of iterations until D = ∅, since
each iteration opens one terminal. We claim that, for each k ∈ d included in
T , Id contains at least 2α−1

2α
“fractional terminals” corresponding to the LP

values, that is, the sum of the yi for all i ∈ Id is at least 2α−1
2α

. Note that
neighborhoods Id are all disjoint (for different k ∈ T ). Indeed, suppose that
ki ∈ di and kj ∈ dj such that ki, kj ∈ T , with ki chosen earlier than kj by the
algorithm. If Idi ∩ Idj 
= ∅ then kj ∈ Vdi and kj could not be in T . Besides
that, the sum of all the yi is at most p. Theorem 3.3 concludes this fact.

Theorem 3.3 Algorithm 1 produces a solution with |T | ≤ (
2α

2α−1
)
p.

Proof. We define the probability space (Ωd,Pr) as Ωd = {(d, i) : i ∈ V } and
Pr[(d, i)] = xdi such that

∑
i∈V Pr[(d, i)] = 1, ∀i ∈ V . Let Z be a random

variable of the cost between a given d ∈ D to all i ∈ V , i.e. Z : Ωd → R

where ∀i ∈ V , Z ((d, i)) = ρ̂(d, i) and the probability of Z assuming each
of these values is xdi. Thus, E[Z] =

∑
i∈V xdi ρ̂(d, i) = Cd. Therefore, for

a demand d=(u, v) ∈ D such that u ∈ T or v ∈ T , we have,
∑

i∈Id yi ≥∑
i∈Id xdi =

∑
i∈Id Pr[Z = ρ̂(d, i)] =

⋃
i∈Id Pr[Z = ρ̂(d, i)] = Pr[Z ≤ 2αCd] =

1− Pr[Z > 2αE[Z]], where the inequality follows from constraint (1d) of the
LP, the second equality follows since the events are mutually disjoint, and
the third equality follows since the union of these probabilities is equal to the
probability of Z ≤ 2αCd, because all i ∈ Id has cost at most αCd from both
u and v (Lemma 3.1). By Markov’s inequality, Pr[Z > 2αE[Z]] ≤ 1

2α
, so,∑

i∈Vd
yi ≥ 1 − Pr[Z > 2αE[Z]] ≥ 2α−1

2α
. Thus, for each k ∈ d included in

T by Algorithm 1, the neighborhood Id contains at least 2α−1
2α

of a terminal
according to the fractional solution of LP. Finally, the upper bound on T is
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immediate, since the neighborhood of each open terminal has at least 2α−1
2α

“fractional terminals” (and these neighborhoods are all disjoint for different
k ∈ T ). Combining with constraint (1b) of the LP, then |T | ≤ (

2α
2α−1

)
p. �

4 Extensions and Future Works

For the pHM problem presented here, an important direction is to ensure
that no more than p terminals are opened. We are aware of some research,
post the Lin and Vitter [8] article, that deal with this issue. Another obvious
direction is to improve the approximation factor, since the bound in Theorem
3.2 is not tight compared to the result of Corollary 2.2. Also, there are many
HLPs variants that can be considered, e.g.. with terminal capacities, min-max
objective functions, terminal opening cost, specific metrics, and so on.
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