
A Preselection Algorithm for the Influence Maximization
Problem in Power Law Graphs

Renato S. Melo
Federal University of Paraná

Curitiba, Paraná, Brazil

rsmelo@inf.ufpr.br

Andre L. Vignatti
Federal University of Paraná

Curitiba, Paraná, Brazil

vignatti@ufpr.br

ABSTRACT

The influence maximization problem in social networks seeks out a

set of nodes that allows spreading information to the greatest num-

ber ofmembers. A greedy algorithm, proposed byKempe et al. [12],

finds a solution in which the spread of influence is at least 1− 1
e
of

the optimum. However, some shortcomings of this approach neg-

atively affect the run time of this algorithm. In this work, we pro-

pose a methodology to speedup the Kempe’s algorithm with focus

on power law graphs. The improvement consists of choosing the

most promising nodes in advance. To this end, we explore some

properties of power law graphs and the relationship between so-

cial influence and degree distribution. We have verified by exper-

imental analysis that this preselection reduces the run time while

preserving the quality of the solution.

CCS CONCEPTS

• Theory of computation→ Social networks; • Applied com-

puting → Law, social and behavioral sciences;

KEYWORDS

Influence maximization; Social networks; Power law graphs

ACM Reference Format:

Renato S. Melo and Andre L. Vignatti. 2018. A Preselection Algorithm for

the Influence Maximization Problem in Power Law Graphs. In SAC 2018:

SAC 2018: Symposium on Applied Computing , April 9–13, 2018, Pau, France.

ACM,NewYork, NY, USA, 8 pages. https://doi.org/10.1145/3167132.3167322

1 INTRODUCTION

In social networks, the phenomenon of diffusion of ideas, behav-

iors and innovations has the property of always beginning with a

small group of early adopters [13]. From this group, more and more

people adopt the same behavior by observing that their friends,

neighbors or colleagues have already done so. So an information

spreads like an epidemic. A problem arising from the investigation

of this type of social influence is the influencemaximization, which

appears in the context of a chain adoption of new behaviors [7]. In-

formally, the influence maximization problem aims to find a set S

of fixed size, such that the influence of S is the largest possible. Our

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than

ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC 2018, April 9–13, 2018, Pau, France

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/10.1145/3167132.3167322

preselection heuristic intends to find a subset of vertices, called set

of candidates, in which we can select all the early adopters without

losing quality of spread. Thus, it is not necessary to explore every

vertex of the graph during the search for the most influential ones.

The influence maximization problem depends on theoreticalmod-

els for the formal definition, the basicmodels for information spread-

ing are Linear Threshold (LT) and Independent Cascade (IC) [12],

and in this work we consider the IC model. Let us consider a social

network as a graph G = (V ,E), where V is the set of individuals

and E is the set of relationships between these individuals. As is

done in [12, 13], the behaviors modeled here are progressive, that

is, each vertex can assume one of two states, active or inactive, and

can change from inactive to active, but not from active to inactive.

At time t = 0, a subset S ofV is chosen as the set of early adopters.

When a vertex v becomes active because of S , we say that v has

been influenced by S . From now onward we only consider directed

graphs, such that for two nodes v andw the influence of v tow is

different from the influence ofw tov . So in the IC model each edge

has an activation probability and the influence spreads through

active vertices. Each active vertex can activate independently its

inactive neighbors based on the probability at the edges [4]. The

adoption process starts from a set S of active nodes and unfolds

into discrete time steps. When the vertex v becomes active in step

t , it has a chance to activate each inactive neighborw , with a prob-

ability pv,w of success. If v succeeds, w is activated in step t + 1,

but if v fails it cannot try to activatew in subsequent rounds [12].

Problem 1. Given a directed weighted graph G = (V ,E), an influ-

ence modelm and an integer 1 ≤ k ≤ |V |. Find a subset S∗ ⊆ V such

that σm (S
∗) = max

S⊆V
{σm (S)} subject to |S | = k .

The function σm : 2V → R to be maximized is called influence

function, wherem is an influence model, such as IC and LT. Thus,

given a set S ⊆ V of early adopters, σm (S) denotes the expected

number of active vertices at the end of the activation process start-

ing from S [9, 12, 13]. Therefore, the Problem 1 defines the influ-

ence maximization problem. This problem is NP-hard both as IC to

LT models [12]. To get an approximation guarantee, Kempe et al.

[12] have shown that the σ function is submodular and monotone

for IC and LT. Due to these properties, a greedy algorithm that

iteratively chooses the vertex with greatest marginal gain can be

good enough. The Algorithm 1 shows the pseudo code. However,

two major sources of inefficiency affect this algorithm. First, the

processing time of σm (S) function is too high, since to get the ex-

act value of σ is a #P-hard problem on LT and IC models [3, 5, 12].

Second, the algorithm makes many calls to σ .

1782

https://doi.org/10.1145/3167132.3167322
https://doi.org/10.1145/3167132.3167322

Algorithm 1: Greedy

Input:G = (V , E),k ∈ N,σm
Output: Seed set S

1 begin

2 S = ∅

3 while |S | ≤ k do

4 u = argmaxw ∈V \S {σm (S ∪ {w}) − σm (S)}

5 S ← S ∪ {u}

RelatedWork:To overcome the inefficiency of theAlgorithm1,

several works propose improvements and reduction of the compu-

tational cost. Two algorithms, Celf [14] and Celf++ [10], stand

out for providing good results using Monte Carlo simulations. The

main idea of the Celf algorithm is that the marginal gain of a ver-

tex at a given iteration can not be greater than its gain in the previ-

ous iterations. The algorithm maintains a list of vertices sorted by

the marginal gain in a non-increasing order. Celf++ proposes new

settings to Celf. The central idea is that, if the last selected vertex

is still the first on the sorted list, then the marginal gain of such

vertex does not need to be recomputed. Arora et al. [2] explains

that besides the Monte Carlo based methods, there are well-known

heuristics that use amethod called Score Estimation to deal with the

influence function, for instance Simpath [11] and Ldag [5]. More-

over, recent studies show good results using a technique known

as Reverse Reachable sets [2], which has provided algorithms as

efficient as the heuristics, but with the plus of having approxima-

tion factor guarantee, for example TIM+ [18] and IMM [17]. We

can think of algorithms for the influence maximization problem

as having two phases, (i) the influence function estimation and (ii)

the seed selection, where Monte Carlo simulations, Score Estima-

tion and Reverse Reachable techniques address the first one. In this

work, we use a preselection strategy in order to improve the per-

formance of the algorithms that deal with the second phase.

While most of the studies focus on proposing algorithm to find

the set of early adopters or to estimate the influence function, for

instance [3, 4, 9–11, 14, 17, 18], we try to take advantage of know-

ing the topology of most of the large scale social networks, which

follows a power law degree distribution. In such networks there

are few vertices with a large number of neighbors, called hubs,

and many with low degree [6, 8, 15]. Liu et al. [15] shows that

only a few out-neighbors of the hubs have considerable influence,

while many of these neighbors contribute little to the marginal

gain. These findings suggest that there is a relation between the

degree distribution and the reach of an information that spreads

along the network. We explore these findings to recognize and rule

out the less probable influencer nodes.

In summary, the contribution of the paper is twofold. An effi-

cient heuristic to select the more promising vertices and, as an ap-

plication of such strategy, we present an algorithm to select the

early adopters in power law graphs. The main contribution is the

Preselector algorithmwhich chooses a subset of the vertices based

on its degree, where the objective is to decrease the number of

evaluated vertices by the greedy algorithm. Such strategy allied

with the Celf optimization lead us to the second contribution, the

PrevalentSeed, that makes less calls to the σ function. Experi-

mentally, this approach reduces up to 57% the Celf’s run time.

The rest of the paper is organized as follows. Initially, we in-

troduce the algorithm to select the most promising vertices to be-

come early adopters. Then we show some theoretical analysis that

have been carried out on run time and quality results. Next, we

present the algorithm that chooses the early adopters using the

preselection combined to a lazy forward update scheme. Lastly, in

the experiments section, some observations are described about

the empirical results achieved on real world power law graphs.

2 OPTIMIZATION BY PRESELECTION

Instead of computing the marginal gain over the whole set of ver-

tices at each iteration to select those of greatest marginal gain, we

only travel a subset of nodes. This subset will be called set of can-

didates, and it is selected by a heuristic (Algorithm 2) in advance.

In order to reduce the number of calls to σ , we discard the nodes

that may have small marginal gain before processing them in fact.

Thus, we compute the marginal gain only for the more promising

nodes, so we avoid multiple calls to the σ ’s estimation by choos-

ing correctly such nodes. Our strategy to select the candidates is

fundamentally based on the following criteria. We assume that a

vertex will not have high marginal gain if their out-neighbors al-

ready can be influenced by a node of higher degree. So the search

chooses nodes that can cover the greatest number of non-covered

nodes. A vertex is covered when it has at least one in-neighbor

that already was chosen as candidate in the iterative process. The

procedure stops when there are no more uncovered vertices.

2.1 Set of Candidates

The set of candidates, selected by Algorithm 2, is defined asC ⊆ V .

Initially, C = ∅, and nodes are added iteratively during the execu-

tion of the algorithm. For everyv ∈ V , the set of out-neighbors ofv

is denoted byOut(v) = {w ∈ V such that (v,w) ∈ E}. Similarly, the

out-neighborhood of the set C is denoted as Out(C) = {(u,v) ∈ E

such that u ∈ C and v < C}. To simplify the pseudo-code, we de-

note by D = C ∪Out(C) the set of vertices covered by C .

Algorithm 2: Preselector

Input:G = (V ,E)

Output: Set C of candidates

1 begin

2 Sort the vertices v1,v2, ...,v |V | in decreasing order by

out-degree

3 C ← ∅;D ← ∅

4 for i ← 1 to |V | do

5 if Out(vi) * D and Out(vi) , ∅ then

6 C ← C ∪ {vi }

7 D ← D ∪ {vi } ∪Out(vi)

In Algorithm 2, each node vi is selected as candidate when it

has at least one out-neighbor that is still uncovered. Theorem 2.1

determines an upper bound for the Preselector’s run time.

1783

Theorem 2.1. LetG be a directed graph with n vertices andm edges.

Algorithm 2 ends in O(n +m) steps.

Proof. At the first line, if we use an efficient algorithm like the

counting sort to sort the vertices, this task will be performed in

linear time on the number of vertices. We can use this algorithm

because the out-degrees of the nodes are values from 1 to n − 1.

After, in the loop of the lines 4-7, the trickiest operation is the con-

dition that depends on whether the set D contains Out(vi), for all

vi ∈ V . We can verify such condition in constant time using a hash

table to store the elements ofD. Thus, let δ+(vi) be the out-degree

of vi . No more than δ+(vi) · O(1) steps are needed to check each

vi . Thus, directly by the “Handshake” lemma, the loop demands∑
vi ∈V δ+(vi) = O(m) comparisons. Finally, the total time for pre-

selection isO(n)+O(m) = O(n +m), whereO(n) is the time to sort

the list of vertices. �

2.2 Analysis of the Preselection Process

The preselection process is biased in favor of nodes of high degree,

since it consists in discarding nodes in which all its out-neighbors

are covered by higher-degree vertices. So we want to show that

when a vertex v does not belong toC after preselection, v tends to

have a low marginal gain in comparison to the selected nodes. By

this way, we can avoid unnecessary computation, for the marginal

gain of v , during the greedy search for the k nodes of the highest

marginal gain. For this purposewe use three results to argue about.

First, for each vertex v in which all its out-neighbors are already

candidates, we can activate v plus Out(v) in order to improve the

spread of active nodes. But, in number of activated nodes, activate

v has the same effect of activating onlyOut(v). For this reason, it is

not needed to activatev since only its neighbors are sufficient. The

Lemma 2.2 provides a demonstration of this statement. Second, if

all the out-neighbors of a vertex v are covered by the set of candi-

dates, putting v together with C as active nodes can increase the

probabilities of such neighbors being activated, but such increase

is low and limited. Thereby, as shown in Lemma 2.3, v can be left

aside. The last result obtained from this analysis is the Theorem

2.4, which says that for each v < C , the set C has the possibility of

activate all the nodes that v would activate.

To analyze the quality of the Preselector’s output, we have to

assume some simplifications. First, we consider the IC model with

activation probabilities p equals on each edge. Second, to make

some calculus, we use a more simple influence function called di-

rect influence instead of σ itself. Not making these simplifications

implies in compute the exact value of σ , which is not the goal of

this analysis, since to get this value is a #P-hard problem. The Def-

initions 1 and 2 describe the concept of direct influence.

Definition 1 (Direct influence of a vertex). Let v be an ac-

tive vertex. We call direct influence ofv the number inf(v) of vertices

in Out(v) activated by v .

Definition 2 (Direct influence of a set). Let A be a set of

active nodes. We denote inf(A) the direct influence of A, the number

of nodes in Out(A) activated by vertices in A.

In this way, note that for all v ∈ V , each w ∈ Out(v) becomes

active with probability p so inf(v) is a random variable. Thus, at

every execution of the activation process, inf(v) can assume a dif-

ferent value between zero and |Out(v)|. The same happens with

inf(A). Therefore, we can use expectation on the following results.

In the Algorithm 2, notice that a vertex v will not become a

candidate if all its out-neighbors are covered by the setC , at line 5.

This can happen in two different ways: (i) eitherOut(v) ⊆ C , or (ii)

the out-neighbors of v are covered but not allw ∈ Out(v) belongs

to C . Lemmas 2.2 and 2.3 address these cases respectively.

Lemma 2.2. Let vi be a vertex at the i-th iteration of the Algo-

rithm 2. If Out(vi) ⊆ C , then the additional influence that vi could

yield for the setC is either null or negative, that is, E[inf(C ∪ {vi })]−

E[inf(C)] ≤ 0.

Proof. To validate the inequality of the lemma, we need to

know the value of inf(C). Knowing that the set C has at least one

edge to each w ∈ Out(C), the reasoning is as follows. To find the

number of vertices that can be directly activated by C , consider a

random variable Yw which is 1 ifw was activated by a vertex in C ,

and 0 otherwise. Thus,

inf(C) =
∑

w ∈Out (C)

Yw .

By the linearity of expectation and the definition of Yw as binary

variable, the expected value of inf(C) is

E[inf(C)] =
∑

w ∈Out (C)

E[Yw] =
∑

w ∈Out (C)

Pr(Yw = 1). (1)

Suppose now that we have added vi to C in order to increase

inf(C). To determine the effect of this change in the activation prob-

abilities, we need to consider whether vi was in the neighborhood

of C before becoming a candidate. In the negative case, that is, if

vi < Out(C), it is simple to visualize that includingvi inC does not

increase the value of inf(C), once vi has no neighbor outside of C ,

no edge will be added to the sum of the probabilities on the Eq. 1,

that is, E[inf(C ∪ {vi })] = E[inf(C)]. In an activation process in

which the setC is active, all the out-neighbors ofvi would already

be activated, and then vi would not activate another vertex. How-

ever, ifvi ∈ Out(C), things can be different because adding vi toC

reduces one element of Out(C), then the value of inf(C) cannot be

larger than |Out(C)| − 1. Hence, at least one edge is removed from

the sum of the Eq. 1. Then we have

E[inf(C ∪ {vi })] =
∑

w ∈Out (C)\{vi }

Pr(Yw = 1) < E[inf(C)].

Given these two possibilities, we finally have that E[inf(C ∪

{vi })] ≤ E[inf(C)]. �

We saw that the vertices in which all its out-neighbors are can-

didates do not improve the direct influence ofC . Nowwe can think

about the vertices that have out-neighbors covered, that is, it share

all the out-neighborswith the set of candidates, but such neighbors

can be both in C and Out(C). In this case, the Lemma 2.3 gives us

an upper bound to the additional direct influence that this type of

vertex can provide to the set of candidates.

Lemma 2.3. Let vi be a vertex at the i-th iteration of the Algo-

rithm 2. Denoting as G(C,vi) the additional influence provided by

adding vi in C . If Out(vi) ⊆ D, but Out(vi) is not fully in C , then

G(C,vi) ≤
1
4 |Out(vi) \C |.

1784

Proof. Whereas the set Out(vi) is not fully contained in C but

belongs to D, vi should stay in V \ C . However, if we add vi to C

in order to increase inf(C), as in Lemma 2.2, we have to consider

two possible situations: (i) vi ∈ Out(C), and (ii) vi < Out(C). Un-

like the Lemma 2.2, now in both cases (i) and (ii) the probabilities

will change and increase the direct influence ofC . This happens be-

cause the number of edges incident toOut(C) increases, and so the

probability of such vertices becoming active increases. We want to

find an upper bound for this probability growth.

Given a vertex w ∈ Out(vi) \ C , this vertex can be directly ac-

tivated by the vertices in C , and we can obtain the probability of

C activate w directly as follows. Let A be the event in which w is

activated byC . Remembering that p is the activation probability in

the independent cascade model, we have Pr(A) ≥ p, that is, the set

C has at least one edge tow . Includingvi inC ,w could be activated

byC and by vi . Thus, let B be the event in whichw is activated by

vi , then Pr(B) = p and the probability of the set C ∪ {vi } activate

w can be obtained with the equation

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A) · Pr(B) = Pr(A) + p − Pr(A) · p.

Here we apply the principle of inclusion and exclusion in the sum

of the activation probability. The first equality occurs due to the

independence between the events A and B.

The increase supplied by vi on the probability of C activate w

is the difference between Pr(A ∪ B) and Pr(A). Note that Pr(A) is

equivalent to Pr(Yw = 1) in the Eq. 1. Thus, let E[infw (C)] be

the expected direct influence of C on w . By the Eq. 1, we have

E[infw (C)] = Pr(Yw = 1) = Pr(A), similarly, Pr(A∪B) = E[infw (C∪

{vi })]. Let Gw (C,vi) be the additional influence provided byvi on

the probability of C activatew . The value of Gw (C,vi) is given by

the following equation

Gw (C,vi) = E[infw (C ∪ {vi })] − E[infw (C)]

= Pr(A ∪ B) − Pr(A)

= Pr(A) + p − Pr(A) · p − Pr(A)

= p − Pr(A) · p

= p(1 − Pr(A))

≤ p(1 − p),

where the inequality holds because Pr(A) ≥ p. This holds for any

w ∈ Out(vi) \C . Consequently, we need to apply the same differ-

ence for all vertices inOut(vi) \C . The increase of direct influence

led us to a quadratic function that represents a parabola upside-

down, such that the max value is 1
4 , when p =

1
2 . In consequence,

G(C,vi) =
∏

w ∈Out (vi)\C

Gw (C,vi)

≤
∏

w ∈Out (vi)\C

p(1 − p)

≤
∏

w ∈Out (vi)\C

1

4

=

1

4
· |Out(vi) \C |.

As the final point, the value of Gw (C,vi) is mutually independent

for each w ∈ Out(vi) \ C , then we can take the product over all

results. �

As shown above, selecting as candidate a vertex vi such that

Out(vi) ⊆ D, provides a negligible additional influence. Addition-

ally, the Theorem 2.4 brings up that at the end of preselection any

vertex ruled out has less influence on its neighbors than the set C .

Theorem2.4. Let infOut (v)(C) be the direct influence ofC onOut(v),

where v ∈ V . At the end of the Algorithm 2, we have E[inf(v)] ≤

E[infOut (v)(C)], for all v ∈ V \C .

Proof. By the Algorithm 2, if v ∈ V \ C then all w ∈ Out(v)

should be in D. We want to compare the v’s influence with C’s

influence on Out(v). To this end, we need to consider just the ver-

tices in Out(v) \ C . Thus, when w ∈ Out(C), besides receiving an

edge of v , w also receives at least one edge from C . Let Xv,w be a

binary random variable, which is 1 ifv activatesw and 0 otherwise.

We can get the value of inf(v) by the equation

inf(v) =
∑

w ∈Out (v)\C

Xv,w .

Using the linearity of expectation, we have

E[inf(v)] =
∑

w ∈Out (v)\C

E[Xv,w]

=

∑

w ∈Out (v)\C

Pr(Xv,w = 1)

=

∑

w ∈Out (v)\C

p. (2)

Since some vertices inC have edges toOut(v), eachw ∈ Out(v)

have at least one edge from C . Let Bw = {u ∈ C such that (u,w) ∈

E} be the set of vertices inC with edges tow , for allw ∈ Out(v)\C .

Note that, |Bw | ≥ 1, otherwisew would not be covered byC . Now

consider the events E1,E2, ..., E |Bw | such that Ei is the event in

which w is activated by ui ∈ Bw . Once we have defined that all

edges have activation probability p, then Pr(E1) = Pr(E2) = ... =

Pr(E |Bw |) = p. As a result, for each w ∈ Out(v) \C , we have

Pr(Xv,w = 1) = p ≤ Pr(E1 ∪ E2 ∪ ... ∪ E |Bw |) (3)

= Pr(Bw activatew).

To know the number of nodes inOut(v) activated byC , consider

a random variable Yw which is 1 if w is activated by a vertex in C

and 0 otherwise. Thus,

infOut (v)(C) =
∑

w ∈Out (v)\C

Yw .

Again, by the linearity of expectation,

E[infOut (v)(C)] =
∑

w ∈Out (v)\C

E[Yw]

=

∑

w ∈Out (v)\C

Pr(Yw = 1)

=

∑

w ∈Out (v)\C

Pr(Bw activatew)

≥
∑

w ∈Out (v)\C

p

= E[inf(v)],

1785

where the inequality follows from Eq. 3 and the last equality came

from Eq. 2. �

Such results show that the vertices in C have more probabil-

ity of becoming early adopters than most of the vertices in V \ C .

Due to the criteria to choose C , all the vertices that have no out-

neighbors are in V \ C while many of the higher degree vertices

belong to C . Hence, we suppose that the marginal gain of the ver-

tices in V \C is always low and would be discarded in any way. In

view of power law graphs, where most of the vertices have low de-

gree and a small number have high degree, there are two general

aspects of the excluded vertices. First, a large number of nodes has

degree equal to one, many of which has no out-neighbors. Further-

more, some vertices which degrees are greater than one also have

no out-neighbors. Consequently, these nodes would not activate

other vertices. Second, for all v ∈ V \C in which the out degree is

greater than one, v is subject to Lemmas 2.2, 2.3 and Theorem 2.4,

that is, the nodes in C are enough to achieve the Out(v).

It is worthwhile noticing that, based on the number of nodes

without out edges, it is possible to quantify the number of vertices

that cannot activate anyone. But it requires a very thorough anal-

ysis on random power law graphs, and this is not the scope of

this work. Given this, we suppose that we can select the k early

adopters of set S within the set C without losing quality of spread,

then we do not need to consider every vertex of the graph using

the greedy algorithm. Therefore, although the analysis was simpli-

fied, there are strong indications that the results would be positive

in more complex models, with distinct propagation probabilities.

3 THE PREVALENTSEED ALGORITHM

We now present an algorithm that chooses the early adopters in

power law graphs, called PrevalentSeed. We combine the Pres-

elector with the Celf’s “Lazy Forward” update scheme. The idea

is to show how the preselection can be used in a seed set selection

algorithm. Algorithm 3 shows the pseudo code. Initially, we divide

the vertex set into two disjoint subsets, C and V \ C , such that C

is the set of candidates (line 3). Here, we chose to use the Celf

optimization as a sub routine instead of the greedy algorithm of

Kempe et al. [12], since it is faster. Therefore, the code snippet be-

tween lines 4-15 is a modification of Celf, in which the difference

is the loop at lines 4-7, where we inserted in the list Q only the

vertices of set C . From this moment on, the marginal gain of the

vertices inV \C is not estimated anymore. Next, the marginal gain

of each v ∈ C is estimated and v is added toQ in a non increasing

order of marginal gain. The search follows the Celf’s idea, at lines

8-15, to make a greedy search and select the k vertices of higher

marginal gain from the vertices belonging to the set C .

As well as in the Celf algorithm, the element of Q correspond-

ing to v stores a table of the form 〈δv ,v .it〉, where δv = σ (S ∪

{v})−σ (S) is the marginal gain ofv compared to S , andv .it marks

at which iteration the value of δv was last updated. In each of the k

iterations of ‘while’ loop,v is removed from the queue and checked

if the marginal gain already was computed at the current iteration,

using the it attribute. If yes, v is the vertex of the greatest marginal

gain at the current iteration, so it will be selected as a seed (lines

10-11). Otherwise, the lines 12-15 recompute thev’s marginal gain

and insert it again in Q such that the order is maintained.

Algorithm 3: PrevalentSeed

Input:G,k,σ

Output: Seed set S

1 begin

2 S ← ∅,Q ← ∅

3 C ← Preselector(G)

4 foreach u ∈ C do

5 δu ← σ ({u})

6 u .it ← 0

7 Add u to Q in a non increasing order by δu

8 while |S | ≤ k do

9 Dequeue u from Q

10 if u .it = |S | then

11 S ← S ∪ {u}

12 else

13 δu ← σ (S ∪ {u}) − σ (S)

14 u .it ← |S |

15 Enqueue u in Q and sort

Theorem3.1 determines the running time of the PrevalentSeed

and shows that it is asymptotically equal to Celf, even making the

preselection.

Theorem 3.1. LetG be a directed graph with n vertices andm edges.

Algorithm 3 executes in O(knrm) time.

Proof. The PrevalentSeed’s running time is given as follows.

(i) By Theorem 2.1, the call to PreSelector at line 3 usesO(n +m)

steps to find the set C . (ii) In the loop of lines 4-7, O(|C |rm) op-

erations are made. This loop computes the value of σ (v) for all

v ∈ C . The σ (v) is estimated with r = 10.000 simulations of spread

process (Monte Carlo method). Every call to σ (v) spends O(rm)

time. Moreover, each insertion in Q has time O(1). Thus, this loop

needs O(|C |rm) operations. (iii) To choose k nodes O(knrm) steps

are needed at the ’while’ loop. This loop is an adaptation of Celf

optimization in with the difference that the set of vertices V is re-

placed by the set C of candidates. As explained by [14], this algo-

rithm has time O(knrm). Since |C | ≤ n, then we have the same

bound. Therefore, the total running time is the sum of items (i), (ii)

and (iii). O(n +m) +O(|C |rm)+O(knrm) = O(knrm). �

4 EXPERIMENTS

We conducted the experiments in two types of datasets, real social

networks and synthetically generated graphs. The comparisonwas

made between PrevalentSeed and the Celf algorithm by taking

into account two metrics: size of set of vertices achieved by the

spread of influence (ie, quality of seed set) and running time. In

the experiments, the proposed algorithm got significant gains in

performance compared to Celf besides preserving the expected

spread in a competitive level. Although the Celf++ is faster than

Celf in the experiments reported by Goyal et al. [10] we chose

Celf as baseline because in some empirical evaluations the Celf

remains more robust on different types of graph.

1786

The algorithm was implemented in Java using the JGraphT li-

brary (jgrapht.org) and all experiments were performed on a ma-

chine with GNU/Linux (Linux Mint 17) which hardware configura-

tionswere: (i) Processor: Intel(R) Core(TM) i5-3210MCPU, 2.50GHz,

x86_64 architecture, and 4 CPU’s. (ii) Cache memory: 128KiB L1

cache; 512KiB L2 cache; 3MiB L3 cache. (iii) RAM: 6GiB SODIMM

DDR3 Synchronous 1600 MHz (0,6 ns).

4.1 Real World Power Law Graphs

We seeked networks that exhibited structural features of large scale

social networks and power law degree distribution. Six graphswere

used to exemplify the results. Table 1 summarizes some data about

these graphs.

Table 1: Statistics information of the social networks. The β

values are from Liu et al. [15] and Tang et al. [16] results.

Social Network Vertices Edges Exponent (β)

NetHEPT 15,233 32,213 2.651

NetPHY 37,154 180,826 2.843

Enron 36,692 367,662 2.357

Epinions 75,879 508,837 2.383

Amazon 262,111 1,234,877 2.432

DBLP 654,628 1,990,259 3.361

All the tests were carried out in the independent cascade model.

In order to evaluate graphs relatively large, we splitted the exper-

iments into two categories. The smallest graphs and the largest

ones. Due to the long time required to make Monte Carlo sim-

ulations, we set the propagation probabilities to p = 0.025 on

smaller graphs and p = 0.0025 on larger graphs. It was necessary

because higher probabilities would make the experiments infea-

sible, as far as the running time is concerned. We simulated the

propagation process by 10,000 times for each selected set, as in the

literature [10, 12, 14].

4.1.1 Results and Discussion. The quality of the early adopters

selected by the algorithms was evaluated based on the number of

activated vertices. The higher the spread, the better the quality. In

the graphics of Figure 1 the algorithms have similar results on the

influence propagation, that is, the number of activated vertices are

almost the same. Note that despite the difference of probabilities,

the results are similar and both algorithms have produced good

seed sets. Concerning the running time, Table 2 summarizes the ef-

fectiveness of the PrevalentSeed compared to Celf’s time when

k = 50. For simplicity purposes, we kept only two decimal places of

precision. The last column shows how much PrevalentSeed was

faster than Celf. In this case, we achieved a reduction up to 57%,

but unfortunately we also got negative results. It is important to

note that the result of the two last graphs on Table 2 was negative

mainly due to a very important fact, which is the size of set C .

In the graphs which the performance of PrevalentSeed was

worse than Celf (Enron and Epinions), the density is higher than

in the other graphs. This feature implies that a smaller number of

vertices are needed to cover all the graph, that is, the size of C de-

creases when the number of edges increases. With few candidates,

Table 2: Difference between the running time of Celf and

PrevalentSeed, for k = 50.

Network PrevalentSeed Celf Gain

NetHEP 220.84 315.61 30.02%

NetPHY 3,195.05 5,366.88 40.46%

Amazon 2,438.71 5,679.99 57,06%

DBLP 5,541.06 10,876.31 49,06%

Enron 212,964.45 192,744.20 -10.49%

Epinions 123,392.18 112,237.96 -9,93%

Table 3: Calls to the σ function in all tested graphs. Columns

4 and 5 shows the total of reorganizations of Q needed to

PrevalentSeed and Celf, respectively.

Graph Calls to σ Reordering of Q

PrevalentSeed Celf PrevalentSeed Celf

NetHEP 4389 15370 125 137

NetPHY 8713 37495 213 341

Amazon 107058 262205 93 94

DBLP 117537 654726 96 98

Enron 3617 36861 194 169

Epinions 13367 76055 195 181

the Celf’s priority queue needs to be reorganized more times. To

reorganize the priority queue, it is necessary to estimate the mar-

ginal gain again, making new calls to the σ function. Since, in this

step, the set S is not empty, such computation should be more time

consuming because the spread tends to be larger when S grows

Thus, each new call to σ can negatively affect the algorithm’s run

time. That is why PrevalentSeed can be worse than Celf.

Table 3 presents howmany reorganizationswere needed to each

graph in both algorithms. It is easy to note that PrevalentSeed be-

haves badly only in the cases where the number of reordering was

greater than in Celf. Even with the notable difference between the

total number of calls of the two algorithms, what really impacts the

running time are the calls required to reorder the queue. Note that

the total of calls is proportional to the number of vertices placed

into the queueQ . As the goal of the preselection optimization is to

reduce this number of vertex, the PrevalentSeed makes less calls

to σ than Celf at the proportionality of |C |.

Fortunately, even with a worst time in some cases, the quality

of seed set remained competitive (see on Figure 1). Since our pres-

election heuristic aims to solve the problem in power law graphs,

we believe that this is not a prohibitive trouble. Based on these

findings, we recommend that is enough to pay attention to scale

coefficient β . The experiments show that the gain in time reduc-

tion is better when β ≥ 2.4. Thus, when the density of the graph is

higher, it is more appropriate to use only Celf optimization with-

out Preselector.

4.2 Synthetic Graphs

In order to artificially represent realistic social networks, the ran-

dom graph model used in this study is based on the Aiello et al. [1]

1787

0

50

100

150

200

250

0 10 20 30 40 50

σ
(S
)

|S |

PrevalentSeed

CELF

(a) NetPHY

0

10

20

30

40

50

60

70

0 10 20 30 40 50

σ
(S
)

|S |

PrevalentSeed

CELF

(b) NetHEP

0

10

20

30

40

50

60

0 10 20 30 40 50

σ
(S
)

|S |

PrevalentSeed

CELF

(c) Amazon

0

10

20

30

40

50

60

0 10 20 30 40 50

σ
(S
)

|S |

PrevalentSeed

CELF

(d) DBLP

0

20

40

60

80

100

120

140

0 10 20 30 40 50

σ
(S
)

|S |

PrevalentSeed

CELF

(e) Enron

0

20

40

60

80

100

120

140

0 10 20 30 40 50

σ
(S
)

|S |

PrevalentSeed

CELF

(f) Epinions

Figure 1: The simulations in NetHEP, NetPHY and Amazon have propagation probability p = 0.025, and the simulations in

DBLP, Enron and Epinions have p = 0.0025.

model, denoted as P(α , β). The generated networks combine the

topology introduced by P(α , β) model together with the General-

ized Random Graph (GRG) model [19]. The purpose of this method-

ology is to generate power law random graphs with an adjustable

scale exponent β . Roughly speaking, in the GRG model, a graph

starts with a set of n vertices with no edges between them. Each

vertex has a weight which determines the probability of having

edges. The algorithm adds edges between pairs of vertices accord-

ing to its weights. Hence, the graph topology depends on the cho-

sen weights, and it can be handled such that the resulting graph

has an expected degree according to a desired distribution. So, the

P(α , β)model provides a well-defined sequence of weights, used as

the input of the GRG model, that follows a power law distribution.

In our experiments, we generated 60 synthetic graphs. The net-

work generation parameters are size and density, in which we vary

the number of vertices such that n = {2, 4, 8, 16, 32, 64} and the

scale exponent was fixed in β = 2.5. For each n, we perform the ex-

periments on 10 networks, and report the average results to both

expected propagation and running time. In all the experiments,

we preprocessed the graphs by eliminating the isolated nodes and

small components in order to only use the connected graph of the

giant component. The propagation probabilities on the edges are

draw uniformly at random from the interval [0, 14]. Such settings

allow us to perform experiments in feasible time on the IC model

with random probabilities.

4.2.1 Results and Discussion. Weplot the performance of Preva-

lentSeed and Celf in both metrics, expected propagation and

running time. Figure 2 presents the average expected propagation

of the networks with 64 thousand vertices, where the spread of

PrevalentSeed match almost perfectly with the Celf’s spread.

This confirms that our heuristic is able to reach the same quality.

This matches the intuition from the end of the analysis of the pre-

selection process, which says that without losing the quality of

spread, we can select the early adopters within the set C . For the

running time, we see that our algorithm does better than Celf. Fig-

ure 3(a) shows the amount of time required to find a seed set of 50

vertices on the random graphs. The gain in running time for each

of the sizes 2k, 4k, 8k, 16k, 32k and 64k of the graphs are 17.2%,

22.42%, 36.4%, 26.61%, 24.4% and 29.67%, respectively.

Figure 3(b) presents the average number of calls to σ function.

In these settings, the difference between the algorithms is directly

related to the size of the set of candidates. Thus, the preselection

decreases the quantity of influence estimation along the greedy

search. Also, Figure 3(b) shows that even with a noteworthy de-

crease in the number of calls to σ function, the running time (Fig-

ure 3(a)) does not decreases proportionally. Again, the comparison

between the running time and the number of calls to σ reinforce

the idea that the more expensive calls to σ are those performed

to reorder the priority queue, as already reported in the real-word

network evaluations in Section 4.1.

We are aware of new algorithms and heuristics that outperforms

our baseline and the PrevalentSeed into this field, for instance

IMM [17] and TIM+ [18], and by the time the paper is published,

some details of our comparison method will be outdated. Nonethe-

less, our main contribution remains valid because the focus of our

1788

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50

σ
(S
)

|S |

PrevalentSeed

CELF

Figure 2: Simulations in synthetic graphs with 64 thousand

vertices and propagation probability p ∈ [0, 14]. We plot only

one size of graph due to similar results in all tested sizes.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

2k 4k 8k 16k 32k 64k

T
im

e
(s

ec
on

ds
)

Graphs

PrevalentSeed
Celf

(a) Running time

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

2k 4k 8k 16k 32k 64k

C
al

ls

Graphs

PrevalentSeed
Celf

(b) Calls to σ function

Figure 3: Average running time (a) and number of calls to

the σ function (b) of both algorithms to find 50 seeds on syn-

thetic graphs.

work is presenting a preselectionmethodology specialized in power

law graphs, that can be applied or combined with any greedy al-

gorithm. The purpose, therefore, is not to compete with new al-

gorithms in selecting the seed set, but to offer a way to improve

the performance in power law graphs. The PrevalentSeed algo-

rithm is an example of how the preselection can be applied in a

given seed selection algorithm. For this reason, we kept the origi-

nal Celf as baseline, since our goal is to compare the results with

and without the preselection.

5 CONCLUSIONS

Some interesting features of the preselection are that it explores

the relationship between influence propagation and degree distri-

bution of social networks to highlight the most promising vertices,

preventing unnecessary processing by cutting out some elements

of the search. Experimentally, the PrevalentSeed is reasonably

faster than Celf in most of the evaluated graphs. This happens

mainly due to the reduction of the number of estimation of the in-

fluence function. Moreover, the set of activated nodes chosen by

PrevalentSeed are very competitive with those found by Celf

in terms of quality. In addition, the theoretical analysis concern-

ing the reach of spread produce results that goes according to the

empirical analysis.

REFERENCES
[1] William Aiello, Fan Chung, and Linyuan Lu. 2001. A random graph model for

power law graphs. Experimental Mathematics 10, 1 (2001), 53–66.
[2] Akhil Arora, Sainyam Galhotra, and Sayan Ranu. 2017. Debunking the myths of

influence maximization: An in-depth benchmarking study. In Proceedings of the
2017 ACM International Conference on Management of Data. ACM, 651–666.

[3] Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable influence maximization
for prevalent viral marketing in large-scale social networks. In Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 1029–1038.

[4] Wei Chen, YajunWang, and Siyu Yang. 2009. Efficient influence maximization in
social networks. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 199–208.

[5] Wei Chen, Yifei Yuan, and Li Zhang. 2010. Scalable influence maximization in
social networks under the linear threshold model. In Data Mining (ICDM), 2010
IEEE 10th International Conference on. IEEE, 88–97.

[6] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. 2009. Power-law
distributions in empirical data. SIAM review 51, 4 (2009), 661–703.

[7] Pedro Domingos and Matt Richardson. 2001. Mining the network value of cus-
tomers. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 57–66.

[8] David Easley and Jon Kleinberg. 2010. Networks, crowds, and markets: Reasoning
about a highly connected world. Cambridge University Press.

[9] Amit Goyal, Francesco Bonchi, and Laks VS Lakshmanan. 2011. A data-based
approach to social influence maximization. Proceedings of the VLDB Endowment
5, 1 (2011), 73–84.

[10] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. 2011. Celf++: optimizing the

greedy algorithm for influence maximization in social networks. In Proceedings
of the 20th international conference companion on World wide web. ACM, 47–48.

[11] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. 2011. Simpath: An efficient

algorithm for influence maximization under the linear threshold model. In Data
Mining (ICDM), 2011 IEEE 11th International Conference on. IEEE, 211–220.

[12] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of

influence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 137–146.

[13] Jon Kleinberg. 2007. Cascadingbehavior in networks: Algorithmic and economic
issues. Algorithmic game theory 24 (2007), 613–632.

[14] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-
Briesen, and Natalie Glance. 2007. Cost-effective outbreak detection in networks.
In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 420–429.

[15] Xiaodong Liu, Shanshan Li, Xiangke Liao, Shaoliang Peng, LeiWang, and Zhiyin

Kong. 2014. Know by a handful the whole sack: efficient sampling for top-k
influential user identification in large graphs. World Wide Web 17, 4 (2014), 627.

[16] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-

netminer: extraction and mining of academic social networks. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 990–998.

[17] Youze Tang, Yanchen Shi, and Xiaokui Xiao. 2015. Influence maximization in

near-linear time: A martingale approach. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data. ACM, 1539–1554.

[18] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maximization: Near-

optimal time complexity meets practical efficiency. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data. ACM, 75–86.

[19] Remco Van Der Hofstad. 2016. Random graphs and complex networks. (2016).

1789

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

