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We show that the Hidden Subgroup Problem for group families where products and 
inverses can be computed efficiently is in BPPMKTP (where MKTP is the Minimum KT
Problem) using the techniques of Allender et al. (2018) [1]. We also show that the problem 
is in ZPPMKTP provided that there is a pac overestimator computable in ZPPMKTP for the 
logarithm of the order of the input group. This last result implies that for permutation 
groups, the dihedral group and many types of matrix groups the problem is in ZPPMKTP. 
Lastly, we also show that two decision versions of the problem admit statistical zero 
knowledge proofs. These results help classify the relative difficulty of the Hidden Subgroup 
Problem.
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1. Introduction

Ladner [2] showed that, assuming P �= NP, there exist NP-intermediate problems, that is, problems in NP that are neither 
in P nor NP-complete. While the problems shown to be NP-intermediate in [2] are quite artificial, there are some “natural” 
candidates such as the Graph Isomorphism and Integer Factorization problems. In this paper we present results that relate 
two such candidates, the Hidden Subgroup Problem and the Minimum KT Problem.

The Hidden Subgroup Problem (HSP) is a well known candidate for NP-intermediate status. Many current cryptographic 
protocols rely on the hardness of HSP since both the Integer Factorization and Discrete Logarithm problems are reducible 
to the problem. It was shown that Shor’s polynomial time quantum algorithm for Integer Factorization [3] also applies to 
the Abelian HSP [4]. Consequently, there is an interest in improving upper bounds for the Non-abelian HSP in the quantum 
computation model, especially in permutation and dihedral groups [5,6]. However, no polynomial time quantum algorithm 
for the general HSP is known.

The Minimum KT Problem (MKTP) is also an NP-intermediate candidate problem. It is closely related to the Minimum 
Circuit Size Problem (MCSP) [7], a very well studied problem. Many hardness results for MKTP are known: the class BPPMKTP

contains the entirety of SZK [8] and the Graph Isomorphism, Integer Factorization and Discrete Logarithm problems are all 
in ZPPMKTP [1,9,10]. As the last three problems are generalized by HSP, it is natural to wonder if HSP itself is in ZPPMKTP.

Most of the hardness results shown for MKTP also apply to MCSP. Recently, however, [1] presented a new reduction tech-
nique that, up until now, applies only to MKTP. They showed that Graph Isomorphism (GI) and a variety of “Isomorphism 
Problems” are in ZPPMKTP. The result for GI is unconditional, while other problems must respect some basic conditions on 
efficiency and samplability. In doing so, they developed many technical results that we use in this work.

Using their techniques, we present two results relating HSP and MKTP. The first one is a direct adaptation of [1, Lemma 
5.4]. In this Lemma the authors show how to obtain a list of elements that with high probability generate the stabilizer of 
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an action point. We note that the result only depends on the fact that a group action with a fixed action point hides the 
stabilizer subgroup, so it can be adapted to find any hidden subgroup, showing that HSP ∈ BPPMKTP, providing operations 
on the underlying group can be computed efficiently. The second, and main result of this paper, is a strengthening of the 
first, where we show that having a pac overestimator for the logarithm of the order of the input group is enough to imply 
that HSP ∈ ZPPMKTP. This implies that HSP for the dihedral group, permutation groups and many types of matrix groups is 
in ZPPMKTP. Note that, in the previous discussion, we assume the group is given as a list of generators for permutation and 
matrix groups, while for the dihedral group we assume the group D N is given by N , a reflection and a rotation.

We also present two results relating decision versions of HSP with SZK, the class of problems admitting statistical zero 
knowledge proofs [11]. SZK is conjectured to be strictly contained in NP, while also containing hard problems. Specifically, 
we prove that the problem of deciding whether the hidden subgroup is trivial or not is in HVPZK, and that a gap version 
of the problem for permutation groups is in NISZK. Both HVPZK and NISZK are subclasses of SZK.

2. Preliminaries

We assume familiarity with the standard complexity classes, including probabilistic polynomial classes like BPP (two-
sided error), RP (one sided error) and ZPP (zero-sided error), as well as interactive proofs. We also refer the reader to the 
standard texts about general group theory for basic definitions [12].

In this section we provide more details about KT complexity and the problem MKTP, zero knowledge proofs and our
group model, besides defining the computational problems of interest. We also provide definitions of various important 
statistical concepts and restate some results from [1] in an effort to make this paper self-contained.

2.1. KT complexity and MKTP

KT-complexity is a time-bounded variant of Kolmogorov Complexity. We refer the reader to [9] for more details about 
KT and present only definitions and results that are relevant to our results.

Definition 2.1. Let U be a universal Turing machine. For each string x, define KTU (x) to be

min {|d| + T : (∀σ ∈ {0,1,∗}) (∀i ≤ |x| + 1) U d(i,σ ) accepts in T steps iff xi = σ }.
We define xi = ∗ if i > |x|; thus, for i = |x| + 1 the machine accepts iff σ = ∗. The notation U d indicates that the machine U
has random access to the description d.

KT(x) is defined to be equal to KTU (x) for a fixed choice of Universal machine U with logarithmic simulation time 
overhead. The Minimum KT Problem is defined as MKTP = {(x, θ) | KT(x) ≤ θ}. An oracle for MKTP is sufficient to invert on 
average any function that can be computed efficiently [9]. We present the following formulation due to [1].

Lemma 2.1. (follows from [9, Theorem 45]) There exists a polynomial-time probabilistic Turing machine using oracle access to MKTP 
so that the following holds. For any circuit C on n input bits,

Pr[C(M(C, C(σ ))) = C(σ )] ≥ 1/poly(n)

where the probability is over the uniform distribution of σ ∈ {0, 1}n and the internal coin flips of M.

2.2. Random variables and samplers

We restate some basic definitions from [1]. A finite probability space consists of a finite sample space S and a probability 
distribution p on S . A random variable R is a mapping from the sample space S to a set T . The random variable R with the 
uniform distribution on S induces a distribution p on T . R may also be used to designate this distribution.

The support of a distribution p on a set T is the set {t ∈ T | p(t) > 0}. A distribution is flat if it is uniform on its support. 
The entropy of a distribution p, denoted by H(p), is the expected value of log (1/p(t)). The min-entropy of p is the largest 
real s such that p(t) ≤ 2−s for every t ∈ T . The max-entropy of p is the least real s such that p(t) ≥ 2−s for every t ∈ T . 
Note that the entropy is always between the min- and max-entropies. For a flat distribution all of these coincide and equal 
the logarithm of the size of the support. For two distributions p and q on the same set T , we say that q approximates p
within a factor 1 + δ if q(t)/(1 + δ) ≤ p(t) ≤ (1 + δ)q(t) for all t ∈ T . In that case, p and q have the same support, and if p
has min-entropy s, then q has min-entropy at least s − log (1 + δ), and if p has max-entropy s, then q has max-entropy at 
most s + log (1 + δ).

A sampler within a factor of 1 + δ for a distribution p on a set T is a random variable R : {0, 1}� → T that induces a 
distribution on T that approximates p within a factor 1 + δ. We say that R samples T within a factor 1 + δ from length �. The 
choice of {0, 1}� reflects the fact that distributions need to be generated from a source of random bits.

We consider ensembles of distributions {px} where x ∈ {0, 1}∗ . We call the ensemble samplable by polynomial-size circuits
if there exists an ensemble of random variables {Rx,δ} where δ ranges over the positive rationals such that Rx,δ samples px
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within a factor 1 + δ from length �x,δ and Rx,δ can be computed by a circuit of size poly(|x|/δ). If in addition the mappings 
(x, δ) 	→ �x,δ and (x, δ, σ) 	→ Rx,δ(σ ) can be computed in time poly((|x|/δ)), we call the ensemble uniformly samplable in 
polynomial time.

2.3. Pac estimators and KT

We present the concept of a Probably-Approximately-Correct Overestimator.

Definition 2.2. [1] (Probably-Approximately-Correct Overestimator) Let g : � →R be a function and M a randomized algo-
rithm that, on input ω ∈ �, outputs a value M(ω) ∈ R. We say that M is a probably-approximately-correct overestimator 
for g with deviation � if, for every ω ∈ �, |M(ω) − g(ω)| ≤ � holds with probability at least 1/poly(|ω|) and M(ω) > g(ω)

otherwise. We can define a probably-approximately-correct underestimator by reversing the last inequality.

By taking the minimum (maximum) value of a polynomial number of evaluations of a pac overestimator (underestimator) 
we are able to increase its confidence to be exponentially close to 1.

A major contribution of [1] is the Entropy Estimator Corollary, which shows that the amortized value KT(y)/t , where y
is the concatenation of t samples from a random variable R , is a pac underestimator for the entropy of R .

Corollary 2.1. [1] (Entropy Estimator Corollary) Let {px} be an ensemble of distributions such that px is supported on strings of the 
same length poly(|x|). Consider a randomized process that on input x computes KT(y)/t, where y is the concatenation of t independent 
samples from px. If px is samplable by circuits of polynomial size, then for t a sufficiently large polynomial in |x|, KT(y)/t is a pac 
underestimator for the entropy of px with deviation �(x) + o(1), where �(x) is the difference between the min- and max-entropies of 
px.

2.4. Statistical zero knowledge

Zero knowledge proofs were introduced by [13]. We say that an interactive proof is zero knowledge when the verifier 
gets no information other than the validity of the assertion being claimed by the prover. We refer the reader to [11] for a 
complete treatment on the subject.

Problems admitting zero knowledge proofs are better defined as promise problems.

Definition 2.3. A promise problem 	 is a pair (	Y , 	N) of two disjoint sets 	Y , 	N ∈ {0, 1}∗ . The set 	Y contains the “yes 
instances” and the set 	N contains the “no instances”.

When designing an algorithm for a promise problem 	 we are only interested in inputs in 	Y ∪ 	N . As a consequence, 
there are no guarantees about the algorithm’s behavior on inputs outside of this set.

Let (P , V ) be an interactive protocol. Define the verifier’s view 〈P , V 〉 (x) of the interaction between P and V on a 
common input x as all messages exchanged between P and V, together with the random bits used by V . Note 〈P , V 〉 (x) is 
a random variable. Since we only present an honest verifier perfect zero knowledge protocol, we define this notion.

Definition 2.4. Let (P , V ) be an interactive protocol and 	 a promise problem. We say (P , V ) is an interactive proof for 	
if the following conditions hold:

1. (Efficiency) V is computable in polynomial time. Also, on common input x, the number of messages exchanged between 
P and V , as well as the message size is at most poly(|x|).

2. (Completeness) If x ∈ 	Y , then V accepts in (P , V )(x) with probability at least 2/3.
3. (Soundness) If x ∈ 	N , then for any P∗ , V rejects in (P , V ∗)(x) with probability at least 2/3.

We say that (P , V ) is an honest verifier perfect zero knowledge proof if, in addition to conditions 1 to 3, there is a proba-
bilistic polynomial time simulator S such that for all x ∈ 	Y the following two conditions hold:

4. On input x, the simulator S outputs fail with probability at most 1/2.
5. Let S̃(x) be the random variable describing the distribution of S(x) conditioned on S not failing. Then S̃(x) and 〈P , V 〉 (x)

are identically distributed.

HVPZK is the class of promise problems that admit honest verifier perfect zero knowledge proofs. Note that HVPZK ⊆
SZK [11].

NISZK is a subclass of SZK that contains problems for which there are non-interactive statistical zero knowledge proofs. In 
this paper, instead of explicitly presenting a non-interactive protocol for a decision version of HSP, we show a reduction to 
the complete problem Entropy Approximation [11].
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Definition 2.5. Entropy Approximation is the problem EA = (EAY , EAN) where

EAY = {(C, t) | H(C) ≥ t + 1}
EAN = {(C, t) | H(C) ≤ t − 1}

Above, C is a circuit encoding a probability distribution and t is an integer.

2.5. The group model

We study the Hidden Subgroup Problem in a context similar to that of black-box groups. The black-box group model 
was introduced by Babai [14] and has since been widely used to study algorithmic problems in finite groups [15–17]. We 
present definitions that are similar to the ones present in [18].

A group family is a countable sequence B = {Bn}n≥1 of finite groups such that elements of each Bn are uniquely repre-
sented by strings of size poly(n) and the order of each Bn is computable in time poly(n), both for a fixed polynomial on n. 
The inverse, product and identity testing operations of Bn can be computed in poly(n)-time. We let e denote the identity 
element of any Bn . The inputs for problems in this model are subsets T ⊂ Bn , and we are interested in the group 〈T 〉 (the 
subgroup generated by T ).

Note that our model is less general than the original black-box group model since we only consider group families where 
group operations can effectively be computed in polynomial time. Still, the model captures most group families where the 
Hidden Subgroup Problem is of interest (for instance, permutation, dihedral and matrix groups).

It is not clear if it is possible to efficiently obtain uniform samples of a group 〈T 〉 given T ⊂ Bn , as is the case with per-
mutation groups [19]. However, a fundamental result about black-box groups, based on Babai’s seminal work [15, Theorem 
1], is that they are uniformly samplable within a factor of 1 + δ. Due to the closure of polynomial time under composition, 
this result also applies to our setting.

Claim 2.1. (follows from [1, Claim 5.6]) Let B be a group family, Bn ∈ B, T ⊂ Bn and p0n,T be the uniform distribution on 〈T 〉. The 
ensemble {p0n,T } is uniformly samplable in polynomial time.

Combining Claim 2.1 with the Entropy Estimator Corollary, Allender et al. [1] also show that it is possible to pac un-
derestimate the logarithm of the order of a group given by a list of generators in probabilistic polynomial time with oracle 
access to MKTP.

Lemma 2.2. (follows from [1, Lemma 5.5]) Let B be a group family, Bn ∈ B, T ⊂ Bn and G = 〈T 〉. The map (0n, T ) 	→ log |G| can be 
pac underestimated with any constant deviation � > 0 in ZPPMKTP .

2.6. The Hidden Subgroup Problem

In order to define the Hidden Subgroup Problem, we first define what it means for a function f to hide a subgroup.

Definition 2.6. Let G be a group and H a subgroup of G . We say that a function f hides H in G if for all g1, g2 ∈ G , 
f (g1) = f (g2) ⇐⇒ g1 H = g2 H .

That is, for a function to hide a subgroup H in G it has to be constant for the elements of G that are in the same coset 
of H on G , while being different for elements in different cosets. We now formally define the Hidden Subgroup Problem for 
a specific group family B.

Definition 2.7. The Hidden Subgroup Problem for group family B (HSP-B).
Input: (0n, T , C f ), where T ⊂ Bn for Bn ∈ B, G = 〈T 〉 and C f is a poly(n)-size circuit that takes as input encodings of 

group elements of Bn and outputs m-bit strings for some m ∈ N , with the promise that the function f computed by C f
hides some subgroup H in G .

Output: a list of generators for H .

Note that function f is input as a poly(n)-size circuit C f . Although one could define the problem without a restriction on 
the size of C f , we are usually interested in the case where function f is not too hard to compute. In fact, that is the case for 
most instantiations of the Hidden Subgroup Problem, and allows, for example, the generalization of the Graph Isomorphism, 
Integer Factorization and Discrete Logarithm problems to HSP-B for the corresponding group family.

We also define two decision versions of HSP-B in the form of promise problems, dHSP-B, and GapHSP-B.
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Definition 2.8. Let B be a group family. dHSP-B is the following promise problem.

dHSP-BY = {
(0n, T , C f ) | |H| = 1

}

dHSP-BN = {
(0n, T , C f ) | |H| ≥ 2

}
,

where T ⊂ Bn for Bn ∈ B, G = 〈T 〉 and C f is a poly(n)-size circuit that takes as input encodings of group elements of Bn

and outputs m-bit strings for some m ∈N , with the promise that the function f computed by C f hides some subgroup H
in G .

While dHSP-B is a somewhat easier problem than HSP-B, it captures the difficulty of many problems in groups, such as 
the Graph Automorphism Problem and the problem of deciding whether the stabilizer of an efficiently computable group 
action is trivial or not. Moreover, for permutation groups (where B = {Sn}n≥1) the problem is equivalent to HSP-B under 
oracle reductions [20]. It is easy to see that GapHSP-B generalizes dHSP-B.

Definition 2.9. Let B be a group family. GapHSP-B is the following promise problem.

GapHSP-BY = {
(0n, T , C f ,k) | |H| ≤ k

}

GapHSP-BN = {
(0n, T , C f ,k) | |H| ≥ 2k

}
,

where T ⊂ Bn for Bn ∈ B, G = 〈T 〉, C f is a poly(n)-size circuit that takes as input encodings of group elements of Bn and 
outputs m-bit strings for some m ∈N , with the promise that the function f computed by C f hides some subgroup H in G
and k ∈N .

3. The Hidden Subgroup Problem and MKTP

We show that [1, Lemma 5.4] can be adapted in a rather straightforward way to obtain a BPPMKTP algorithm for solving 
the Hidden Subgroup Problem for a fixed group family. This is possible because the original result only depends on the fact 
that a group action with a fixed point hides the stabilizer subgroup.

Theorem 3.1. For all group families B, HSP-B ∈ BPPMKTP .

Proof. Let (0n, T , C f ) be an instance of HSP-B, where T ⊂ Bn for Bn ∈ B, G = 〈T 〉 and C f is a poly(n)-size circuit that takes 
as input encodings of group elements of Bn and outputs m-bit strings for some m ∈N , with the promise that the function 
f computed by C f hides some subgroup H in G . We argue that the uniform distribution on H , which we denote by pH , is 
uniformly samplable in polynomial time using a oracle for MKTP.

Claim 3.1. pH is uniformly samplable in polynomial time with oracle access to MKTP.

Proof. Let M be the Turing machine from Lemma 2.1 and let pG denote the uniform distribution of the elements of G .
By Claim 2.1 there is a circuit CG,δ that samples pG within a factor of (1 + δ) from strings σ of length � = poly(n/δ). 

Let C f ,δ = C f ◦ CG,δ . Note that C f ,δ uniformly samples the image of f within a factor of 1 + δ. We sample σ ∈ {0, 1}�
uniformly at random and compute τ = M(C f ,δ, C f ,δ(σ )). Let g = CG,δ(σ ) and g′ = CG,δ(τ ). In case the inversion performed 
by machine M is successful we have that f (g) = f (g′) and then g−1 g′ ∈ H . Since g is uniform within a factor of 1 + δ, 
conditioned on the success of inverting f (g), g−1 g′ is uniform on H within a factor of 1 + δ. The probability of success is 
1/poly(n/δ).

We run this procedure many times and retain the value g−1 g′ of the first successful run. A Chernoff bound guarantees 
that the probability of obtaining one success in poly(n/δ) many runs is exponentially close to 1. Since each run takes time 
poly(n/δ) and success can be determined by evaluating f (g′) and f (g) in polynomial time, it follows that the uniform 
distribution on H is uniformly samplable in polynomial time with access to a MKTP oracle. � (claim)

Now it suffices to show that for some constant δ > 0, a polynomial amount of samples h1, h2, . . . , hk from H are sufficient 
to generate H with high probability. Denote by �i the subgroup of H generated by Li = {h1, h2, . . . , hi}. For i < k, if �i �= H
then by Lagrange’s Theorem |�i | ≤ |H |/2. Thus, with probability at least 1/2 · 1/(1 + δ) we have that hi+1 /∈ �i , in which 
case |�i+1| ≥ 2|�i |. It follows that a value k = O (poly(n)) suffices to guarantee that �k = H with probability exponentially 
close to 1. �

It is possible to improve this reduction to a ZPP reduction by finding a way to certify that the partial list of ele-
ments Li actually generates H . We show how to achieve that by combining the pac-underestimator of Claim 2.2 with a 
pac-overestimator for the map (0n, T , C f ) 	→ log |H | that is computable in ZPPMKTP.
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Theorem 3.2. Let B be a group family, Bn ∈ B, T ⊂ Bn, G = 〈T 〉 and C f a poly(n)-size circuit that takes as input encodings of group 
elements of Bn and outputs m-bit strings for some m ∈N , with the promise that the function f computed by C f hides some subgroup 
H in G. If there is a pac overestimator with deviation � = 1/8 for the map (0n, T , C f ) 	→ log |H | that is computable in ZPPMKTP , then 
HSP-B ∈ ZPPMKTP .

Proof. Let (0n, T , C f ) be an instance of HSP-B, where T ⊂ Bn for Bn ∈ B, G = 〈T 〉 and C f is a poly(n)-size circuit that takes 
as input encodings of group elements of Bn and outputs m-bit strings for some m ∈N , with the promise that the function 
f computed by C f hides some subgroup H in G . By Claim 3.1 we can sample elements from H uniformly within a factor 
of 1 + δ. As in Theorem 3.1, we build a list L by gradually adding elements h1, h2, . . . of H to it. What remains is certifying 
that the list L generates H before returning it.

Let Mover be the pac overestimator from the theorem’s condition and Munder the pac underestimator from Lemma 2.2
with deviation � = 1/8. Note that Mover pac overestimates the value of log |H | while Munder pac underestimates the value 
of log |〈L〉|, where L ⊂ Bn .

Let Li = {h1, h2, . . . , hi} be the list obtained after sampling i elements from H and �i = 〈Li〉. The algorithm computes, at 
each step i, θLi = Munder(0n, Li) and θHi = Mover(0n, T , C f ), then makes θH = min j≤i{θH j }. It then tests if |θLi − θH | ≤ 1/4, 
and in this case it returns L = Li . If the test fails, the algorithm keeps running.

Let s = log |H |. Note that we always have θH ≥ s − 1/8, and we have θH ≤ s + 1/8 with high probability at each step i. 
We argue that if for step i, |θLi − θH | ≤ 1/4, then 〈Li〉 = H . Assume 〈Li〉 �= H , then |〈Li〉| ≤ |H |/2 by Lagrange’s Theorem, and 
thus θLi ≤ s − 7/8 and |θLi − θH | > 1/4. Now assume 〈Li〉 = H , in this case we have that with high probability θLi ≥ s − 1/8
and θH ≤ s + 1/8. In this case |θLi − θH | ≤ 1/4.

Together with the fact that both Mover and Munder output results that are within their deviation with probability expo-
nentially close to 1, a similar argument to that of Theorem 3.1 shows that the expected running time of the algorithm is 
polynomial in n. �

While the condition of Theorem 3.2 may seem strong, we show in the next section that it can be relaxed to that of a 
pac overestimator for the order of a group given by a list of generators.

3.1. A pac overestimator for the order of the hidden subgroup

Along the lines of [1, Section 5.2], we show how to obtain a pac overestimator for the logarithm of the order of the 
hidden subgroup H . Note that the order of H is |G|/[G : H], where [G : H] is the index of H in G . Note also that the size of 
the image of a function f that hides H in G is precisely [G : H]. In this case to pac overestimate log |H | = log |G|− log [G : H]
it suffices to use the following approach:

1. Pac overestimate log |G| with deviation 1/16.
2. Pac underestimate log [G : H] with deviation 1/16.
3. Return the result of step 1 minus the result of step 2. This gives a pac overestimator for log |H | with deviation 1/8.

To achieve step 2, we present in Claim 3.2 a generic procedure to pac underestimate the value of log [G : H] using a 
MKTP oracle.

Claim 3.2. Let B be a group family, Bn ∈ B, T ⊂ Bn, G = 〈T 〉 and C f a poly(n)-size circuit that takes as input encodings of group 
elements of Bn and outputs m-bit strings for some m ∈N , with the promise that the function f computed by C f hides some subgroup 
H in G. The map (0n, T , C f ) 	→ log [G : H] can be pac underestimated with any constant deviation � > 0 in ZPPMKTP .

Proof. Let R f be the random variable that maps a uniform sample of g ∈ G to f (g). Note that the entropy of R f is 
log [G : H]. Since f is computable in polynomial time and G is uniformly samplable in polynomial time, it follows that R f
is uniformly samplable in polynomial time. Let R f ,δ for a δ > 0 to be defined later be the random variable that samples R f
within a factor of 1 + δ from strings of length poly(n/δ). Note that the difference between the max- and min-entropies of 
R f ,δ is at most 2 log (1 + δ).

Let M f ,δ = KT(y)/t , where y is the concatenation of t samples from R f ,δ . M f ,δ is computable in ZPPMKTP since it is 
possible to compute the value of KT(y) in PMKTP. By the Entropy Estimator Corollary, for a sufficiently large polynomial 
t we have that M f ,δ is a pac underestimator for the entropy of R f ,δ with deviation 2 log (1 + δ) + o(1), and thus a pac 
underestimator for the entropy of R f with deviation 3 log (1 + δ) + o(1). By picking a value of δ such that 3 log (1 + δ) < �, 
it follows that M f ,δ is a pac underestimator for the map (0n, T , C f ) 	→ log [G : H] with deviation � that is computable in 
ZPPMKTP. �

From the results of Theorem 3.2 and Claim 3.2 we obtain Corollaries 3.1 and 3.2.
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Corollary 3.1. Let B be a group family, Bn ∈ B and T ⊂ Bn. If there is a pac overestimator for the map (0n, T ) 	→ log |〈T 〉| with 
deviation � = 1/16 that is computable in ZPPMKTP , then HSP-B ∈ ZPPMKTP .

Corollary 3.2. For B = {Sn}n≥1 (permutation groups), HSP-B ∈ ZPPMKTP .

Corollary 3.2 also applies to many cases where B = {GLn(F(q))}n≥1 as noted by [1]. We also note that if an instance 
of HSP-B has G = Bn , because the order of Bn is computable in polynomial time, then this instance can also be solved in 
ZPPMKTP. This implies, for example, that the Dihedral Hidden Subgroup Problem is in ZPPMKTP. It also provides alternate 
proofs that Integer Factorization and Discrete Logarithm are in ZPPMKTP [9,1,10],

3.2. Pac overestimators for group order

Pac overestimators with MKTP oracles for the logarithm of the order of groups given as a list of generators are a re-
quirement for obtaining ZPP-reductions to MKTP not only from HSP-B, but also from a variety of group problems [1]. We 
present a simple result that partially solves this problem for cyclic groups.

The following is a well known result according to [21].

Claim 3.3. Let B be a group family, Bn ∈ B, T ⊂ Bn and G = 〈T 〉. Given the prime factorization of |G|, it is possible to determine the 
order of any element of G in polynomial time.

We can combine this claim with the fact that factoring integers can be done in ZPPMKTP [9] to obtain Theorem 3.3.

Theorem 3.3. Let CHSP-B be the problem HSP-B with the additional promise that the set T contains only one element. Then for all 
group families B, CHSP-B ∈ ZPPMKTP .

Proof. Let B be a group family, Bn ∈ B and T = {g}, where g ∈ Bn . By Corollary 3.1, it suffices to show that it is possible to 
compute the order of g in ZPPMKTP. To do that, first compute N = |Bn| in polynomial time, then obtain the factorization of 
N in ZPPMKTP and finally use Claim 3.3 to compute |〈T 〉| = |g|. �

It is not clear how to extend this result to compute the order of a generic group given as a list of generators. This is true 
even if we are promised that the group is cyclic without knowing a generator.

4. The Hidden Subgroup Problem and zero knowledge

In [16, Theorem 15], the authors show that the Group Intersection Problem is in SZK by showing a protocol where the 
prover works by finding the factorization of a random product of elements from both groups. We generalize this result by 
showing a protocol for dHSP-B where the prover works by finding pre-images of f . This implies that the problem is in 
HVPZK ⊆ SZK.

Theorem 4.1. For all group families B, dHSP-B ∈ HVPZK.

Proof. We present an interactive protocol for dHSP-B. Given (0n, T , C f ), the prover P wants to convince the verifier V that 
f hides a subgroup H of size 1. Let G = 〈T 〉 and fix a sufficiently small δ > 0.

Protocol 1 for dHSP-B.
1: V : Using Claim 2.1, uniformly (within a factor 1 + δ) selects g ∈ G , computes y = f (g) and sends y to P .
2: P : Computes h ∈ G such that f (h) = y. Sends h to V .
3: V : Accepts if and only if h = g .

We now analyze the protocol. The key observation is that if |H | = 1, then there is a single element h ∈ G such that 
f (h) = y. In this case, P can find this element and make V accept with probability 1. If, on the other hand, |H | ≥ 2, then 
there are at least two such h’s, and in this case, any P∗ cannot make V accept with probability greater than 1/2. We can 
make this probability smaller than 1/3 by repeating the protocol a constant number of times. Completeness and Soundness 
then follow.

As for the Zero Knowledge property, we first argue that for an honest verifier V , it is possible to construct a simulator 
S that selects the element g with exactly the same distribution as V , even though this distribution is not exactly uniform. 
To do that, it suffices for both V and S to sample g using Claim 2.1 with the exact same δ. It is then enough to point that 
when |H | = 1 the distribution of h, the only message sent by P in the protocol, is the same as the distribution of g , so S
can just make h = g . �
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Note that HVPZK ⊆ SZK, and since SZK is closed under complement [11], the following holds.

Corollary 4.1. For all group families B, dHSP-B ∈ SZK and dHSP-B ∈ SZK.

Restricted to permutation groups (where B = {Sn}n≥1), we also show that the GapHSP-B problem is in NISZK by showing 
a reduction to the complete problem Entropy Approximation. It may seem unnecessary to consider this gap version of HSP-B
instead of dHSP-B, especially when the latter is as hard as HSP-B for permutation groups under oracle reductions [20]. 
However, it is not known whether NISZK is closed under oracle reductions [11], so by considering this gap version we 
actually present a slightly stronger result. The reduction makes use of Proposition 4.1.

Proposition 4.1. [11] There is an efficient transformation that takes a triple (C, t1, t2), where C is a distribution encoded by a circuit 
and t1 > t2 are rational numbers, and produces a new distribution C ′ and an integer t such that

H(C) ≥ t1 → (C ′, t) ∈ EAY

H(C) ≤ t2 → (C ′, t) ∈ EAN .

The transformation is computable in time polynomial in the input length and 1/(t1 − t2).

We now present the reduction.

Theorem 4.2. For B = {Sn}n≥1 (permutation groups), GapHSP-B ∈ NISZK.

Proof. Let (0n, T , C f , k) be an instance of GapHSP-B with T ⊂ Sn , G = 〈T 〉, C f is a poly(n)-size circuit that takes as input 
encodings of group elements of Bn and outputs m-bit strings for some m ∈ N , with the promise that the function f
computed by C f hides some subgroup H in G and k ∈ N . Also let t = |G| and note that the value of t is computable in 
polynomial time as G is a permutation group [19].

Note that, even though G is a permutation group, it does not really follow that we can exactly uniformly sample elements 
from G when we consider that the sampling has to be done from random bits. With this in mind, let RG,δ be the random 
variable that samples the uniform distribution on G within a factor of 1 + δ from strings of length poly(n), for a constant 
δ > 0 to be defined later. Construct the circuit C f ,δ that samples a permutation π from RG,δ and outputs f (π).

If |H | ≤ k, then H(C f ,δ) ≥ log t − log k − log (1 + δ). If, however, |H | ≥ 2k, then H(C f ,δ) ≤ log t − log k − 1 + log (1 + δ). 
Thus, by taking C = C f ,δ , t1 = log t − log k − log (1 + δ) and t2 = log t − log k + log (1 + δ)− 1 in Proposition 4.1, we have that 
GapHSP-B ≤p EA as long as δ is a constant such that 2 log (1 + δ) < 1. Therefore GapHSP-B ∈ NISZK. �
5. Conclusion and open problems

The strongest result we show relating HSP and MKTP requires a pac overestimator for the logarithm of the order of 
the input group that is computable in ZPPMKTP. While for some classes of groups there are polynomial time algorithms for 
computing order using oracles for the Factoring and Discrete Logarithm problems, both of which are in ZPPMKTP, it remains 
an open problem to show a general pac overestimator that only depends on group operations being efficiently computable.

Allender et al. [1] show powerful techniques for obtaining zero-sided error reductions to MKTP. While we used these 
techniques to prove our results, it has been shown that they can also be used to improve known reductions to MKTP. 
Another line of investigation, as noted in [10], is improving reductions from the Shortest Independent Vector Problem, 
Unique Shortest Vector Problem, Closest Vector Problem and Covering Radius Problem to MKTP, as all these problems are 
in BPPMKTP [9].
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