
Preprocessing Rules for Target Set Selection in Complex
Networks

Renato Silva de Melo, André Luı́s Vignatti

1Department of Informatics – Federal University of Paraná (UFPR)
Curitiba – PR – Brazil

{rsmelo,vignatti}@inf.ufpr.br

Abstract. In the Target Set Selection (TSS) problem, we want to find the min-
imum set of individuals in a network to spread information across the entire
network. This problem is NP-hard, so find good strategies to deal with it, even
for a particular case, is something of interest. We introduce preprocessing rules
that allow reducing the size of the input without losing the optimality of the so-
lution when the input graph is a complex network. Such type of network has
a set of topological properties that commonly occurs in graphs that model real
systems. We present computational experiments with real-world complex net-
works and synthetic power law graphs. Our strategies do particularly well on
graphs with power law degree distribution, such as several real-world complex
networks. Such rules provide a notable reduction in the size of the problem and,
consequently, gains in scalability.

1. Introduction
The dynamics of information diffusion in complex networks has attracted interest,

not only in social sciences but also in mathematics and computer science. Applications in
viral marketing have motivated researches on an algorithmic perspective. An important
problem investigated in this context consists in finding a small set of individuals of a
social network to start a cascade of adoption throughout the entire system. Furthermore,
social networks, when modeled with graph theory, usually present a particular degree
distribution of the individual’s relationships. Such distribution is referred to as power law
(or scale-free). Roughly speaking, this means that a small number of individuals have a
large number of connections, while the majority have a very small amount of connections.

The problem investigated in this paper has roots in viral marketing applica-
tions [Domingos and Richardson 2001], where the objective is to market a new prod-
uct and induces a “word-of-mouth” effect such that it would be gradually adopted by
a large number of individuals in the network. It was first approached as a discrete
optimization problem by [Kempe et al. 2003] with a maximization objective function,
in a probabilistic environment, called Influence Maximization Problem. They showed
that it is NP-hard to solve and also NP-hard to approximate within a factor n1−ε, for
any constant ε > 0. Subsequent to [Kempe et al. 2003], several efficient heuristic so-
lutions have emerged for this problem taking into account different diffusion models,
for example [Goyal et al. 2011a, Goyal et al. 2011b, Tang et al. 2014, Chen et al. 2010a,
Chen et al. 2010b]. The TSS problem was studied by [Chen 2009] in a deterministic set-
ting with a minimization objective function. He also showed inapproximability results,
even with additional assumptions such as the probabilistic thresholds. When the input

graph is restricted to be a tree, [Chen 2009] presents an exact polynomial time algorithm.
The work of [Ackerman et al. 2010] is among the first to propose an Integer Linear Pro-
gramming formulation for TSS. Using this formulation they derived lower and upper
bounds on the size of the minimum target set for fixed deterministic threshold functions
named majority threshold and strict majority threshold.

There is a reasonable amount of studies on the spreading of information consider-
ing the power law degree distribution of social networks. [Zhang et al. 2012] concentrate
on working with the POSITIVE INFLUENCE DOMINATING SET (PIDS) problem on power
law graphs and prove that a greedy algorithm presented by [Wang et al. 2011] admits a
constant approximation ratio in such networks. They show that the power law degree
distribution can improve the performance of greedy algorithms for a class of problems
known as submodular cover problems. Further, they also proved that the PIDS prob-
lem belongs to the class of submodular cover problems and has a constant approximation
factor.

Regarding the INFLUENCE MAXIMIZATION problem, [Liu et al. 2014] presented
a Monte Carlo based method for estimating the spread of influence in a social net-
work that follows a power law degree distribution. The estimation method proposed
by [Liu et al. 2014] aims to use a supervised sampling to predict the number of vertices
needed to be sampled according to the power law exponent β of a given social network.
This strategy avoids computing the exact value of influence function, and it can efficiently
estimate the influence spreading at a small cost of precision. From another perspective,
[Melo and Vignatti 2018] proposed a preprocessing strategy for the INFLUENCE MAXI-
MIZATION problem by employing a simple greedy heuristic. The algorithm exploits the
degree distribution to select in advance the most promising vertices to be in the solution
of the influence maximization problem. Thus, it is not necessary to explore every vertex
of the graph during the search for the most influential ones. The experiments performed
in [Melo and Vignatti 2018] indicate that a natural greedy algorithm that chooses enough
high degree vertices gives a good preprocessing heuristic in graphs with power law degree
distribution.

Although combining the spread of influence with complex networks is a natural
way of studying the problem, we are not aware of other works dealing with the TSS
problem in complex networks. In this work, we present preprocessing rules to obtain a
partial optimal solution to the TARGET SET SELECTION problem. In the partial optimal
solution, we efficiently (in linear time) identify some vertices that certainly belong to an
optimal solution. Having a fraction of the graph solved optimally, obtaining a complete
solution depends only on solving the remaining part, i.e., the part of the graph where the
partial optimal solution was not obtained. The preprocessing has linear time complexity,
indicating that it is worth performing the preprocessing before any strategy chosen later.
In particular, due to the nature of the problem, it is of interest to evaluate the behavior
of these preprocessing rules in real-world graphs. It is well known that many real-world
graphs follow a power law degree distribution – such graphs are called power law graphs.
In this way, through experiments on power law graphs, we show that our preprocessing
rules obtain an optimal partial solution in a significant fraction of the graph, in some cases
the preprocessing is sufficient to completely solve the problem. As the problem is NP-
hard, an efficient way to solve it is not known. So the main advantage of our new approach

is to accelerate the solving process in general graphs whose structure takes advantage of
the use of the preprocessing rules, such as complex networks or, more specifically, power
law graphs.

The rest of the paper is organized as follows. Section 2 is devoted to define the
notation and the statement of the problem. In Section 3, we introduce the preprocessing
rules to reduce the instance of the problem. In Section 4, we present an experimental eval-
uation using real-world complex networks and synthetic random graphs and discussion of
our results. We conclude in Section 5.

2. Notation and definitions

For a directed graph G with vertices V (G) and edges (or arcs) E(G), consider the
following notation. Denote by N+(v) = {w : (v, w) ∈ E(G)} the out-neighborhood of
a vertex v. Similarly, N−(v) = {u : (u, v) ∈ E(G)} is the in-neighborhood of v. The
out-degree of v is the number δ+(v) = |N+(v)|, the in-degree of v is δ−(v) = |N−(v)|,
and δ(v) = δ+(v) + δ−(v) is the degree of v. We say that a vertex v with δ−(v) = 0 is
a source and, conversely, when δ+(v) = 0 we say that v is a sink. Also, v is a isolated
vertex when δ(v) = 0.

A directed graph H is a subgraph of G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). H
is an induced subgraph of G, if every arc (u, v) ∈ E(G) for which u, v ∈ V (H), is also
an arc of H . A directed graph G is called acyclic, or a DAG, if it has no directed cycles.

To represent how the influence spreads over a network, in this work, we
consider the well-known diffusion model called the threshold model, introduced by
[Granovetter 1978]. Unlike commonly used models like the linear threshold and inde-
pendent cascade models [Kempe et al. 2003], this model is deterministic. We are given
a directed graph G representing a social network, with vertices V (G) modeling the in-
dividuals and arcs E(G) representing the social relations between these individuals. Let
t : V (G) → N be a threshold function that models the “resistance” of an individual to
become influenced. Each vertex is in one of two states, active or inactive. Informally, a
vertex is active if it has been persuaded to adopt a new behavior (for instance, convinced
to buy a new product), and inactive otherwise. Next, we formally explain the activation
process. The process proceeds progressively, i.e., a vertex can change from inactive to ac-
tive but not from active to inactive. At the beginning, a subset S ⊆ V (G), the target set,
is active and all the vertices in V (G)\S are inactive. At each time step, an inactive vertex
can be activated by its neighbors. We assume that each vertex exerts the same influence
over each neighbor. So, a vertex v gets active if at least t(v) of its in-neighbors are active
at the previous step. More precisely, let At be the set of active vertices at the time step
t with S = A0. We have v ∈ At if |N−(v) ∩ At−1| ≥ t(v) or v ∈ S. The process runs
until there are no more vertices to be activated. When a vertex v becomes active at time t
because of its neighbors that are in At−1, we say that u exerts influence over v, for every
u ∈ N−(v) ∩ At−1.

A propagation graphG∗ is the subgraph of an input graphGwith V (G∗) = V (G),
induced by a subset E(G∗) ⊆ E(G) of arcs in which the influence is exerted, that is, for
every (u, v) ∈ E(G∗) where u exerts influence over v, at the end of the activation process.

The problem definition is as follows.

Problem 1 (Target Set Selection (TSS)). Given a directed graph G = (V,E) with thresh-
olds t(v) on each v ∈ V , find a set S ⊆ V of minimum size, such that the propagation
graph G∗ is acyclic with δ−(v) ≥ t(v) for every v ∈ V (G∗) \ S.

3. Preprocessing rules
In this section, we present preprocessing rules to find an optimal partial solution

to the TSS problem. As we intend to solve the problem on complex networks, the rules
are designed with the properties of these networks in mind. Observe that, in the TSS
problem, every vertex with no incoming edges certainly belongs to the optimal solution
because no other vertex can activate it. So, we can include these vertices in the partial
optimal solution. By the same reasoning, we can exclude from the optimal target set
those vertices with no outgoing edges. It is worth noting that in graphs with power law
degree distribution, these two types of vertices are the majority. Thus, we can exploit this
graph topology by processing the low degree vertices first.

Consider a directed graph G as an instance of TSS problem. Let S ⊆ V (G) be
the optimal target set and let A(S) be the set of active vertices at the end of the activation
process. We can set the partial optimal solution according to the following propositions.

Proposition 1. If δ−(v) = 0, then v ∈ S for all v ∈ V (G).

Proof. Suppose, by contradiction, that v /∈ S. By the activation process in the threshold
model, no vertex inA(S) activates v becauseN−(v) = ∅. Therefore, A(S) = V (G)\{v}
and S is not a solution of the problem, contradicting the hypothesis.

Similarly to the reasoning of Proposition 1, vertices with t(v) > δ−(v) must be in
the target set S. So for Proposition 2, we consider that t(v) ≤ δ−(v).

Proposition 2. If δ+(v) = 0, then v /∈ S for all v ∈ V (G).

Proof. Suppose, by contradiction, that v ∈ S and let S ′ = S \ {v}. By the problem
definition, A(S) = V (G). Since δ+(v) = 0, v cannot activate any other vertex of G, then
the set of vertices activated by S is not greater than the set of vertices activated by S ′,
i.e., A(S) ⊆ A(S ′). Furthermore, at the end of the activation process, every in-neighbor
of v is active, i.e., N−(v) ⊆ A(S ′). Thus, v has to be activated unanimously by N−(v).
Consequently, v ∈ A(S ′) and A(S ′) = V (G). This is a contradiction because S is a
minimum target set.

For disconnected graphs, isolated vertex must be selected as target set elements in
advance and each connected component can be treated as a separate graph in the formu-
lation.

From Propositions 1 e 2, we derive Algorithm 1. We start by creating a copying
graph G′ of the input graph G. The set S ⊆ V (G′) starts empty and will contain the
optimal partial target set (all vertices satisfying Proposition 1). The set D ⊆ V (G′) stores
the vertices to be removed from G′ during the algorithm execution. The propagation
graph G∗ starts with no arcs but containing all the vertices of G. In this algorithm, we
want to remove as many vertices as possible from G′, aiming to decrease the size of the

returned problem instance. The first part of the algorithm (lines 4-18) removes every
source, sink, and isolated vertices. The condition in lines 5-7 set the isolated vertices to
be in the partial solution S, and add them to the set D of vertices to be removed from
G′. Based on Proposition 1, lines 8-13 adds every v with no incoming arcs to the partial
optimal solution S, and further inserts the outgoing arcs of v to the propagation graph
G∗. This can be done because such arcs do not belong to any directed cycle since v is
a source vertex. As a consequence, we can decrease by one the threshold of each v′s
out-neighbor w in G′ meaning that v exerts influence over w. Lines 14-17 deals with the
case of Proposition 2, indicating that v is not in S if it has no outgoing arc. By the same
reasoning, the incoming arcs are set to be in partial optimal solution G∗ without risk of
generating cycles. In line 18, the vertices in D will be removed from G′ as well as the
incident arcs to each v ∈ D. More precisely, the graph obtained by deleting D from G′ is
the subgraph induced by V (G′) \D, denoted as G[V (G′) \D].

The iteration loop in lines 19-34 of Algorithm 1 proceeds by removing more ver-
tices of G′ according to the updated threshold t(v) of each v ∈ V (G′). The first condi-
tional considers that if t(v) ≤ 0 (due steps 12 and 27), then the incoming arcs that were
removed (and inserted in the propagation graph) in the early steps (or early iterations) are
enough to activate v, so we can exclude the remaining incoming arcs of v of the reduced
instance G′. This helps us to avoid cycles. Further, we also force the outgoing arcs of v to
be in the solution and decrease the threshold of out-neighbors of v. Again, in lines 29-32,
we repeat steps 14-17. We repeatedly remove vertices from G′ that enter the conditionals
until there are no more vertices to be removed.

Figure 1 presents an example of the algorithm execution in a small graph. The
labels in each vertex denote the name and the threshold. For instance, the vertex in the
upper left corner has the name a and threshold t(a) = 1. In the leftmost graph, the dashed
vertices and arcs are the sources and sinks to be removed in the first part of the algorithm,
lines 4-17. In the second graph, the sources and sinks were removed. Note that, due
the line 12, vertex f has threshold 0. So f is inserted in set D to be removed later.
Also, the arc (c, f) is excluded from the solution. The arc (c, f) can be excluded because
the threshold of f is 0 at this moment, meaning that the arc (g, f), which is already in
the solution, is enough to achieve the threshold of f and activate it. Furthermore, by
removing the arc (c, f), we are eliminating the cycle (c, f, d) of the solution. Vertex h
will be removed because of the condition in lines 29-32. That is, g can activate f , and as
a consequence, h can be activated by f , mimicking the diffusion process of the threshold
model. In the rightmost graph, the search stops because there is no vertex to be removed.
So, the reduced graph G′ is the remaining 2-cycle composed by vertices c and d.

Theorem 3 bounds the time complexity of Algorithm 1.

Theorem 3. For a directed graph G with |V (G)| = n and |E(G)| = m, Algorithm 1
takes O(m) time in the worst case.

Proof. At line 2, the time complexity for cloning the graph is O(m). Next, creating G∗

demands O(n) to copy the vertices of G. The loop in lines 4-17 visits every vertex once,
and for each vertex, it iterates through its set of neighbors, overall, this takes O(m). At
line 18, given a set of vertices marked for removal, each vertex must be removed along
with its incident edges. In the worst case, it takes O(m) time. Next, we argue that

Algorithm 1: PREPROCESSING

Input: Graph G, threshold function t : V (G)→ N
Output: Reduced graph G′, partial propagation graph G∗, and partial target

set S ⊆ V (G)
1 begin
2 G′ ← G; S ← ∅; D ← ∅
3 Create the graph G∗ such that V (G∗) = V (G) and E(G∗) = ∅
4 foreach v ∈ V (G′) do
5 if δ(v) = 0 then // isolated vertex
6 S ← S ∪ {v}
7 D ← D ∪ {v}
8 else if δ−(v) = 0 or t(v) > δ−(v) then // source vertex
9 S ← S ∪ {v}

10 foreach w ∈ N+(v) do
11 add arc (v, w) to propagation graph G∗

12 t(w)← t(w)− 1

13 D ← D ∪ {v}
14 else if δ+(v) = 0 then // sink vertex
15 foreach u ∈ N−(v) do
16 add arc (v, w) to propagation graph G∗

17 D ← D ∪ {v}

18 G′ ← G′[V (G′) \D] ; // remove vertices from G′

19 repeat
20 D ← ∅
21 foreach v ∈ V (G′) do
22 if t(v) ≤ 0 then
23 foreach u ∈ N−(v) do
24 remove arc (u, v) from G′

25 foreach w ∈ N+(v) do
26 add arc (v, w) to propagation graph G∗

27 t(w)← t(w)− 1

28 D ← D ∪ {v}
29 else if δ+(v) = 0 then // sink vertex
30 foreach u ∈ N−(v) do
31 add arc (v, w) to propagation graph G∗

32 D ← D ∪ {v}

33 G′ ← G′[V (G′) \D]

34 until D = ∅;// there are no vertices to be removed

d, 3

c, 2a, 1

 b, 1

g, 1

h, 1

f, 1 i, 1

d, 2

c, 1

h, 1

f, 0

d, 1

c, 1
X

Figure 1. Example of the algorithm execution.

the block in lines 19-34 takes O(m) time. Each vertex in V (G′) meets the conditionals
of lines 22 or 29 at most once because if it meets any of the conditionals, then it is
added to D, and immediately afterward it is removed from V (G′). For each vertex that
meets the conditionals, it iterates through its set of neighbors. Thus, overall, the time
spent is proportional to the sum of the degrees, i.e., O(m). However, the loop at line 21
must be carefully implemented, as if in every iteration of line 21, we go through all the
vertices, then we could end up with a quadratic time algorithm. We can overcome this
issue with a careful implementation, where we keep track of only those vertices that meet
the conditionals so that we do not iterate over unnecessary vertices. Finally, the analysis
of line 33 is similar to line 18, where the accumulated time over all iterations in the worst
case is O(m).

It is noteworthy to mention the fact stated in Theorem 4.

Theorem 4. If V (G′) = ∅ when the Algorithm 1 ends, then the propagation graph defined
by the arcs chosen in the algorithm is an optimal solution for the TSS problem.

Proof. As argued before, the vertices in S belong to an optimal target set. Besides, the
removed vertices are related to the activated vertices in the diffusion process, so removing
all the vertices of G′ means that the whole graph is activated. Therefore, we have an
optimal partial solution that activates all the vertices in the graph, i.e., the partial solution
is optimal, and S is an optimal target set.

3.1. Expected size of the solution on power law graphs

The success of Algorithm 1 depends on the topology of the input graph. For
example, it has no effect on strongly connected graphs and in graphs with no sources or
sinks. On the other hand, the algorithm can perform well in power law graphs, because in
this case, the majority of the vertices has low degree, with many having only one incoming
arc or one outgoing arc. Moreover, given a power law graph model, for example, P (α, β)
presented by [Aiello et al. 2001], it is easy to quantify the expected number of vertices
belonging to this category of low degree vertices. In real-world networks, the power law
exponent β is typically in the range 2 < β < 3 [Choromanski et al. 2013]. Thus, we
can quantify the expected decrease in the instance size after the preprocessing. On the
P (α, β) model, the number of vertices with degree 1 is eα, and |V | is (asymptotically)
eαζ(β), where ζ(β) is the Riemann zeta function. Therefore, the vertices of degree 1
correspond to 1

ζ(β)
of the total number of vertices. Assuming 2 < β < 3, from 60.7% to

83.1% of the vertices of the graph have degree 1. A vertex of degree 1 has either in-degree
or out-degree equal to zero, therefore, regardless of the case, it is always removed from
the original graph by Algorithm 1. In addition to the number of vertices with degree 1,
there are also vertices with degree greater than 1 which has no in-edges (or out-edges).
Therefore Algorithm 1 sets a huge fraction of vertices as belonging or not to the optimal
partial solution, significantly reducing the size of the instance. These properties have also
been empirically confirmed, as we show in Section 4.

4. Computational experiments
In this section, we proceed with the experimental evaluation. The experiments

were launched in an Intel(R) Core(TM) i5-3210M CPU @ 2.5GHz and 4 GB RAM. The
algorithms were implemented in Java 11 language. For graph manipulations, we use the
JGraphT 1.4 library [Michail et al. 2019].

4.1. Instance size reduction

To demonstrate the behavior of Algorithm 1 in reducing the size of the input graph,
we consider some real-world complex networks obtained from the Stanford Large Net-
work Dataset Collection [Leskovec and Krevl 2014]. Below, we give a brief description
of each considered network.

• Bitcoin-alpha: Who-trusts-whom network of people who trade using Bitcoin on a
platform called Bitcoin Alpha.
• Bitcoin-OTC: Who-trusts-whom network of people who trade using Bitcoin on a

platform called Bitcoin OTC.
• Wiki-vote: Contains all the Wikipedia voting data from the inception of Wikipedia

until January 2008.
• DBLP: Citation network of DBLP, a database of scientific publications such as

papers and books.
• Reddit: Network of subreddit-to-subreddit hyperlinks extracted from hyperlinks

in the body of the post.
• Epinions: A who-trust-whom online social network of a general consumer review

site Epinions.com.
• Slashdot09: Slashdot social network from February 2009.
• Email-EuAll: Email network of a large European Research Institution (between

October 2003 and March 2005).

To show the results in different scenarios, we consider three distinct thresh-
old functions, in line with the threshold scenarios considered in [Chen et al. 2009,
Ackerman et al. 2010]. First, the majority threshold is defined as t(v) =

⌈
δ−(v)

2

⌉
for

every v ∈ V . Second, the low threshold is t(v) =
⌈
δ−(v)

4

⌉
for every v ∈ V . Lastly, the

high thresholds are defined as t(v) =
⌈
3
4
δ−(v)

⌉
for every v ∈ V .

Table 1 shows the reduction of the instance size obtained after the preprocessing
in graphs representing real-world networks. For each graph, we present the number of
vertices (|V |) and arcs (|E|) in the original graph and the reduction after the preprocess-
ing on each considered scenario. Column “majority threshold” shows the absolute size
(number of vertices and edges) of the remaining graph together with the percentage of the

Table 1. Reduction in size of real social networks after preprocessing.

Network Original Reduction
Majority Threshold Low Threshold High Threshold

Bitcoin-alpha |V | 3,783 3,251 (14.1%) - -
|E| 24,186 23,333 (3.5%) - -

Bitcoin-OTC |V | 5,881 4,763 (19.0%) - -
|E| 35,592 33,640 (5.5%) - -

Wiki-vote |V | 7,115 0 (100%) - 81.9%
|E| 103,689 0 (100%) - 62.1%

DBLP |V | 12,591 2 (99.9%) - 99.5%
|E| 49,728 2 (99.9%) - 99.7%

Reddit |V | 35,776 9,854 (72.5%) 99.7% 67.0%
|E| 137,821 88,343 (35.9%) 99.9% 28.5%

Epinions |V | 75,888 32,088 (57.7%) 98.4% 54.3%
|E| 508,837 438,163 (13.9%) 99.7% 11.7%

Slashdot09 |V | 82,168 71,862 (12.5%) - 12.5%
|E| 870,161 842,217 (3.2%) - 3.2%

Email-EuAll |V | 265,214 56 (99.9%) - 88.5%
|E| 418,956 104 (99.9%) - 69.7%

reduction after applying the preprocessing rules. For example, in the Wiki-vote network,
we get a reduction of 100% in the size of both vertex and edge set and thus 0 remaining
vertices and edges. This means that we have the best possible case, i.e., in this example,
the problem is completely solved by our preprocessing strategy. The last two columns
contain the results for the low and high threshold scenarios, and we show the percentage
of the reduction. Dashed cells mean that the reduction is exactly the same as the first sce-
nario (majority threshold), this similarity happens because in most cases only the sources
and sinks were eliminated by the preprocessing rules. Note that, with low thresholds, the
gains are more expressive and, on the contrary, when the thresholds are high the reduction
is less noticeable.

Figure 2 shows the degree distribution, in logarithmic scale, of two differ-

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

N
u
m

b
e
r

o
f

v
e
rt

ic
e
s

Degree

(a) Straight shape.

 1

 10

 100

 1000

 10000

 1 10 100

N
u
m

b
e
r

o
f

v
e
rt

ic
e
s

Degree

(b) Curved shape.

Figure 2. Degree distribution in logarithmic scale of real world networks.

ent real-world networks, Epinions, in Figure 2a, and HEP-PH (citation graph of
High Energy Physics Phenomenology [Leskovec and Krevl 2014]), in Figure 2b. The
straight-line shape in Figure 2a indicates that the network is a power law graph
[Mitzenmacher and Upfal 2005, Clauset et al. 2009], while a curved shape says that it
is not a power law. In our experiments of Table 1 we only use networks that are power
law. However, we note that many real networks present a “curved” degree distribution as
in Figure 2b. For such cases, we also experimentally observed a substantial reduction in
the size of the graph. We believe that this good behavior is because there are even more
vertices of a low degree than in the case with a straight degree distribution.

4.2. Scalability

Motivated by the large sizes of real-world networks, it is necessary to understand
the execution time behavior of the algorithm as the size of the network increases, i.e., the
scalability of the algorithm. To experiment with networks of varying sizes, we use syn-
thetic graph models for power law graphs. More specifically, among the various models
of random power law graphs, we choose the Bollobás model [Bollobás et al. 2003], as it
is tailor-made to generate power law directed graphs. In this model, the graph grows one
edge per step, according to the probabilities a, b and c, where a+ b+ c = 1. Here, we set
these values as a = b = 0.33, and c = 0.34. Were generated ten graphs of each size and
considered the average running time.

Figure 3 illustrates how is the growth curve of the running time of Algorithm 1.
The size of power law graphs ranges from 1,000 up to 50,000 vertices. The running time
is the average between 10 generated graphs for each size. The line in the plot is not
smoothed or straight in shape due to the precision of milliseconds, but it has a pattern that
suggests linear growth. So Figure 3 empirically confirms the result stated theoretically in
Theorem 3, that is, the increasing of the running time of PREPROCESSING is linear in the
size of the input graph.

Taking advantage of the fact that we did experiments on synthetic graphs, it is
worth mentioning the performance of our algorithm concerning the reduction in the size
of the instance. In such a case, for 500 generated graphs, more than 99% were solved
by the PREPROCESSING. Only 0.02% resulted in a not empty reduced graph G′, even in
this case, the resulting graph G′ is a cycle of size 2 or 3, which is trivial to solve. This
happens mainly because our strategy naturally behaves better in sparse graphs, and the
random graphs generated by the model of [Bollobás et al. 2003] are usually very sparse.
However, it is worth analyzing whether other models of power law graphs maintain this
behavior.

5. Conclusion

Based on graph properties that commonly appear in complex networks, we pre-
sented a strategy that provides a notable reduction of the TSS problem search space. De-
spite the simplicity, the experiments indicate that our strategy provides tractability to the
problem in power law graphs. In addition, this idea can be combined with sophisticated
techniques and algorithms, in order to gain scalability. With the objective of refining this
technique to achieve better results, there are some future directions. First, combine our
preprocessing rules with other techniques with similar proposes, aiming to preprocess

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
(s

ec
o

n
d

s)

Size of graphs

Preprocessing

Figure 3. Order of growth of the running time of the PREPROCESSING algorithm.

more general graphs besides power law. Furthermore, incorporate these techniques into
a linear programming based branch-and-bound framework together with lower and upper
bounds, in order to accelerate the solving time in such techniques.

References

Ackerman, E., Ben-Zwi, O., and Wolfovitz, G. (2010). Combinatorial model and bounds
for target set selection. Theoretical Computer Science, 411(44-46):4017–4022.

Aiello, W., Chung, F., and Lu, L. (2001). A random graph model for power law graphs.
Experimental Mathematics, 10(1):53–66.

Bollobás, B., Borgs, C., Chayes, J., and Riordan, O. (2003). Directed scale-free graphs. In
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 132–139. Society for Industrial and Applied Mathematics.

Chen, N. (2009). On the approximability of influence in social networks. SIAM Journal
on Discrete Mathematics, 23(3):1400–1415.

Chen, W., Wang, C., and Wang, Y. (2010a). Scalable influence maximization for preva-
lent viral marketing in large-scale social networks. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
1029–1038. ACM.

Chen, W., Wang, Y., and Yang, S. (2009). Efficient influence maximization in social net-
works. In Proceedings of the 15th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 199–208. ACM.

Chen, W., Yuan, Y., and Zhang, L. (2010b). Scalable influence maximization in social
networks under the linear threshold model. In Data Mining (ICDM), 2010 IEEE 10th
International Conference on, pages 88–97. IEEE.

Choromanski, K., Matuszak, M., and Miekisz, J. (2013). Scale-free graph with preferen-
tial attachment and evolving internal vertex structure. J Stat Phys, 151:1782–1789.

Clauset, A., Shalizi, C. R., and Newman, M. E. (2009). Power-law distributions in empir-
ical data. SIAM review, 51(4):661–703.

Domingos, P. and Richardson, M. (2001). Mining the network value of customers. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 57–66. ACM.

Goyal, A., Bonchi, F., and Lakshmanan, L. V. (2011a). A data-based approach to social
influence maximization. Proceedings of the VLDB Endowment, 5(1):73–84.

Goyal, A., Lu, W., and Lakshmanan, L. V. (2011b). Simpath: An efficient algorithm for
influence maximization under the linear threshold model. In Data Mining (ICDM),
2011 IEEE 11th International Conference on, pages 211–220. IEEE.

Granovetter, M. (1978). Threshold models of collective behavior. American journal of
sociology, pages 1420–1443.

Kempe, D., Kleinberg, J., and Tardos, É. (2003). Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 137–146. ACM.

Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset col-
lection. http://snap.stanford.edu/data.

Liu, X., Li, S., Liao, X., Peng, S., Wang, L., and Kong, Z. (2014). Know by a handful the
whole sack: efficient sampling for top-k influential user identification in large graphs.
World Wide Web, 17(4):627.

Melo, R. S. and Vignatti, A. L. (2018). A preselection algorithm for the influence max-
imization problem in power law graphs. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, pages 1782–1789. ACM.

Michail, D., Kinable, J., Naveh, B., and Sichi, J. V. (2019). Jgrapht–a java library for
graph data structures and algorithms. arXiv preprint arXiv:1904.08355.

Mitzenmacher, M. and Upfal, E. (2005). Probability and computing: Randomized algo-
rithms and probabilistic analysis. Cambridge University Press.

Tang, Y., Xiao, X., and Shi, Y. (2014). Influence maximization: Near-optimal time com-
plexity meets practical efficiency. In Proceedings of the 2014 ACM SIGMOD interna-
tional conference on Management of data, pages 75–86. ACM.

Wang, F., Du, H., Camacho, E., Xu, K., Lee, W., Shi, Y., and Shan, S. (2011). On
positive influence dominating sets in social networks. Theoretical Computer Science,
412(3):265–269.

Zhang, W., Wu, W., Wang, F., and Xu, K. (2012). Positive influence dominating sets in
power-law graphs. Social Network Analysis and Mining, 2(1):31–37.

