
Tighter Dual Bounds on the Least Cost Influence Problem

Renato Silva de Melo
Federal University of Paraná

Informatics Department, Polithecnique Center
rsmelo@inf.ufpr.br

Andre Luı́s Vignatti
Federal University of Paraná

Informatics Department, Polithecnique Center
vignatti@inf.ufpr.br

Flávio Keidi Miyazawa
State University of Campinas

Institute of Computing
fkm@ic.unicamp.br

Matheus Jun Ota
State University of Campinas

Institute of Computing
matheus.ota@students.ic.unicamp.br

ABSTRACT
The Least Cost Influence Problem is a combinatorial problem that is usually described

in the context of social networks. The objective is to give incentives to a set of individuals in the
network, such that some information is spread at minimum cost. We provide an efficient algorithm
to get lower bounds in a branch-and-bound scheme, and use these in a Branch-and-Cut method.
Computational results show the benefit of using our proposed bounds.

KEYWORDS. Integer Programming. Social Networks. Diffusion of information.

PAPER TOPICS. Combinatorial Optimization. Mathematical Programming.

1. Introduction
In the context of diffusion of information in social networks, early studies on sociol-

ogy [Rogers, 2010] observes that an information spread through a social system like a contagious
process, starting with a small group and spreading to other individuals in the system through the
interrelation between them. One relevant problem that emerges from this background consists in
identify a good set of individuals to target, the early adopters, and hope that the chosen individuals
are able to persuade their friends into adopt a new behavior, who in turn also influence friends of
friends by generating a chain of adoption. In applications like viral marketing, for example, the
early adopters can be influenced by receiving products for free or by getting discounts for buying a
new product.

Kempe et al. [2003] were among the first ones to study this problem from the discrete op-
timization perspective. They considered a maximization version, called INFLUENCE MAXIMIZA-
TION PROBLEM, where the goal is to find a set of fixed size, such that the expected influence of such
set is the largest possible. They show that this problem is NP-hard in stochastic diffusion models
and propose an (1 − 1

e)-approximate greedy algorithm. To get this approximation guarantee they
have shown that the influence function in randomized settings is submodular and monotone. Such
approximation ratio was originally proved by Nemhauser et al. [1978] and holds for every maxi-
mization function which is submodular and monotone. Furthermore, computing the exact expected
influence of a given set of individuals is a #P-hard problem [Chen et al., 2010a,b].

Chen [2009] studied the minimization related version which seeks for a target set of min-
imum size ensuring that a fixed fraction of the network will be activated. In the literature, this
problem is referred to as the TARGET SET SELECTION (TSS) problem. Besides being NP-hard to
solve, this problem is also hard to approximate. Chen [2009] proved that TSS cannot be approx-
imated within a poly-logarithmic ratio. Even if explicitly deterministic thresholds are given, the
problem is NP-hard to approximate within a ratio of n1−ε, for every ε > 0 [Kempe et al., 2003;
Chen, 2009]. This problem becomes tractable in some restricted class of graphs, for example, if the
underlying graph is a tree [Chen, 2009], a block-cactus graph [Chiang et al., 2013], or a bounded
treewidth graph [Ben-Zwi et al., 2011], then the problem can be solved in linear time.

In this work we investigate an extension of the TSS problem called LEAST COST INFLU-
ENCE PROBLEM (LCIP). Rather than searching for a set where the propagation starts, this problem
consists in offering incentives to the individuals in such a way that it will trigger a cascade that
spreads to a given fraction of the network. Demaine et al. [2014] observe that the LCIP is a gen-
eralization of the TSS problem, so from a theoretical point of view, LCIP has at least the same
complexity as the TSS problem. Günneç et al. [2016] focused on mathematical programming mod-
els for LCIP and describes algorithms for the problem on trees. Fischetti et al. [2018] introduce
a generalization of the LCIP and introduce the concept of activation functions which is an exten-
sion of the commonly used threshold functions. Also, they propose a mathematical heuristic using
column generation.

1.1. Contributions
While previous works provided relevant exact solutions [Ackerman et al., 2010; Günneç

et al., 2016; Fischetti et al., 2018] and heuristic algorithms that can be used as upper bounds for
this problem [Kempe et al., 2003; Chen et al., 2009; Cordasco et al., 2015; Demaine et al., 2014],
nothing beyond the standard LP-relaxation was proposed to compute lower bounds on the LCIP.

We derive a problem-dependent relaxation algorithm based on the observation that the
influence propagation network is a directed acyclic graph (DAG). The proposed algorithm exploits
connectivity properties of graphs to obtain a lower bound for the problem. Furthermore, we prove

that the algorithm is correct, and show experimentally that our lower bounds are tighter than the
linear programming relaxation, providing smaller optimality gaps. To the best of our knowledge,
there are no works on combinatorial lower bounds for this problem. The main objective of our
relaxation is for fathoming in a branch-and-bound algorithm and helping reduce the computational
effort to obtain exact solutions.

The rest of this paper is organized as follows. Section 2 contains a brief overview about the
diffusion process in social networks and the problem definition. Section 3 is devoted to describe the
mathematical programming formulation of the problem and the exact method to solve it. In Section
4, we propose an algorithm to find lower bounds on the problem. Computational experiments are
presented in Section 5. We conclude the paper in Section 6.

2. Problem definition
Let G be a directed graph that models a social network, where the vertex set V (G) repre-

sents individuals and the arc set E(G) corresponds to the relationships between these individuals.
When the context is explicit, we denote the vertex set and arc set by V and E, respectively. Each
arc (i, j) ∈ E has an associated weight dij > 0 that models the strength of the influence of i over j.

To model the diffusion of influence between the individuals in a social network, we con-
sider a well-known model called threshold model, presented by Granovetter [1978]. In this model,
we say that a vertex i is active when it was persuaded to adopt a new behavior and inactive, other-
wise. Every i ∈ V has a threshold ti > 0 which indicates the amount of influence needed to activate
i, coming from i’s neighbors. The activation process is progressive, i.e., each vertex can be active
or inactive and a vertex can change from inactive to active, but not the other way around. Initially,
a subset A0 ⊆ V is chosen to be active. Then, the vertices in A0 send influence to their inactive
neighbors. These neighbors might become active in the next iteration and give rise to a new set
A1 ⊆ V of active vertices. This process is repeated until no vertex can be activated. Let {Aτ}kτ=0

be the sequence of obtained active vertices during the diffusion process, where Ak is the first set in
the sequence that cannot activate any other vertex in the graph. We say that any vertex i ∈ Ak \A0

has been influenced by A0.
Also, we consider the offer of external influences. These influences, which we call incen-

tives, aim to break the resistance of an individual in becoming influenced in the activation process.
The incentives are represented by a vector y ∈ Z|V |, where each coordinate yi ∈ N0 denotes the
amount of incentive given to a vertex i ∈ V . Applying the incentive yi on a vertex i decrease its
threshold ti and make it more susceptible to be activated. This incentive is added with the influ-
ence coming from the other vertices. More formally, the initial set of active vertices is given by
A0 = {i ∈ V : yi ≥ ti}. The vertices in A0 begin the process as active and all the others as
inactive. Time progresses in discrete steps τ = 0, 1, . . . , k, an inactive vertex i becomes active at
time τ if the total influence of its active in-neighbors plus its incentive exceeds the threshold ti, i.e.,
if ∑

j∈Ni∩Aτ−1

dji ≥ ti − yi,

where Ni denotes the set of in-neighbors of i.
The problem consists in offering incentives to the vertices in a way that it will trigger a

cascade of influence that spreads to a given fraction α of the network. The goal is to minimize the
total of incentives given to the individuals of the social network. The definition is given below.

Problem 1 (LEAST COST INFLUENCE PROBLEM (LCIP)). We are given a real number α ∈ [0, 1],
a directed graph G with weights dij on each arc (i, j) ∈ E, and a threshold ti, for each vertex

i ∈ V . The goal is to find a vector y of incentives which minimizes the sum
∑

i∈V yi, ensuring that
at least dα|V |e vertices are activated by the end of the activation process.

In the remainder of this text we will refer explicitly to the graph associated with a solution
y, thus we introduce the following notation. For time steps τ = 0, 1, . . . , k − 1, let Eτ = {(i, j) ∈
E : i ∈ Aτ , j ∈ Aτ+1 \ Aτ}, be the set of arcs in which the influence was exerted at time τ .
Construct then the set E∗ =

⋃k−1
τ=0Eτ . We say that the propagation graph G∗ = (Ak, E

∗) is the
graph induced by the solution y. Note that the propagation graph must be acyclic, the intuition
behind this fact is that a vertex should not be able to transmit influence to itself.
3. Integer linear programming formulation

There are different integer linear programming (ILP) formulations that model the propa-
gation using variables on the arcs [Ackerman et al., 2010; Günneç et al., 2016; Raghavan e Zhang,
2015]. The following formulation is a special case of the model proposed by Fischetti et al. [2018].
For each vertex i ∈ V , let xi be a binary variable that indicates whether i is active at the end of
the diffusion process. Similarly, for each arc (i, j) ∈ E, let zij be a binary variable that indicates
whether i exerts influence over j. As mentioned previously, the integer variable yi is the amount of
incentive to be paid to a vertex i ∈ V .

min
∑
i∈V

yi

s.t.
∑
i∈Nj

zijdij ≥ tjxj − yj ∀j ∈ V, (1)

∑
(i,j)∈C

zij ≤
∑

i∈V (C)\{k}

xi ∀k ∈ V (C), cycle C ⊆ E, (2)

zij ≤ xi ∀(i, j) ∈ E, (j, i) /∈ E, (3)∑
i∈V

xi ≥ dα|V |e, (4)

xi ∈ {0, 1} ∀i ∈ V, (5)

yi ∈ N0 ∀i ∈ V, (6)

zij ∈ {0, 1} ∀(i, j) ∈ E. (7)

The objective function minimizes the total amount of incentives offered. Constraints (1)
models the condition that a vertex i ∈ V gets active only when the total of influence received from
its active neighbors plus its incentive is greater than or equal to its threshold. The cycle elimination
constraints in (2) generalizes the classic cycle elimination from Grötschel et al. [1985], and impose
that the propagation graph of a solution must be acyclic. Meaning that the number of chosen arcs
in a cycle C cannot be greater than the number of active vertices in V (C) \ {k}, where V (C) is the
set of vertices in the cycle. Constraints (3) ensures that an arc (i, j) can be chosen only if vertex i is
activated. Note that if there is an arc (j, i) the cycle of size two is eliminated by constraints of type
(2). Therefore, these constraints are needed only when (i, j) is not in a 2-cycle. Finally, constraints
(4) impose that, by the end of the diffusion process, the number of active vertices is at least dα|V |e.

Due to the number of possible cycles in the graph G, the number of constraints in (2)
grows exponentially. The standard exact procedure for solving integer linear programs with an
exponential number of constraints is the branch-and-cut method, which is a combination of LP-
based branch-and-bound and constraint generation techniques. To generate the cycle elimination

constraints, we need to solve the separation problem for the inequalities in (2). In our approach, we
implement the separation procedure proposed by Grötschel et al. [1985]. In short, the procedure
adapts a shortest path algorithm to find a cycle that violates the cycle elimination constraints.

Since we are looking for the optimality conditions that will provide stopping criteria, an
important method is to find lower (dual) bound z ≤ z and an upper (primal) bound z̄ ≥ z such that
z = z = z̄, where z is the optimum value for the objective function of our problem. Every feasible
solution provides an upper bound, while for dual bounds the most common approach is by relaxing
the integrality constraints of the original problem. Our combinatorial relaxation can be used at each
node of the branch-and-bound tree to obtain lower bounds.

4. Lower bound algorithm
Consider the following aspects of the LCIP.

(i) For any solution, at least one vertex needs to be paid the whole threshold value. This follows
from the fact that for any solution y, the associated propagation graph is a DAG, which means
that it has at least one vertex with no incoming arcs (source), i.e. Nv = ∅.

(ii) In the best possible case, the vertices chosen to receive the total incentive have the minimum
threshold, meaning that they need less incentive.

We introduce a combinatorial algorithm to obtain a dual (lower) bound for this problem.
The idea consists in using connectivity properties of a sub-graph of the input graph at each node of
the branch-and-bound tree. The recursive decomposition of a problem into sub-problems generate
a decision tree where its root corresponds to the original problem and each node corresponds to
a smaller sub-problem. A natural branching rule in a branch-and-bound algorithm is by variable
fixing. In the case of the formulation (1)-(7), we can fix the values of the binary variables x and z.
Suppose a binary variable, say zij , is selected to be the branching variable. Then two sub-problems
are generated by fixing zij = 0 in one branch and zij = 1 in the other. We observe that fixing
some arc variables zij (or vertex variables xi) at zero means that theses arcs (or vertices) were not
chosen, and this can disconnect the sub-graph related to that node of the decision tree. We are
interested in using this information to increase the lower bound of each sub-problem, during the
branch-and-bound algorithm.

Our algorithm uses the concept of a Condensed Component Graph.

Definition 1 (Condensed Component Graph). A condensed component graphH of a directed graph
G is obtained by contracting the strongly connected components (s.c.c.) of G. More formally, each
v ∈ V (H) is associated to a distinct s.c.c. Cv of G and there is an arc (u, v) ∈ E(H) if and only if
there exists an arc from a vertex i ∈ V (Cu) to a vertex j ∈ V (Cv), where Cu and Cv are the s.c.c.’s
associated with u and v, respectively.

At each node of the branch-and-bound tree, a different sub-graph G′ of the input graph
G is considered. The graph G′ is obtained from G by removing the arcs and vertices which were
fixed at zero by the decision tree. That is, V (G′) = V (G) \ {i ∈ V (G) : xi is fixed in zero} and
E(G′) = E(G)\{(i, j) ∈ E(G) : zij is fixed in zero}, at the current node of the branch-and-bound
tree.

Let H be the condensed component graph of G′. From now on, the graph H we consider
has the arc weights and vertex thresholds defined as follows. Consider Cu and Cv be the s.c.c.’s
associated to u, v ∈ V (H) and Euv = {(i, j) ∈ E(G′) : i ∈ V (Cu) and j ∈ V (Cv)}. We set the

Cw

Cu

1

b, 1

2a, 1

g, 1 h, 3

d, 2

c, 2

e, 2

f, 3

1

u, 1

w, 1

1 v, 2

4

1

2

Cv

Figure 1: Example of a condensed component graph. The original graph is on the left, and the condensed
component graph is on the right.

weight of each arc (u, v) ∈ E(H) to be the sum of all arc weights that go from Cu to Cv, that is,
duv =

∑
(i,j)∈Euv

dij . Furthermore, for each vertex v ∈ V (H) we set tv = min
i∈V (Cv)

{ti}.

Figure 1 presents an example for the condensed component graph of a small graph. The
labels in each vertex of the figure denote the name and the threshold respectively. For instance,
the vertex in upper left corner has name a and threshold ta = 1. In the leftmost graph, there
are three strongly connected components Cu, Cw and Cv. For the sake of simplicity, we only
show the arcs weights between different components. In the second graph, we have the condensed
component graph with the new thresholds and weights on arcs. For instance, the arc (u, v) has
weight duv = dad + dcf = 4 and the vertex v has threshold tv = min{2, 2, 3}.

The algorithm follows:

Algorithm 1 LCIP - Combinatorial Lower Bound Algorithm
1: procedure LCIPLOWERBOUND(G′, d, t, α)
2: if G′ is strongly connected or α < 1 then
3: return w = min

i∈V (G′)
{ti}.

4: else
5: Let H be the condensed component graph of G′.
6: return w =

∑
v∈V (H)

max{0, tv −
∑
u∈Nv

duv} . optimum value of LCIP on H

When α = 0 the problem is trivial, then our algorithm does not address this case.
Let wLP be the lower bound obtained at the current node of the branch-and-bound tree by

standard LP-relaxation, and let w be the lower bound obtained by the procedure described above.
When updating the lower bound w at the current node, we simply do w = max{wLP , w}.

We need to compute the total cost for activating all the vertices in the graph H (step (6) of
Algorithm 1), as a sub-problem. As H is a condensed component graph of G′, then H is directed
and acyclic. Therefore, we generalized the algorithm proposed by Günneç et al. [2016] to get the
exact solution of LCIP in DAGs, as Theorem 1 states.

Theorem 1. If α = 1 and the graph H is a DAG, step (6) of Algorithm 1 gives an exact solution
for the LCIP on H .

Proof. As α = 1, every v ∈ V (H) is active in an exact solution, in particular, each u ∈ Nv

is active. Thus, every incoming arc (u, v) ∈ E(H) of v can be selected (constraints 3), because
there are no cycles in H restricting such selection (constraints 2). Therefore, v receives

∑
u∈Nv

duv of

influence. If
∑
u∈Nv

duv > tv then the influence coming from neighbors is enough to activate v and

yv is kept at the minimum, i.e., yv = 0. Otherwise, the minimum influence needed to activate v is
yv = tv −

∑
u∈Nv

duv.

Due to the construction of the auxiliary structures for the relaxation, we state that the
solution of the LCIP in the condensed graph is a lower bound for the problem in G′. As a result, we
prove the correctness of our combinatorial relaxation.

Lemma 2. When α = 1, for a not strongly connected sub-graph G′ of G and a condensed compo-
nent graph H of G′, the cost of an optimal solution of the LCIP on H is a lower bound for the cost
of an optimal solution of the problem in G′.

Proof. W.l.o.g., we prove the result for each s.c.c of G′, together with its associated vertex on H .
Let v be the vertex of V (H) associated with the s.c.c. Cv of G′. Let i∗ ∈ V (Cv) be a vertex where
ti∗ = min

i∈V (Cv)
ti. The condensed component graph H is acyclic by Definition 1. So, we need to

consider two cases, depending if a vertex of H is a source vertex or not.
If v is a source vertex of H , then it has no incoming neighbors, and we are obligated to

pay the total threshold to activate it, i.e., pay yv = tv. By the construction of H , we have that
tv = ti∗ , then we are paying the minimum incentive needed to activate the whole s.c.c. Cv in G′.
Therefore, yv is a lower bound on the value of the solution for the s.c.c. Cv.

On the other hand, if v is not a source vertex, then let dv =
∑

(u,v)∈E(H)

duv be the maximum

possible influence that can arrive in v, meaning that all v’s in-neighbors are active. So, yv = tv−dv
is the minimum incentive needed to activate v. We need to prove that yv is also a lower bound for
the associated s.c.c. Cv in G′.

At this point, it is important to remember that the propagation graph ofG′ must be acyclic.
This means that for each Cv at least one vertex needs to receive only external influence. From the
point of view of the graph G′, the maximum external influence dv can reach the s.c.c Cv through
several edges. However, there are two cases: (a) dv arrives uniquely in vertex i∗ and (b) dv do
not arrives uniquely in i∗. In case (a), i∗ receives dv of influence. Thus, paying yi∗ = ti∗ − dv
is sufficient to activate i∗. As tv = ti∗ , then yv = yi∗ . So yv is a lower bound to activate the
cheapest vertex in Cv, and therefore is a lower bound on the value of the solution for the s.c.c. Cv.
In case (b), the external influence that arrives in i∗ is less than dv, because the arcs arriving in Cv
are distributed between more than one vertex. So, paying yi∗ = ti∗ − dv is not enough to activate
i∗, i.e. yi∗ = ti∗ − dv is a lower bound in the activation cost of i∗. As yv = yi∗ , then yv is a lower
bound in the activation cost of Cv.

Finally, let y∗v be the optimum incentive given to each v ∈ V (H). We have∑
v∈V (H)

y∗v =
∑
Cv∈G′

yi∗ ≤
∑

i∈V (G′)

yi,

where yi is the optimum for each i ∈ V (G′). In words, for each v ∈ V (H), the value yv, as set by
the algorithm, is a lower bound on the solution value for each associated s.c.c. Cv, and therefore
they are a lower bound to the solution of G.

Theorem 3. The solution obtained by the algorithm is a lower bound for the LEAST COST INFLU-
ENCE PROBLEM in the sub-graph G′.

Proof. When G′ is strongly connected, the result is direct by the first observation in this section.
The case in which G′ is not strongly connected and α = 1 (step 2 of the algorithm) holds by
Lemma 2.

5. Computational Experiments
Our computational experiments were obtained with the branch-cut-and-price framework

SCIP 6.0 running in an Intel Core i5-3210M 2.50GHz with 4GB of RAM, using Gurobi Optimizer
8.1 as the underlying LP-solver and the algorithms were implemented in C++. The test set is
composed by synthetic random directed graphs and by real networks.

5.1. Synthetic graphs
As in [Fischetti et al., 2018; Günneç et al., 2016], we use the generative model proposed

by Watts e Strogatz [1998] for small world random graphs. The rewiring probability parameter for
the small world graph is fixed in β = 0.3. The influence weights on the arcs are chosen uniformly at
random from {1, ..., 10}. Let N(µ, σ) be a normally-distributed random variable. For every i ∈ V ,

we set ti = max{1,min{N(µ, σ), di}}, where di =
∑

(j,i)∈E
dji, µ = 0.7di and σ =

di
|Ni|

. We

restrict the experiments with synthetic graphs for α = 1.

Table 1: Experiments comparing the branch-and-cut with and without the proposed lower bound.
Graph Algorithm Time(s) Nodes Dual bound Primal bound Gap

50-4
BC 377.30 81,960.4 51.70 51.70 0.00
BC+ 344.37 55,987.8 51.70 51.70 0.00

50-8
BC - 37,535.2 2.91 846.25 ∞
BC+ - 39,053.4 162.60 983.55 6.07

75-4
BC 1,094.52 116,853.4 61.93 81.75 0.54
BC+ 875.57 77,507.6 76.66 90.20 0.38

75-8
BC - 12,479.8 9.48 2,529.55 ∞
BC+ - 13,792.0 129.80 2,465.55 20.74

75-12
BC - 2,895.6 0.00 3,622.80 ∞
BC+ - 2,768.6 376.25 3,631.10 9.70

100-4
BC - 93,452.5 48.14 231.56 4.17
BC+ - 89,074.0 68.89 223.00 3.13

100-8
BC - 6,295.2 3.29 3,279.40 ∞
BC+ - 5,410.0 114.95 3,234.40 34.78

100-12
BC - 1,713.2 0.00 5,890.90 ∞
BC+ - 1,941.8 396.30 5,830.75 14.31

100-16
BC - 280.4 0.00 8,301.75 ∞
BC+ - 234.0 727.35 8,393.90 10.58

Table 1 summarizes the difference in performance when we apply the lower bound in the
branch-and-cut. Each value on the table is the average of 5 executions, each execution generates
a new graph of a given size and average degree. In the first column are the name of instances in
format n-deg where n is the number of vertices and deg is the average degree. In the other columns,
BC means the branch-and-cut algorithm using only the LP-relaxation, and BC+ means we are using
our combinatorial relaxation to get the lower bound. Next, we present the time in seconds for those
that finished before the time limit. The time limit for these instances is set to 1800 seconds. Then
we have the number of explored nodes in the branch-and-bound tree. In the last column we have
the relative gap between the dual and primal bounds. We marked in bold face the results that were
better. E.g., in the instance “50-4” our method (BC+) required less running time and nodes to find
the optimum. See that the dual bound in BC+ was better than BC in all cases, implying smaller
gaps for the cases that reached the time limit. Dashed cells in the column “Time” means that the
running time reached the time limit. The symbol∞ in the column “Gap” means the gap is infinity
or very large. The gap is computed as follows: let l be the dual bound and u be the primal bound.
We set the gap to∞ if l ≤ 0. Otherwise, the gap is (u− l)/l. Recall that the values in Table 1 are
averages, so the gaps in the table are the average gaps.

5.2. Real world networks
To demonstrate the effects of apply the lower bound algorithm on real data, we also per-

formed experiments with real world social networks. The datasets we use are part of the Koblenz
Network Collection [Kunegis, 2013], human social network category. A short description of each
social network used here is shown below.

• Wiki-vote: Wikipedia who-votes-on-whom network. Contains voting data from the inception
of Wikipedia until January 2008. Vertices in the network represent users and a directed edge
from vertex i to vertex j represents that user i voted on user j. This network was obtained
from Network Repository [Rossi e Ahmed, 2015].

• Adolescent health: in this network each student lists his/her five best female and five best
male friends. A vertex i represents a student and a directed edge (i, j) between two students
shows that the student i chose the student j as a friend. Higher edge weights indicate more
interactions.

• High school: contains friendships between boys in a small high school in Illinois. A vertex i
represents a boy and an directed edge between two boys shows that boy i chose the boy j as
a friend. The edge weights show how often that happened.

• Physicians: this network captures innovation spread among physicians in Illinois, Peoria,
Bloomington, Quincy and Galesburg. A vertex i represents a physician and an edge (i, j)
between two physicians means that physician i told physician j is his friend or that i comes
to j if he needs advice. Edges are weightless.

• Residence hall: contains friendship ratings between residents living at a residence hall located
on the Australian National University campus. The friendships (edges) are weighted from
strongest to weakest tie from 5 to 1. As higher the weight the closer the individuals are.

The weights on the arcs are the original weights of the networks. On graphs with no arcs
weights, we set the weights to 1. Lastly, the threshold ti, for each vertex i, are defined in the same
way as in the synthetic graphs (see Section 5.1).

Table 2 summarizes the results for the real world social networks. For each network, n
is the number of vertices and m is the number of arcs. Dashed cells means that the running time
reached the time limit. Here, the time limit is set to 3600 seconds. Note that for this type of graph
there is small benefit in applying the dual bound algorithm, i.e., the performance of the branch and
cut is almost the same whether using the lower bound or not. We believe this happens because real
world social networks are usually sparse, thus few arc variables (zij in formulation (1)-(7)) are fixed
in 0 in the branch and bound tree. Also, when α = 1, all the vertex variables (xi in formulation
(1)-(7)) are fixed in 1. In this way, there are few changes in the structures of the subgraphs obtained
from the branches. However, for the same instances there is a notable difference when we vary the
value of α. For α = .5 and α = .1, our algorithm achieves better gaps in all the networks tested,
see Tables 3 and 4. Observe that, in some cases, the number of nodes generated in the branch and
bound tree (column “Nodes”) is smaller when we do not use the lower bound, but even so the gap
is improved because of the dual bound.

Table 2: Experiments on real world based social networks for α = 1.
Network n m Alg. Time Nodes Dual bound Primal bound Gap

High School 70 366
BC 3.48 143 18 18 0
BC+ 3.45 143 18 18 0

Residence 217 2,672
BC - 13,582 18 24 0.33
BC+ - 13,927 18 24 0.33

Physicians 241 1,098
BC - 189,931 137 153 0.12
BC+ - 186,594 137 153 0.12

Wiki-vote 889 2,914
BC 0.26 1 3,834 3,834 0
BC+ 0.26 1 3,834 3,834 0

Adolescent 2,539 12,969
BC - 38 656 ∞ ∞
BC+ - 38 656 ∞ ∞

Table 3: Experiments on real world based social networks for α = 0.5.
Network n m Alg. Time Nodes Dual bound Primal bound Gap

High School 70 366
BC - 1,723 0.40 15 36.01
BC+ - 2,115 3 15 4

Residence 217 2,672
BC - 15,020 0 234 ∞
BC+ - 13,298 6 234 38

Physicians 241 1,098
BC - 26,495 10.68 103.5 8.68
BC+ - 34,815 26.59 99 2.72

Wiki-vote 889 2,914
BC 934.72 10,764 273 273 0
BC+ 970.05 10,764 273 273 0

Adolescent 2,539 12,969
BC - 9 0 2,929.5 ∞
BC+ - 8 5.25 2,929.5 557

6. Conclusion
We proposed and analyzed an algorithm to compute a lower bound for LCIP based on

particular properties of the problem. The experiments presented achieved better results on solving
the problem. Our results show that the subject should be approached carefully, and we envision
some space for improvements. For example, in dense graphs, we predict that bounds behave better

Table 4: Experiments on real world based social networks for α = 0.1.
Network n m Alg. Time Nodes Dual bound Primal bound Gap

High School 70 366
BC 32.17 916 3 3 0
BC+ 32.43 816 3 3 0

Residence 217 2,672
BC - 5,122 0 66 ∞
BC+ - 5,327 6 60 9

Physicians 241 1,098
BC - 7,953 2 18 7.76
BC+ 582.89 11,196 14 14 0

Wiki-vote 889 2,914
BC 2195.9 23,062 52 52 0
BC+ 1,340 12,573 52 52 0

Adolescent 2,539 12,969
BC - 32 0 809 ∞
BC+ - 35 5 809 153

when α = 1 than the case when α < 1. Thus, the lower bound could be improved by an algorithm
that deals with subgraphs that are not strongly connected, even for α < 1. In addition, it is possible
to improve the experimental results if we use the lower bound algorithm to add new cutting planes on
the model, selecting branching variables and choosing the next branch to explore. Therefore, more
involved experiments need to be carried out, and we expect to address such issues in a continuation
of this work.

7. Acknowledgements
We gratefully acknowledge the support given by CNPq (Proc. 314366/2018-0, 425340/2016-

3) and FAPESP (Proc. 2015/11937-9).

References
Ackerman, E., Ben-Zwi, O., e Wolfovitz, G. (2010). Combinatorial model and bounds for target set

selection. Theoretical Computer Science, 411(44-46):4017–4022.

Ben-Zwi, O., Hermelin, D., Lokshtanov, D., e Newman, I. (2011). Treewidth governs the complex-
ity of target set selection. Discrete Optimization, 8(1):87–96.

Chen, N. (2009). On the approximability of influence in social networks. SIAM Journal on Discrete
Mathematics, 23(3):1400–1415.

Chen, W., Wang, C., e Wang, Y. (2010a). Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, p. 1029–1038. ACM.

Chen, W., Wang, Y., e Yang, S. (2009). Efficient influence maximization in social networks. In
Proceedings of the 15th ACM SIGKDD, p. 199–208. ACM.

Chen, W., Yuan, Y., e Zhang, L. (2010b). Scalable influence maximization in social networks under
the linear threshold model. In Data Mining (ICDM), 2010 IEEE 10th International Conference
on, p. 88–97. IEEE.

Chiang, C.-Y., Huang, L.-H., Li, B.-J., Wu, J., e Yeh, H.-G. (2013). Some results on the target set
selection problem. Journal of Combinatorial Optimization, 25(4):702–715.

Cordasco, G., Gargano, L., Rescigno, A. A., e Vaccaro, U. (2015). Optimizing spread of influence
in social networks via partial incentives. In International Colloquium on Structural Information
and Communication Complexity, p. 119–134. Springer.

Demaine, E. D., Hajiaghayi, M., Mahini, H., Malec, D. L., Raghavan, S., Sawant, A., e Zadi-
moghadam, M. (2014). How to influence people with partial incentives. In Proceedings of the
23rd international conference on World wide web, p. 937–948. ACM.

Fischetti, M., Kahr, M., Leitner, M., Monaci, M., e Ruthmair, M. (2018). Least cost influence
propagation in (social) networks. Mathematical Programming, p. 1–33.

Granovetter, M. (1978). Threshold models of collective behavior. American journal of sociology,
p. 1420–1443.

Grötschel, M., Jünger, M., e Reinelt, G. (1985). On the acyclic subgraph polytope. Mathematical
Programming, 33(1):28–42.

Günneç, D., Raghavan, S., e Zhang, R. (2016). Tailored incentives and least cost influence maxi-
mization on social networks. Technical report, Technical report.

Kempe, D., Kleinberg, J., e Tardos, É. (2003). Maximizing the spread of influence through a social
network. In Proceedings of the 9th ACM SIGKDD, p. 137–146. ACM.

Kunegis, J. (2013). KONECT – The Koblenz Network Collection. In Proc. Int. Conf. on World
Wide Web Companion, p. 1343–1350. URL http://userpages.uni-koblenz.de/

˜kunegis/paper/kunegis-koblenz-network-collection.pdf.

Nemhauser, G. L., Wolsey, L. A., e Fisher, M. L. (1978). An analysis of approximations for maxi-
mizing submodular set functions-i. Mathematical Programming, 14(1):265–294.

Raghavan, S. e Zhang, R. (2015). Weighted target set selection on social networks. Technical report,
Working paper, University of Maryland.

Rogers, E. M. (2010). Diffusion of innovations. Simon and Schuster.

Rossi, R. A. e Ahmed, N. K. (2015). The network data repository with interactive graph analytics
and visualization. In AAAI. URL http://networkrepository.com.

Watts, D. J. e Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature, 393
(6684):440.

