
Maximizing Influence Blocking with Competing Cascades using Integer
Linear Programming

Guilherme Carbonari Boneti
Department of Computer Science, Federal University of Paraná

Curitiba, Brazil
gcb19@inf.ufpr.br

Renato Silva de Melo
Department of Computer Science, Federal University of Paraná

Curitiba, Brazil
rsmelo@inf.ufpr.br

André Luis Vignatti
Department of Computer Science, Federal University of Paraná

Curitiba, Brazil
vignatti@inf.ufpr.br

ABSTRACT
In the influence blocking maximization problem, we aim to minimize the spread of dis-

information in a network. More specifically, given a set of nodes that initiate the spread of dis-
information and an integer k, we must find k nodes in the network to serve as the starting point
for competing (say, correct) information so that the misinformation spread is minimized. In this
paper, we propose a version of the problem under a dissemination model derived from the Com-
petitive Linear Threshold model. We present an integer linear programming formulation for the
problem that, as far as we know, inaugurates the use of mathematical programming in dissemina-
tion problems with two competing cascades. We performed experiments to verify the quality of our
formulation, evaluating the integrality gap and the scalability. Such results can serve as a baseline
for future solutions using integer linear programming.

KEYWORDS. Influence Blocking Maximization. Misinformation. Integer Linear Program-
ming.

Paper topics: Combinatorial Optimization. Mathematical Programming.

1. Introduction
In recent years, there has been a growing interest in the propagation of influence through

social networks, owing to the rapid growth of social media and their increasing importance in our
society. In these environments, any piece of information can be disseminated rapidly and achieve
significant scale. Unfortunately, this has also led to the proliferation of misinformation on social
media platforms.

Misinformation has always been a problem, but it seems to have gained momentum with
the rise of social media [Lazer et al., 2018]. People tend to believe information that aligns with their
social narratives and discredit information that challenges their beliefs [Lewandowsky et al., 2012].
Social media’s structure and methods of spreading information can amplify the spread of misinfor-
mation. [Vosoughi et al., 2018] found that on Twitter, fake news is 70% more likely to be shared
than real news. Several recent studies have demonstrated the potential for misinformation to influ-
ence societal behavior. For example, Allcott and Gentzkow [Allcott e Gentzkow, 2017] analyzed
the potential impact of misinformation on the outcome of the 2016 United States presidential elec-
tion. Another instance is the proliferation of questionable sources on major social media platforms
during the COVID-19 outbreak, as documented by Cinelli et al [Cinelli et al., 2020].

1.1. Contributions
We formalize and investigate a problem motivated by the issue of misinformation, which

we call Influence Blocking Maximization in the SCLT model, drawing on previous research on this
subject [He et al., 2012]. This problem arises when two information flows compete for dominance
in a network, and our approach can help identify optimal strategies for blocking or mitigating the
impact of unwanted information flows.

Our contribution comprises the formal definition of a version of the problem based on
the SCLT dissemination model, an integer linear programming formulation for the problem and
experiments to verify the quality of the proposed formulation. As far as we know, this is the first
ILP formulation for the influence blocking class of problems. ILP formulations are only known for
problems with a single information flow [Fischetti et al., 2018; Ghayour et al., 2019], but without
considering two opposite flows, that occurs when modeling misinformation situations.

The rest of this paper is organized as follows. Section 2 contains the related work. Section
3 presents the diffusion models and the model we call the Simplified Competitive Linear Threshold
Model, which we use in this work. Section 4 presents the problem definition we deal with, as well as
the process of deriving the definition from the problem definition originally presented by [He et al.,
2012]. Section 5 presents the formulation of the integer linear program that models the problem, and
the proof of the correctness of such formulation. Section 6 describes the computational experiments
performed, and discusses the results. We conclude the paper in Section 7.

2. Related Works
Various models have been developed to capture the characteristics of real-world informa-

tion propagation. Among them, the independent cascade and linear threshold models, originally
described by [Kempe et al., 2003], are well-known. To address influence propagation problems
under these models, several techniques have been proposed. Approximation algorithms, such as
CELF [Leskovec et al., 2007] and CELF++ [Goyal et al., 2011], exploit submodularity to find near-
optimal node selections for the Influence Maximization problem. To significantly reduce CELF’s
runtime, [de Melo, 2021] develops a preprocessing heuristic algorithm. Mathematical programming
methods were used in [Fischetti et al., 2018] and [Ghayour et al., 2019]. The former introduces the
Generalized Least Cost Influence Propagation (GLCIP) and an integer linear programming (ILP)
for this problem, while the latter proposes ILP formulations to handle the Influence Maximization

(IM) and Target Set Selection (TSS) problems. [He et al., 2012] introduced a new problem called
Influence Blocking Maximization (IBM), which was studied under the Competitive Linear Thresh-
old (CLT) model, considering two competing information flows within the network. The authors
developed a heuristic algorithm to address the IBM problem.

While there are other studies that tackle the IBM problem, none of them present an ILP
approach to address it with competing cascades. Therefore, in this study, we introduce what we
believe to be the first ILP formulation for this problem. Given the different variations of the IBM
problem that have been studied, we believe that our work can serve as a valuable foundation for
developing ILP models to tackle these variations.

3. Diffusion Models
In real world situations, information is transmitted through a variety of channels, includ-

ing social media, television, and face-to-face conversations. The precise way by which a particular
idea spreads and the factors that drive individuals to accept or reject it can be difficult to discern.
Nevertheless, diffusion models aim to capture the dynamics of information propagation in social
networks, providing valuable mathematical frameworks for studying influence dissemination, de-
spite limitations in capturing real-world nuances. Next, we present two important diffusion models
and a simplified version we use for our model.

3.1. Linear Threshold Model
The Linear Threshold (LT) Model, as defined by [Kempe et al., 2003], models a social

network as a directed graph G = (V,E), where V represents the set of vertices (individuals) and E
represents the set of edges (connections) between them. Each edge (u, v) in the graph connecting
vertices u and v is assigned a weight wu,v. Additionally, each vertex v is assigned a threshold
value, tv, that is chosen uniformly at random from the interval [0, 1]. In this model, a vertex, or
node, can either be active or inactive, depending on whether it has been influenced by information
or not, respectively. In this model, a node v is considered influenced if the sum of the weights of its
incoming neighbors surpasses its threshold, i.e.,∑

∀(u,v)∈E

wu,v > tv.

The diffusion process starts with an initial set of nodes carrying the information. At each discrete
time step, an inactive node becomes active if the sum of the weights of its active in-neighbors
exceeds its threshold. The diffusion process continues until the entire network is influenced.

3.2. Competitive Linear Threshold Model
The Competitive Linear Threshold (CLT) Model is an extension of the LT model, which

considers two competing ideas for influence in the network, represented by positive and negative
diffusion, as proposed in [He et al., 2012]. Once a node is influenced by either diffusion, it cannot
change the value of its activation (positive or negative) and be activated by the opposite behavior.
Similar to the LT model, in CLT we have negative and positive seed sets, denoted by S− and S+,
respectively. Additionally, each node in the network has positive and negative thresholds, denoted
by t−v and t+v , and each edge has positive and negative weights, denoted by w−

v and w+
v .

At each time step, negative and positive influences propagate independently using negative
thresholds and weights, and positive thresholds and weights, respectively. Since a node can only
be activated by one diffusion, if both negative and positive thresholds are exceeded, the negative
diffusion is assumed to win, and the node is negatively activated.

3.3. Simplified Competitive Linear Threshold Model
In this work, we use a simplified version of the Competitive Linear Threshold (CLT)

model, which we refer to as the Simplified Competitive Linear Threshold (SCLT) model. Let δin(v)
be the number of in-neighbors of a node v. In the SCLT model, we set both the positive and negative
thresholds to half of the number of incoming neighbors for each node, i.e., t−v = t+v = ⌊δin(v)/2⌋.
Such value is often referred to as the majority threshold [Chen, 2009]. Moreover, all edge weights
are assigned a fixed value of 1. This simplification allows us to focus on the fundamental aspects of
the diffusion model.

4. Problem Definition
In this section, we define the problem we deal with in this article, called the Influence

Blocking Maximization in the SCLT model. However, before we define our problem, we present the
definition of the original problem under the CLT model, as done by [He et al., 2012]. The change is
only in the diffusion model, from CLT to SCLT, but this changes the definition of the problem, so
that the simplest way to understand how this change occurs is by presenting the original problem
first, and only then pointing out the modifications.

Let S−
end be the set of negative nodes at the end of the diffusion process, and s−end = |S−

end|.
In the CLT model, as presented by [He et al., 2012], the thresholds values are set according to
a probability distribution. Thus, the value s−end is a random variable. Clearly, s−end depends on the
fixed input data and also the chosen solution S+, which is the only variable. Thus, our notation only
makes explicit the dependency on S+, and we write Pr

(
s−end = ℓ

∣∣S+
)

to denote the conditional
probability that the set S−

end has size ℓ given that the set S+ was chosen as the solution. Given a
solution S+, the expected size of the negative nodes s−end is,

E
[
s−end

∣∣ S+
]
=

|V |∑
ℓ=0

ℓ · Pr
(
s−end = ℓ

∣∣S+
)
.

To measure the impact of a solution S+, [He et al., 2012] consider the difference between
two scenarios, when the solution is indeed S+, and when the solution set is empty (i.e., letting the
negative spread without blocking it). This is called the expected blocked negative influence of S+,
and is formally defined as

σ(S+) = E
[
s−end

∣∣ {∅}]− E
[
s−end

∣∣ S+
]
,

and we want to maximize this quantity. We can now define the problem, as presented by [He et al.,
2012].

Problem (Influence Blocking Maximization in the CLT model [He et al., 2012]).
Input: graph G = (V,E) with thresholds t+v and t−v for each v ∈ V , weights w+ and w−, a
negative seed set S−, and a positive integer k.
Output: a positive set of nodes S+ of size k such that maximizes σ(S+).

It has been proven by [He et al., 2012] that IBM is NP-hard under the CLT model.
In this paper we consider the same problem, but in the SCLT model. This causes some

modifications to the original definition. First, the positive and negative thresholds are the same,
so we can use a unified tv notation. Also, the thresholds are fixed at ⌊δin(v)/2⌋. This means
that the optimization function become deterministic rather than probabilistic. Thus, we replace the

mathematical expectation with deterministic functions s−end({∅}) and s−end(S
+). Note that s−end({∅})

becomes a fixed deterministic value, which can be computed in polynomial time (just simulate the
diffusion process without selecting positive nodes for the solution). So, if before the objective was
to maximize the difference s−end({∅}) − s−end(S

+) but the first term is fixed, now it is the same as
maximizing −s−end(S

+). Another equivalent way is to say that we want to minimize s−end(S
+), i.e.,

the objective is to choose S+ in order to minimize the negative spread. Now we are ready to define
the problem we deal with in this article.

Problem (Influence Blocking Maximization in the SCLT model).
Input: graph G = (V,E) with thresholds tv = ⌊δin(v)/2⌋ for each v ∈ V , a negative seed
set S−, and a positive integer k.
Output: a positive set of nodes S+ of size k that minimizes the negative spread.

5. Integer Linear Programming Formulation

This section presents an integer linear programming formulation to solve the IBM Prob-
lem in the SCLT diffusion model. The key idea of the formulation is to use the concept of time as a
step-by-step way of simulating the diffusion process. To achieve this, we introduce the variable av.
This variable denotes the elapsed time since the activation of node v. This ensures that the activa-
tion time of the source node is always greater than that of the target node when one node activates
another. Thus, a node v can only influence u if av > au, otherwise node v would not have been
activated yet. By managing activation times in this manner, we can effectively handle cascades and
prevent the occurrence of cycles. Next, we present the ILP formulation.

Input Parameters

G the input graph G = (V,E)
S−
v v ∈ V node v belongs to S−

tv v ∈ V threshold of node v
k the number of nodes to be selected for S+

Variables

S+
v v ∈ V node v belongs to S+

x−v v ∈ V node v is negatively activated
x+v v ∈ V node v is positively activated
y−u,v (u, v) ∈ E u exerts negative influence over v
y+u,v (u, v) ∈ E u exerts positive influence over v
av v ∈ V elapsed time since the activation of node v

Objective Function

min
∑
v∈V

x−v (1)

Constraints

x−v ≥ 1− tv∑
u∈in(v)

y−u,v
∀v ∈ V (2)

x+v − S+
v <

∑
u∈in(v)

y+u,v

tv
∀v ∈ V (3)

au + n(1− y−u,v − y+u,v) > av ∀(u, v) ∈ E (4)

y−u,v ≤ x−u ∀(u, v) ∈ E (5)

y+u,v ≤ x+u ∀(u, v) ∈ E (6)∑
v∈V

S+
v = k (7)

S−
v ≤ x−v ∀v ∈ V (8)

S+
v ≤ x+v ∀v ∈ V (9)

av + S+
v + S−

v ≥ 1 ∀v ∈ V (10)

y+u,v + y−u,v = 1 ∀(u, v) ∈ E (11)

x+v + x−v = 1 ∀v ∈ V (12)

x+v , x
−
v = {0, 1} ∀v ∈ V (13)

y+u,v, y
−
u,v = {0, 1} ∀(u, v) ∈ E (14)

S+
v , S

−
v = {0, 1} ∀v ∈ V (15)

av = {0, 1, 2, ..., n} ∀v ∈ V (16)

The correctness of the presented formulation is not obvious, thus Theorem 2 presents a
proof of the correctness. Before presenting Theorem 2, we need a technical lemma, presented in
Lemma 1, which is used later in the proof of Theorem 2.

Lemma 1. If
∑

u∈in(v) y
+
u,v > tv, then the ILP formulation sets x+v = 1.

Proof. The SCLT Model sets the threshold to be half the number of the incoming edges. So,∑
u∈in(v)

y+u,v > tv =
δin(v)

2
. (17)

Furthermore, as all nodes are expected to be activated,∑
u∈in(v)

y+u,v +
∑

u∈in(v)

y−u,v ≤ δin(v).

Rearranging, ∑
u∈in(v)

y−u,v ≤ δin(v)−
∑

u∈in(v)

y+u,v.

Combining with Inequality (17),∑
u∈in(v)

y−u,v ≤ δin(v)−
∑

u∈in(v)

y+u,v < δin(v)−
δin(v)

2
=

δin(v)

2

i.e.,
∑

u∈in(v) y
−
u,v = δin(v)/2. So, the right side of Constraint (3) becomes 0, meaning that x−v can

be either 0 or 1. However, the objective function minimizes the negative nodes, so x−v = 0. By
Constraint (12), we conclude that x+v = 1.

Theorem 2. The ILP formulation presented correctly models the IBM Problem.

Proof. Constraint (2) states that a node is negatively activated when the number of income edges
from negative neighbors exceeds its threshold. More specifically, when

∑
u∈in(v) y

−
u,v > tv, the

right-hand side of the inequality becomes a strictly greater than 0. Since x−v is a binary variable,
it must be set to 1 to satisfy the constraint, indicating the negative activation of node v. So, this
constraint ensures that the activation condition is met when there is a sufficient number of negative
neighbors contributing to the activation of node v. Constraint (3) specifies that for a node to be
positively activated, it must meet either one of two conditions. Firstly, the number of incoming
edges from its positive neighbors must exceed its threshold. Secondly, it must be included in the
positive seed set. If neither of these conditions is met, the node is not positively activated. Note that,
when

∑
u∈in(v) y

+
u,v > tv, node v should be activated, i.e. x+v = 1. However, by the formulation, the

right-hand side of the inequality becomes greater than 1, allowing x+v to be either 0 or 1. That will
not be a problem as, according to Lemma 1, x+v will be set to 1. Constraint (4) stipulates that if node
v is activated by node u, then av < au. This ensures that the dissemination cascades remain acyclic,
as a node cannot be activated by another node with a lower activation time. Constraints (5) and (6)
ensure that a node can only be activated if its source node is also activated. By Constraint (7), k
nodes should be selected to be in S+. Constraints (8) and (9) require seed nodes to be activated.
Constraint (10) determines that if a node is not in any seed set, its activation time has to be greater
than 1. Constraint (11) states that an edge can only belong to either the negative propagation or the
positive propagation, but not both. Constraint (12) says that a node can only be negative or positive,
but not both. Constraints (13), (14), and (15) guarantee that x−v , x+v , y−u,v, y+u,v, S−

v and S+
v are

binary variables. Constraint (16) determines that av is an integer variable not greater than n.

6. Computational Experiments
In this section, we describe our experiments and discuss the obtained results.

6.1. Runtime Environment
Our computational experiments were run in an Intel Core i7-8565U 1.80GHz with 12GB

of RAM, using Gurobi Optimizer 9.1.2 as the underlying LP-solver. To generate the graphs used
in the experiments, we employed the NetworkX library (version 2.5.1) [Hagberg et al., 2008] in
Python (version 2.7.17).

6.2. Metrics
We performed experiments to evaluate the proposed formulation. The metrics we consider

are the maximum and average empirical integrality gap and the running time to obtain an integer
solution using a generic branch-and-bound technique already provided by the solver.

The integrality gap for a minimization problem is defined as the maximum ratio between
the solution value of the integer program and of its relaxation. The integrality gap is an interesting
metric as it suggests how tight the relaxed formulation is compared to the convex hull of the integer
solutions. Also, in some cases, the integrality gap translates into the approximation ratio of an
approximation algorithm (e.g. when using variable rounding) [Young, 1995; Raghavan e Tompson,
1987]. The integrality gap must be obtained analytically, but this is not always possible or simple, so
we perform an empirical analysis of it. Furthermore, the integrality gap is a worst case definition,

but “typical” cases may better reflect reality. This justifies our empirical average analysis of the
integrality gap.

The running time when using a generic branch-and-bound technique serves as a baseline
for other solutions, as it is an upper bound that must not be exceeded. We note that several integer
linear programming solution methods can be used on our formulation, but such methods are not
within the scope of this work, our focus is on the quality of the formulation itself.

6.3. Instances
We use power-law graphs obtained by the Barabási-Albert model [Barabási e Albert,

1999] generated by NetworkX library as input for the Gurobi solver. Since graphs representing
real networks (complex networks) are sparse, then the graphs were created with average degree 5.
Each edge in the graphs was randomly assigned a direction. Additionally, each node had a 10%
chance of being selected as part of the set S−. The parameter k, determining the size of S+, was set
to half the size of S−. The idea of using synthetic graphs in the experiments allows us to compute
the average of the proposed metrics, in addition to making it possible to measure the scalability of
our formulation.

6.4. Results and Discussion
We solved the ILP and compared its results with the linear relaxation, where the variables

in the model are allowed to take continuous values. The linear relaxation is useful to evaluate
the quality of the ILP formulation, either through the execution time or the integrality gap. More
specifically, we compute the average and maximum integrality gap, as well as the average time
required for each model to solve the problem. For each graph size, we perform 10 executions, and
for each execution, a new graph is generated. In order to obtain more reliable results, we disabled
the preprocessing, cutting planes and heuristics in Gurobi, relying only on the default branch-and-
bound scheme, which is the standard technique for Gurobi’s integer programming solution.

Table 1: ILP and linear relaxation performance.

Average execution time (s) Integrality gap

Number of vertices ILP Linear relaxation Maximum Average

50 0.0501238 0.0335631 1.24138 1.02413
75 0.0577051 0.0394926 1.31506 1.07191
100 0.0898999 0.0523067 1.07692 1.0224
125 0.133355 0.0614975 1.10344 1.03172
150 0.248824 0.0811536 1.09164 1.05086
200 0.262325 0.0996094 1.0844 1.03416
400 0.316307 0.221297 1.06194 1.01856
800 1.07569 0.517779 1.0909 1.04631
1600 2.82034 2.17428 1.07035 1.0434
3200 5.85123 5.83748 1.05813 1.04229
6400 19.3689 18.7263 1.04426 1.03945
12800 163.72 134.685 1.05726 1.04090

The results presented in Table 1 demonstrate that the ILP consistently produces solutions
that are similar to the relaxation. The average gap remained consistently close to 1 for all instance
sizes, never exceeding 1.1. Furthermore, on average, the maximum gap is only 7% larger than

50 200 800 3200 12800
0.01

0.1

1

10

100

1000

Number of Vertices

E
xe

cu
tio

n
Ti

m
e
[s
]

ILP
Relaxed

Figure 1: ILP and linear relaxation average execution time

the corresponding average gap, indicating that the ILP formulation performs well and maintains a
relatively small variation in the quality of solutions across different instances.

In Figure 1 , we plot the values of Table 1 related to the execution time in order to get a
better view, showing a comparison of the execution times between the ILP and the relaxed model. It
suggests an exponential growth pattern as the graph size increases. On average, the relaxed model
was approximately 79% faster than the ILP model. However, this difference tends to decrease for
larger instances.
7. Conclusion

In this work, we present a version of the Influence Blocking Maximization problem de-
scribed under the SCLT model, and we present an integer linear programming formulation for the
problem. Our experimental results demonstrate that the formulation performs well across a wide
range of instances, including both small and large ones, keeping a close proximity to the results
obtained using its relaxed version.

There is no trivial or direct way to obtain an integer linear programming formulation
for this problem, and we believe that this can serve as a starting point for the study of problems
related to misinformation from the point of view of mathematical programming. This naturally
motivates future directions, such as alternative formulations for this problem or variants, the use of
integer linear program solving techniques for scalability and efficiency, and theoretical analyzes in
polyhedral combinatorics.

References
Allcott, H. e Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of

Economic Perspectives, 31:211–236.

Barabási, A.-L. e Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439):
509–512.

Chen, N. (2009). On the approximability of influence in social networks. SIAM Journal on Discrete
Mathematics, 23(3):1400–1415.

Cinelli, M., Quattrociocchi, W., Galeazzi, A., Valensise, C. M., Brugnoli, E., Schmidt, A. L., Zola,
P., Zollo, F., e Scala, A. (2020). The covid-19 social media infodemic. ArXiv, abs/2003.05004.

de Melo, R. S. (2021). Exact Algorithms For Influence Propagation In Complex Networks. PhD
thesis, Department of Computer Science, Federal University of Paraná.

Fischetti, M., Kahr, M., Leitner, M., Monaci, M., e Ruthmair, M. (2018). Least cost influence
propagation in (social) networks. Mathematical Programming, 170(1):293–325.

Ghayour, F., Baghbani, Asadpour, M., e Faili, H. (2019). Integer linear programming for influence
maximization. Iranian Journal of Science and Technology, Tran. of Elec. Eng., 43(3):627–634.

Goyal, A., Lu, W., e Lakshmanan, L. V. (2011). Celf++: Optimizing the greedy algorithm for
influence maximization in social networks. In Proc. of the 20th Int. Conf. Companion on WWW,
p. 47–48.

Hagberg, A. A., Schult, D. A., e Swart, P. J. (2008). Exploring network structure, dynamics, and
function using networkx. In Varoquaux, G., Vaught, T., e Millman, J., editors, Proceedings of the
7th Python in Science Conference, p. 11 – 15, Pasadena, CA USA.

He, X., Song, G., Chen, W., e Jiang, Q. (2012). Influence blocking maximization in social networks
under the competitive linear threshold model. In Proc. of the 2012 SIAM Int. Conf. on Data
Mining (SDM), p. 463–474.

Kempe, D., Kleinberg, J., e Tardos, E. (2003). Maximizing the spread of influence through a social
network. In Proc. of the 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
p. 137–146.

Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger,
M. J., Nyhan, B., Pennycook, G., Rothschild, D., Schudson, M., Sloman, S. A., Sunstein, C. R.,
Thorson, E. A., Watts, D. J., e Zittrain, J. L. (2018). The science of fake news. Science, 359
(6380):1094–1096.

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., e Glance, N. (2007). Cost-
effective outbreak detection in networks. In Proc. of the 13th ACM SIGKDD Int. Conf. on Knowl-
edge Discovery and Data Mining, p. 420–429.

Lewandowsky, S., Ecker, U. K. H., Seifert, C. M., Schwarz, N., e Cook, J. (2012). Misinformation
and its correction: Continued influence and successful debiasing. Psychological Science in the
Public Interest, 13(3):106–131.

Raghavan, P. e Tompson, C. D. (1987). Randomized rounding: A technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7(4):365–374.

Vosoughi, S., Roy, D., e Aral, S. (2018). The spread of true and false news online. Science, 359
(6380):1146–1151.

Young, N. E. (1995). Randomized rounding without solving the linear program. In Proceedings
of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, p. 170–178. Society for
Industrial and Applied Mathematics.

