
NIEP: NFV Infrastructure Emulation Platform

Thales Nicolai Tavares∗, Leonardo da Cruz Marcuzzo∗, Vinı́cius Fulber Garcia∗, Giovanni Venâncio de Souza‡,
Muriel Figueredo Franco†, Lucas Bondan†§, Filip De Turck§, Lisandro Zambenedetti Granville†,
Elias Procópio Duarte Junior‡, Carlos Raniery Paula dos Santos∗, Alberto Egon Schaeffer-Filho†

∗Federal University of Santa Maria

{tntavares,lmarcuzzo,vfulber,csantos}@inf.ufsm.br
†Federal University of Rio Grande do Sul

{lbondan,mffranco,alberto,granville}@inf.ufrgs.br
‡Federal University of Paraná

{gvsouza,elias}@inf.ufpr.br
§INTEC – Ghent University

{filip.deturck}@ugent.be

Abstract—Network Functions Virtualization (NFV) presents
several advantages over traditional network architectures, such
as flexibility, security, and reduced CAPEX/OPEX. However,
virtualizing network functions usually executed on specialized
hardware (e.g., firewall, DPI, load balancer) and employing inno-
vative technologies (e.g., OpenFlow, P4) increases the challenges
of designing, testing, and deploying network infrastructures and
services. Although platforms for prototyping NFV environments
have emerged in recent years, they still present limitations that
hinder the evaluation of specific NFV scenarios, such as fog
computing and heterogeneous networks. In this paper, we present
NIEP: a platform for designing and testing NFV-based infras-
tructures and Virtualized Network Functions (VNFs) through
the integration of a well-known network emulator (Mininet) and
a novel platform for Click-based VNFs development (Click-on-
OSv). NIEP provides a complete NFV emulation environment,
allowing network operators to test their solutions in a controlled
scenario prior to deployment in production networks. As main
advantages, NIEP allows the emulation of heterogeneous scenar-
ios, which can be easily migrated to production environments. An
experimental scenario is defined to analyze NIEP’s performance
in terms of VNFs boot time and throughput. Further, NIEP’s
advantages and shortcomings are discussed and compared to
existing emulation platforms.

Index Terms—NFV, SDN, infrastructure emulation, VNF de-
sign

I. INTRODUCTION

Network Functions Virtualization (NFV) is driving a

paradigm shift in telecommunications by avoiding ossification

and introducing innovation in the network core [1]. NFV

transforms the way in which operators design and manage

networks by employing virtualization technology to consoli-

date specialized network equipment onto commodity servers.

By moving the processing of packets from dedicated mid-

dleboxes to Virtualized Network Functions (VNFs) running

on commercial off-the-shelf (COTS) servers, NFV enhances

flexibility and scalability to create innovative services while

reducing CApital and OPerational EXpenditure (CAPEX and

OPEX) [2].

Both academia and industry have been carrying out efforts

to evolve and promote NFV. These efforts include, for exam-

ple, the development of novel NFV architectures, systems, and

applications [3]. One of the main challenges for developers

and researchers in NFV is the evaluation of, for example,

the performance and behavior of VNFs prior to their actual

deployment in production networks. Difficulties to perform

tests include infrastructure limitations and unavailability of

actual NFV environments. As such, solutions to emulate NFV

scenarios are important to help in the process of designing,

testing, and evaluating VNFs.

The use of emulation to evaluate applications before de-

ployment has been widely applied in computer networks in

the past [4] [5]. In the same way, by introducing emulation

environments with support for both NFV infrastructures and

the Management and Orchestration (MANO) framework, de-

velopers and researchers are better instrumented to improve

their VNFs, while not running the risk of compromising

the production environment. However, despite the inherent

benefits, solutions for NFV emulation are scarce, limited (e.g.,
due to low portability or lack of support for heterogeneous

environments), not intuitive, and involve a steep learning curve

before they can be fully adopted.

In this paper, we present NFV Infrastructure Emulation

Platform (NIEP) 1, a novel platform based on Click-on-OSv

[6] and Mininet [7] that emulates diverse NFV scenarios

and allows the evaluation of VNFs. NIEP allows operators

to rapidly create heterogeneous NFV emulated scenarios. All

created scenarios are portable because of the full virtualization

strategy adopted by NIEP. We also show the feasibility of

NIEP in a case study considering a Fog computing and Virtual

Customer Premises Equipment (vCPE) scenario. We expect

that NIEP will assist network operators in the offline analysis

of the functionality and performance of VNF deployments.

Pre-tested configurations can be evaluated and optimal config-

urations may be established before actual VNFs are deployed

in the network infrastructure.

The remaining of this paper is organized as follows. In Sec-

tion II, background and related work are reviewed. In Section

III, we introduce NIEP and detail each of its components.

1Available at http://ufsm.br/gt-fende

173

2018 IEEE 32nd International Conference on Advanced Information Networking and Applications

1550-445X/18/$31.00 ©2018 IEEE
DOI 10.1109/AINA.2018.00037

In Section IV, a case study to evaluate the feasibility of the

platform is presented. Finally, in Section V, conclusions and

comments on future work are presented.

II. BACKGROUND AND RELATED WORK

In this section, background on NFV and virtualization is

presented, highlighting the benefits of NFV over traditional

network architectures and discussing the challenges for the

successful deployment of NFV-based solutions. In addition,

issues related to NFV prototyping are discussed, highlighting

the pros and cons of existing frameworks for NFV experimen-

tation.

A. Network Functions Virtualization (NFV)

NFV has been proposed by the European Telecommuni-

cations Standards Institute (ETSI) as a novel paradigm to

develop, manage, and deploy network services in an easy, cost-

effective, and flexible way [8]. In NFV, services commonly

performed by dedicated middleboxes are decoupled from hard-

ware and implemented as Virtual Network Functions (VNFs).

VNFs can be deployed on COTS virtualization servers,

where each VNF performs a specific function. Multiple VNFs

can be deployed on different locations of the infrastructure

substrate and chained together in Service Function Chains

(SFC) [9]. The benefits of NFV include: (i) reduced capi-

tal/operational expenditure (CAPEX/OPEX) and energy costs

thanks to the use of high-density servers; (ii) reduced time to

deploy and configure new services; (iii) increased flexibility

to dynamically migrate and scale (up and down) services; and

(iv) more concrete potential for new developers to enter the

market, since VNFs are typically implemented in software and

deployed on available equipment (e.g., whitebox switches).

When used with other technologies, such as Software-Defined

Networking (SDN) [10], the substrate network can be more

easily customized to fulfill specific needs of customers.

NFV also enables the use of Service Function Chains [9], in

which multiple VNFs, each with their own specific purpose,

can be chained together in order to provide complex network

services. Since those VNFs are independent from each other,

they can be deployed on different virtualization servers. Figure

1 shows an example of an SFC, where three servers are

employed, each running their own hypervisor and set of VNFs,

and with lines representing different SFCs.

Despite its benefits, NFV increases the complexity and

implies major changes to the network infrastructure every time

new VNFs are deployed. Therefore, new toolsets for VNF

emulation, evaluation, and debugging are needed. In traditional

networks, operators can use tools such as tcpdump, ping, and

traceroute to identify problems in the network, while bugs

on middleboxes should be corrected by providers. In NFV,

while those tools can still be useful, new network components

must be monitored and analyzed to identify problems such

as bottlenecks, failures, misconfiguration, or implementation

bugs. For SDN, Mininet [11] uses virtualization technologies

to deploy and test virtual networks, which can be used with an

external SDN controller for experimentation purposes. How-

ever, Mininet does not offer support for experimentation with

VNFs because of its focus on SDN. As a consequence, new

frameworks have been proposed where Mininet is integrated

with other software components that can be used to deploy and

manage VNFs. In the next subsection, we present and discuss

existing frameworks for NFV experimentation.

B. NFV Experimentation Frameworks
Different NFV experimentation frameworks have recently

emerged. Among them, EsCAPE [12] has received atten-

tion from the NFV community, figuring as a prototyping

framework from the UNIFY architecture, consisting of three

abstraction layers: Service Layer, Orchestrator Layer, and In-

frastructure Layer. EsCAPE provides a common platform that

enables users to prototype and orchestrate SFCs whose VNFs

are deployed as containers running Click [13], as well as a

built-in VNF catalog with basic network functions. EsCAPE’s

network infrastructure consists of a Mininet instance with

OpenVSwitches [14] connected to an external SDN controller

(POX) responsible for steering traffic between VNFs. It also

supports development and test of orchestration components,

extending Mininet to work with NETCONF. The focus of

EsCAPE is thus on the creation and management of SFCs,

although it can be used to prototype other topologies as well.
MeDICINE [15] is an NFV prototyping platform able

to emulate a multi-PoP environment with production-ready

network functions running on containers. MeDICINE is based

on a previous work called ContainerNET2, which extends

the Mininet framework to support container-based VNFs.

Using the Mininet API, links between complex multi-PoP

environments are established taking into account requirements

in terms of delay, bandwidth, and packet loss rate. Docker3

is used in MeDICINE to deploy VNFs on these PoPs.

MeDICINE also provides end-points for each emulated PoP,

enabling users to connect their emulated topology to existing

MANO tools.
Both EsCAPE and MeDICINE use containers for deploying

and executing VNFs. Although this is enough for most NFV

use cases [16], container-based virtualization presents issues

for a number of specific NFV scenarios. For example, in

comparison to hypervisor-based virtualization, containers do

not provide cross-platform compatibility and their life-cycle

management is onerous [17]. Moreover, as opposed to Vir-

tual Machines (VMs), containers increase the attack surface

of a host [18], since each OS image has its own set of

vulnerabilities and share the same kernel. In scenarios with

heterogeneous networks, different servers with different oper-

ating systems form the infrastructure substrate, such as vCPE,

virtual Evolved Packet Core (vEPC) and Fog Computing. In

this case, the same VNF can be deployed and migrated to any

point of the infrastructure without code changes. Security is

also a major concern, making containers not well-suited for

prototyping these scenarios.

2Available at https://github.com/containernet/containernet
3Available at http://www.docker.org/

174

Fig. 1. Example of a Service Function Chain

Other frameworks like MaxiNet [19] present a distributed

way to deploy SDN topologies over multiple physical ma-

chines. Although it does offer support to the deployment of

containers, MaxiNet does not provide a way of using these

containers to host VNFs. It is important to note that our

solution is the first to provide a prototyping framework with

focus on the emulation of different NFV scenarios.

Considering the lack of experimental frameworks for het-

erogeneous NFV scenarios, the focus of existing platforms on

SFCs and multi-pop environments, and the possible security

flaws inherent to container-based virtualization, we introduce

in the next section NIEP, a framework that integrates a

minimal VNF platform (Click-on-OSv) with Mininet, allowing

prototyping and evaluating diverse scenarios with hypervisor-

based VNFs, which can then be subsequently deployed on

production environments.

III. NIEP: NFV INFRASTRUCTURE EMULATION

PLATFORM

In this section, NIEP is described in details. First, in Section

III-A we discuss a set of requirements identified that must

be satisfied by the proposed platform. Next, in Section III-B

the modules of NIEP are presented, detailing their operation.

Finally, in Section III-C, details about the interactions between

the modules are provided, describing the operation flow of

NIEP.

A. Simulation Requirements

Emulation plays an important role in the design, develop-

ment, and analysis of VNFs, especially for innovative func-

tions and services. The emulation of a real system should

represent it as accurately as possible, defining a synthetic

environment and submitting it to real live testings [20]. The

use of emulated environments has increased significantly in

recent years, since they enable the evaluation of large-scale

systems at reduced costs, before actual deployment. However,

the development of emulation platforms, in particular for NFV

scenarios, must satisfy a set of fundamental requirements,

asand accurately represent real network environments. Aiming

to create a novel platform for the evaluation of NFV-based in-

frastructures, we took into consideration a set of requirements

previously identified by Varga and Horing [21], Baumgat,

Heep and Krause [22], and Schaeffer-Filho et al. [23]. These

requirements are summarized as follows:

• Scalability: the platform must be able to perform simu-

lations with a large number of nodes;

• Flexibility: the platform should facilitate the emulation

process, as the user must be able to easily specify network

topologies. Also, topology elements (e.g., hosts, switches,

VNFs) must be generic enough to be reused in a range

of scenario definitions;

• Remodeling: the definition of the network scenario must

be simple, dynamic, and fast for prototyping, thus allow-

ing the network topology to be easily modified as needed;

• Software Execution: the elements provided must be

similar to real components existing in production network

environments, providing reliable experimental results.

B. NIEP Architecture

NIEP is based on the integration of existing tools for VNF

design (Click-on-OSv), VM management (KVM hypervisor),

and network emulation (Mininet), with an orchestration mod-

ule, which is the core element of NIEP. The overall view of

the NIEP architecture, comprising the aforementioned tools as

well as the orchestrator, is presented in Fig. 2.

175

1

����

�������	
������

���������

���������
�������

���

�������
���	���� ��������	���

����� ���� ������!��	������"

����
���������

1

1a

2

2a2b

2c

Fig. 2. NIEP Architecture

The first module of NIEP is Click-on-OSv [6], an OSv-

based operating system specially built for NFV experimen-

tation. Click-on-OSv leverages on the Click Modular Router

[24] to create and execute network functions, and provides

a Representational State Transfer (REST) interface for con-

trolling the underlying operations (e.g.,., metrics monitoring

and life-cycle management). Since Click-on-OSv is a complete

virtual machine, it simplifies the controlling and provisioning

processes due to its independence from the host operational

system. Moreover, it is possible to remotely create VMs using

a set of heterogeneous servers, sharing resources (e.g., mem-

ory, processing and network), and performing VNF functions

in a distributed way.

NIEP uses a KVM hypervisor, which is a virtual VM

manager that implements full virtualization, to support the

execution of multiple VMs running images of different types

of operating systems. The Virsh tool4 is used by the NIEP

orchestrator to manage the KVM virtual machines. It is a

Command Line Interface (CLI) that enables controlling VMs

through system calls. Also, KVM provides better throughput

rates for the Click-on-OSv platform due to the VirtIO opti-

mized implementation5. These virtualization upgrades make

the packet processing of Click running on OSv faster than

other hypervisors (e.g. VirtualBox, Xen).

Mininet [11] is a widely used network emulator that re-

lies on process-level virtualization. This type of lightweight

virtualization emulates guest machines as isolated processes,

reserving memory, CPU and network, inheriting the host

functions and programs, and enabling the design of large-

scale network environments. In NIEP, Mininet hosts are used

4https://libvirt.org/
5https://www.linux-kvm.org/page/Virtio

to represent servers and client machines, OpenFlow switches

and controllers are deployed to enable SDN technology, and

links are specified to virtually connect the described elements.

Network topologies in the NIEP platform can be defined

using a JavaScript Object Notation (JSON) file, which simpli-

fies the infrastructure deployment process when compared to

Mininet. Thus, users can configure a Mininet topology with

hosts, switches, and controllers while defining other useful

information such as resource allocation for VNFs and con-

nections among them (e.g., the capability of creating SFCs).

The NIEP-Orchestrator is responsible for the platform end

user interfacing. It receives the JSON topology definition and

executes all the necessary actions to perform the instantiation

process. This module comprises four elements, each one

providing a set of methods to execute specific actions that

jointly control the NIEP environment:

• VNF Repository: responsible for storing the virtual-

ized network functions, which are implemented as Click

scripts. Since the defined VNFs can be distributed in

many machines, the repository must be widely acces-

sible for all VEM instances. Thus, technologies such

as Hadoop Distributed File System (HDFS) or common

marketplaces can be used as the VNF repository module;

• Virtualized Elements Manager (VEM): responsible

for controlling the execution of VNFs and providing

the communication interfaces (e.g.,., network bridges).

This element is composed of two functional blocks, the

Network Functions, which directly controls the Click-

on-OSv instances through a REST interface, and the In-

frastructure, that controls the KVM hypervisor execution

using the Virsh CLI;

• Topology Manager: responsible for creating and initial-

176

izing the Mininet network topology on the platform. It

creates all the requested elements (e.g.,., hosts, switches,

controllers) through the Mininet API and saves them for

future user operations;

• Interpreter: responsible for validating the JSON topol-

ogy definition and handling user requests (e.g.,., cre-

ating a new network topology or retrieving statistical

data). This module works as data input, receiving NIEP

topologies, and output, returning emulation and topology

modifications requests results.

C. Module Interactions

The modules of the NIEP architecture presented in the

previous section are integrated by the Orchestrator, coordinat-

ing the instantiation of Mininet network topologies and VNF

emulation. Initially, the Orchestrator module, upon receiving

a JSON topology specification, forwards it to the Interpreter

element which proceeds with its validation, essentially analyz-

ing the presence of mandatory elements and the correctness of

the configuration. The Interpreter then separates the available

information into two sets: one related to the Mininet network

topology definition (e.g., hosts, switches, controllers) and

another related to the VNFs to be executed (e.g., memory,

CPU, interfaces, Click network function).

The first set of information computed by the Interpreter

module is sent to the Topology Manager – indicated by (1)

in Fig. 2, which receives the data about the definition of the

Mininet environment. The Topology Manager, after processing

the information to create the requested topology, initializes it

in the Mininet emulator – (1a) in Fig. 2.

The VEM element receives the second set of information

sent by the Interpreter (2). It verifies the actions to be

performed, and forwards them to the Network Functions and

Infrastructure functional blocks. The first to execute is the

Infrastructure block (2a), which creates virtual machines using

the Hypervisor and the communication links to the network

topology in Mininet, through a bridge interface. At the end

of this process, the Functions Virtualization block (2b) starts

the Click-on-Osv platform by fetching the user-defined Click

function from the VNF Repository (2c).

The integrated platform described in this section allows the

rapid prototyping and evaluation of large-scale NFV scenarios.

We believe this can be a valuable toolset in the repertoire of

network operators, which will be able to assess the functional-

ity and evaluate the performance of individual VNFs as well as

SFCs before their actual deployment in production networks.

IV. CASE STUDY AND EXPERIMENTAL EVALUATION

In this section, an experimental evaluation to demonstrate

the effectiveness of the proposed solution is presented. First, in

Section IV-A, the case study scenario used in our evaluation

is detailed. Next, in Section IV-B, the results obtained are

presented and discussed. Finally, qualitative metrics are dis-

cussed in Section IV-C. The main objective of the performed

experiments is to provide a benchmark of our platform on

emulating heterogeneous scenarios with topologies of different

sizes, as well as to assess how NIEP meets the requirements

defined in Section III.

A. Case Study Scenario

The experimental setup defined is composed of two loca-

tions: the Customer Premises (CP) and an Internet Service

Provider (ISP), as shown in Fig. 3. In CP, a Mininet host

acting as a client is connected to a VNF with limited resources

(1 core, 192MB RAM) running a static router to emulate

Customer Premises Equipment (CPE) connected to an ISP.

At the ISP side, a VNF with more resources (2 cores, 2GB

RAM) running a firewall is connected to a Mininet topology

with a virtual OpenFlow switch (OpenVSwitch), which in turn

is connected to an SDN Controller and a host acting as an

application server.

Four different configurations were used to evaluate how

the number of customers connected to the ISP impact the

performance of NIEP, the number of CPEs as 2, 4, 8 and 16.

In addition, a second setup was devised, in which two firewall

VNFs were deployed on the ISP side as a way to balance the

load imposed by the CPEs.

As for the physical infrastructure used, all CP instances

were deployed on an Intel Core i7-6700k@4.00GHz server,

with 8GB RAM DDR4, 4 cores, and running CentOS 7.

In turn, the ISP was deployed on a server with Intel Xeon

E3-1220v6@3.00GHz, 8GB RAM DDR4, 4 cores, running

Ubuntu 14.04. Servers were connected by a 1Gbps physical

link, in which the CPEs share the available bandwidth. To

deploy the Mininet VM and VNFs, the KVM hypervisor was

used in both servers.

B. Results

We performed 30 executions for each setup and number

of CPs to reach a confidence interval of 99% on all experi-

ments. NIEP can be used to evaluate diverse NFV scenarios,

providing a fine-grained control over several configuration

parameters. The defined topology can be easily changed, for

example, to test different network paths, adding, removing, and

reconfiguring hosts, or changing link properties. As such, we

consider that boot time is an important metric to be evaluated,

since it can impact the process of changing and evaluating

these topologies.

To evaluate NIEP, its components were instrumented to

report their boot time to a centralized server. In the defined

scenario, the longest boot time corresponds to the VNFs on

the CP side, because their number increases across the tests,

putting more stress on the physical server, while the number of

VNFs on the server emulating the ISP changes only between

setups. All VNFs are initialized in parallel, but only after

Mininet. Due to this, the measured boot time is the time

Mininet takes to initialize plus the average boot time of the

VNFs on the CP side, in order to represent the time it takes

for the entire topology to be ready. The obtained results are

summarized in Fig. 4.

In the second setup, two firewall instances were deployed

instead of one, so the boot time is slightly higher on the CPs

177

Fig. 3. Experimentation Scenario.

VNFs, as they need additional configuration to send traffic to

different firewalls.

The exception to this is when deploying two CP instances

(first two bars in Fig. 3), where setup 1 takes 529 ms with an

error margin of 3 ms, while setup 2 takes 532 ms with an error

margin of 2.8 ms. In particular, this occurs because with only

two CP instances there are still free physical cores left to be

used exclusively by the hypervisor and operating system on

tasks related to configuring and deploying virtual machines.

 0

 200

 400

 600

 800

 1000

 1200

 1400

2 4 8 16

T
im

e
(m

s)

Instances

Setup 1
Setup 2

Fig. 4. NIEP’s average boot time.

To evaluate NIEP performance under heavy load, the

throughput can be analyzed to identify unintended bottlenecks

caused by external factors to the emulation (e.g., CPU and

memory limitations). For example, if physical resources were

strangled, the limited ability to process packets would be

reflected in a throughput between CPs and the ISP smaller

than the link speed (1Gbps). iperf [25] was used to measure

NIEP performance, with all CPs sending traffic at the same

time to the server running at the ISP side. The values obtained

from each CP in each evaluation round were aggregated, since

CPs were sharing the same 1Gbps link which connected all

instances with the ISP side.

As shown in Fig. 5, in all test cases for both setups the

bottleneck was always the link between the CPs and the ISP.

This way, increasing the number of instances did not affect

the link throughput, meaning that NIEP scaled well on the

scenario and setups evaluated.

C. Discussion

Regarding scalability, NIEP is able to simulate complex

scenarios, varying the number of hosts, switches and VNFs,

as well as their topology. This behavior is possible because

NIEP’s VNFs do not run within Mininet. Instead, these VNFs

are connected through external bridges, which allow them

to be run in remote locations. On the other hand, although

EsCAPE can also simulate complex scenarios, the VNFs need

to be deployed on the same host, since containers are defined

inside Mininet and connections must be established locally.

In contrast to Mininet, topologies can be defined in a

higher level by using JSON, which simplifies the infrastructure

deployment process. Users can define, in addition to hosts,

switches, and controllers, different VNF types, amount of

allocated resources for VNFs, and the connections among

them, including the capability of creating SFCs.

The use of hypervisor-based virtualization for deploying

VNFs enables the emulation of heterogeneous network infras-

tructures, since a VNF can be directly deployed on any server

and operating system running a compatible hypervisor (e.g.,
KVM, Xen, and VirtualBox) without requiring any change to

the VNF source code. This issue is a limiting factor in the

platforms discussed in Section II-B, which rely on container-

based virtualization.

Finally, containers have inherent security flaws due to the

use of namespaces in a shared kernel [26]. These flaws do

178

 0

 200

 400

 600

 800

 1000

2 4 8 16

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Instances

Setup 1
Setup 2

Fig. 5. NIEP’s throughput.

not affect actual VMs since they are isolated from the kernel.

Therefore, NIEP offers more security when deploying and

testing third-party VNFs, and enables the emulation of NFV

security scenarios more precisely.

V. CONCLUSION AND FUTURE WORK

The Network Function Virtualization (NFV) paradigm aims

to decouple network functions from its associated hardware,

replacing them into a software plane by using existing virtu-

alization technologies. However, despite it’s advantages, the

design and experimentation of Virtualized Network Functions

(VNFs) is still a burdensome process. In this way, emulation

platforms can be used to execute VNFs in realistic environ-

ment, thus contributing to the widely adoption of NFV by

network operators.

In this context, this paper presented NIEP, an NFV In-

frastructure Emulation Platform based on Click-on-OSv and

Mininet. NIEP allows the emulation of different NFV scenar-

ios and VNF design and evaluation, supporting the emulation

of heterogeneous infrastructures, such as Fog computing sce-

narios, composed of devices with different characteristics.

An experimental scenario was designed to evaluate the boot

time and throughput of VMs in NIEP, composed of CP and ISP

sites. The analysis presented shows that the boot time of VNFs

increases almost linearly, indicating almost no impact of NIEP

in the instantiation process of VNFs. Moreover, increasing the

number of VNFs does not interfere in the throughput achieved

by them.

As future work, we aim to provide a user-friendly web user

interface for network operators, where information regarding

VNFs operation acquired through a REST API can be provided

to network operators. Additionally, support to different VNF

development technologies can be achieved, adding support to

solutions like nginx and BRO for VNF design.

ACKNOWLEDGEMENTS

This research was performed partially within the project

“Federated Ecosystem for Offering, Distribution, and Execu-

tion of Virtual Network Functions” (GT-FENDE). The authors

would like to thank Rede Nacional de Ensino e Pesquisa

(RNP), for their support to the GT-FENDE project.

REFERENCES

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, 2016.

[2] K. Lu, S. Liu, F. Feisullin, M. Ersue, and Y. Cheng, “Network function
virtualization: opportunities and challenges,” IEEE NETWORK, vol. 29,
no. 3, pp. 4–5, May 2015.

[3] J. Garay, J. Matias, J. Unzilla, and E. Jacob, “Service description
in the nfv revolution: Trends, challenges and a way forward,” IEEE
Communications Magazine, vol. 54, no. 3, pp. 68–74, March 2016.

[4] M. Imran, A. M. Said, and H. Hasbullah, “A survey of simulators, emu-
lators and testbeds for wireless sensor networks,” in 2010 International
Symposium on Information Technology, vol. 2, June 2010, pp. 897–902.

[5] D. Salopek, V. Vasi, M. Zec, M. Mikuc, M. Vaarevi, and V. Konar, “A
network testbed for commercial telecommunications product testing,” in
2014 22nd International Conference on Software, Telecommunications
and Computer Networks (SoftCOM), Sept 2014, pp. 372–377.

[6] L. da Cruz Marcuzzo, V. F. Garcia, V. Cunha, D. Corujo, J. P. Barraca,
R. L. Aguiar, A. E. Schaeffer-Filho, L. Z. Granville, and C. R. dos
Santos, “Click-on-osv: A platform for running click-based middleboxes,”
in Integrated Network and Service Management (IM), 2017 IFIP/IEEE
Symposium on. IEEE, 2017, pp. 885–886.

[7] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p. 19.

[8] M. Chiosi, S. Wright et al., “Network functions virtualisation (nfv),”
ETSI NFV ISG, White Paper, vol. 1, 2012.

[9] J. Halpern and C. Pignataro, “Service function chaining (sfc) architec-
ture,” Internet Requests for Comments, RFC 7665, 2015.

[10] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, 2015.

[11] M. Team, “Mininet: An instant virtual network on your laptop (or other
pc),” 2012.

[12] B. Sonkoly, J. Czentye, R. Szabo, D. Jocha, J. Elek, S. Sahhaf,
W. Tavernier, and F. Risso, “Multi-domain service orchestration over
networks and clouds: A unified approach,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
ser. SIGCOMM ’15. New York, NY, USA: ACM, 2015, pp. 377–378.
[Online]. Available: http://doi.acm.org/10.1145/2785956.2790041

[13] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” ACM SIGOPS Operating Systems Review, vol. 33, no. 5,
pp. 217–231, 1999.

[14] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch.” in NSDI, 2015, pp. 117–130.

[15] M. Peuster, H. Karl, and S. van Rossem, “Medicine: Rapid prototyping
of production-ready network services in multi-pop environments,” in
2016 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), Nov 2016, pp. 148–153.

[16] G. NFV, “001: Network functions virtualisation (nfv); use cases, v 1.1.
1,” ETSI, December, 2013.

[17] R. Morabito, J. Kjllman, and M. Komu, “Hypervisors vs. lightweight
virtualization: A performance comparison,” in 2015 IEEE International
Conference on Cloud Engineering, March 2015, pp. 386–393.

[18] A. A. Mohallel, J. M. Bass, and A. Dehghantaha, “Experimenting
with docker: Linux container and base os attack surfaces,” in 2016
International Conference on Information Society (i-Society), Oct 2016,
pp. 17–21.

[19] P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and
H. Karl, “Maxinet: Distributed emulation of software-defined networks,”
in Networking Conference, 2014 IFIP. IEEE, 2014, pp. 1–9.

[20] M. Carson and D. Santay, “Nist net: a linux-based network emulation
tool,” ACM SIGCOMM Computer Communication Review, vol. 33, no. 3,
pp. 111–126, 2003.

179

[21] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in Proceedings of the 1st international conference on
Simulation tools and techniques for communications, networks and
systems & workshops. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2008, p. 60.

[22] I. Baumgart, B. Heep, and S. Krause, “Oversim: A flexible overlay
network simulation framework,” in IEEE Global Internet Symposium,
2007. IEEE, 2007, pp. 79–84.

[23] A. Schaeffer-Filho, A. Mauthe, D. Hutchison, P. Smith, Y. Yu, and
M. Fry, “Preset: A toolset for the evaluation of network resilience strate-

gies,” in Integrated Network Management (IM 2013), 2013 IFIP/IEEE
International Symposium on. IEEE, 2013, pp. 202–209.

[24] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Transactions on Computer Systems (TOCS),
vol. 18, no. 3, pp. 263–297, 2000.

[25] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs, “Iperf: The
tcp/udp bandwidth measurement tool,” http://iperf.fr, 2005.

[26] T. Combe, A. Martin, and R. D. Pietro, “To docker or not to docker: A
security perspective,” IEEE Cloud Computing, vol. 3, no. 5, pp. 54–62,
Sept 2016.

180

