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Abstract—Existing adversarial Domain Generation Algorithms
(DGASs) often fail to produce realistic synthetic domains because
their sequential models cannot adequately capture complex char-
acter dependencies within domain names. This paper presents
TITAN DGA, a new approach that addresses this limitation
by integrating a Generative Adversarial Network (GAN) with
a Transformer-based autoencoder, enabling the model to learn
long-range dependencies effectively to generate synthetic do-
mains. The solution incorporates adversarial self-augmentation
to enhance evasiveness through iterative retraining. The model
learns from its own generated samples using two complementary
strategies: a general approach that improves overall generation
quality, and a targeted approach that specifically leverages
previously successful evasions to refine the model’s adversarial
capabilities. Comprehensive evaluation against multiple state-of-
the-art classifiers and competing adversarial DGAs demonstrates
that TITAN DGA achieves superior evasion rates while maintain-
ing realism.

Index Terms—Domain Generation Algorithm, Generative Ad-
versarial Network, Transformers, Adversarial Evasion, Self-
Augmentation, Synthetic Data Generation

I. INTRODUCTION

Domain Generation Algorithms (DGAs) are an important
element of cybersecurity, widely employed by sophisticated
malwares to evade detection. By generating a large and fre-
quently changing list of domain names, DGAs hinder threat
identification and mitigation, thus enabling botnets to main-
tain communication with their Command and Control (C&C)
servers [1]. This technique introduces significant challenges,
particularly in critical environments like datacenter networks,
cloud environments, and operational technology (OT) systems.
The increase in the frequency of Distributed Denial-of-Service
(DDoS) attacks, data exfiltration attempts, and ransomware
- carried out by malware such as GameOver Zeus, Mirai,
and CryptoLocker - highlights the need for more effective
detection and response mechanisms.

A major challenge in detecting DGAs is their rapidly evolv-
ing nature, which renders traditional signature-based methods
like blacklisting ineffective. Attackers continually enhance
their algorithms, integrating sophisticated evasion techniques
and name variation approaches that make malicious domains
appear indistinguishable from legitimate traffic. This evolution
has driven security teams to adopt machine learning-based
detectors [2], creating a dual arms race [3]. As these detectors
have improved, adversarial DGAs have become increasingly
common. Modern approaches employ models like Generative

Adversarial Networks (GANs) to generate realistic domain
names specifically designed to evade even the most advanced
classifiers, which struggle to identify complex and subtle
character patterns in domain strings.

GANs are notable for their ability to generate realistic
data through a competitive process between two neural net-
works: a generator, which creates samples, and a discriminator,
which attempts to distinguish them from real ones. In the
networking domain, this approach has been applied to generate
complete network packets [4] and to metadata and traffic
flows for simulations [5]. In particular, GANs have proven
to be a powerful tool for generating adversarial DGAs. The
evolution of these techniques is evident: initial models like
DeepDGA [6] used autoencoders to compress domains and
a generator to replicate their features. Subsequent efforts
moved beyond autoencoder—based generators: DomainGAN,
for example, demonstrated the use of a Wasserstein GAN
with gradient penalty to produce more diverse and realistic
domain names that better evade detection [7]. More recently,
Zhai et al. introduced CDGA, a controllable GAN-based DGA
framework that enables fine-grained manipulation of domain
attributes for enhanced stealth against modern classifiers [8].

However, despite significant progress, many existing GAN-
based DGAs still rely on models such as Long Short-Term
Memory (LSTM), which generate domains one character at
a time. While this approach captures local n-gram patterns,
it limits the model’s ability to learn the global dependencies
needed for realistic domain structure. The longer a domain
name 1is, the more it tends to suffer from context loss, a
limitation of RNNs caused by vanishing gradients [9]. As a
result, these DGAs can match low-level statistics yet fail to
maintain higher-order coherence, leaving subtle artifacts that
next-generation detection systems can exploit [10]. Further-
more, these models’ performance is often tightly coupled to
the initial training dataset, which can limit their adaptability
against dynamically shifting adversarial strategies [3]. To
address these challenges, recent approaches have explored
improved representation techniques that move beyond raw
character sequences. Effective representation of domain names
is essential for tasks involving generation and detection.

It is essential for the cybersecurity community to continu-
ously analyze modern DGA techniques in order to anticipate
and understand adversarial strategies that exploit weaknesses
in existing detection systems. Systematic analysis of these



advanced DGAs reveals emerging patterns and identifies gaps
in current defense mechanisms, ultimately guiding the design
of more robust and adaptive detectors. In this context, this
work presents an architecture based on GANs integrated with
Transformer-based architectures to generate realistic malicious
domains, thereby advancing research and development of
more sophisticated classifiers. The approach leverages machine
learning methods to precisely model complex semantic and
structural relationships in text sequences, enabling the synthe-
sizing of domains that exhibit high evasiveness against various
detectors. Specifically, the main contributions of this research
are:

o Novel Architecture. TITAN DGA, a new approach for
generating malicious domains that combines a GAN with
a Transformer-based autoencoder. This approach replaces
traditional LSTM encoders and uses Kullback-Leibler
divergence for stabilization, promoting greater diversity
in the generated samples;

o Enhanced Semantic and Structural Modeling. By
employing SentencePiece tokenization together with a
Transformer architecture, the model effectively captures
both short- and long-range dependencies between tokens.
This results in the generation of domains that are more
difficult to distinguish from real ones;

o Progressive Evasion Enhancement through Self-
Augmentation. Two training strategies are investigated
to progressively improve evasiveness: (i) Iterative Self-
Augmentation, which retrains the model on a dynamic
mixture of real domains and synthetic samples generated
in previous stages; and (ii) Targeted Self-Augmentation,
which also retrains on the same mixture of real and
synthetic data, but selects synthetic samples exclusively
from those misclassified as benign by external classifiers.

o Superior Evasion and Diversity. TITAN DGA was
evaluated against three reference classifiers (FANCI,
LSTM.MI, and Bilbo) and compared it with five state-
of-the-art adversarial DGAs (CDGA, CharBot, Decep-
tionDGA, DeepDGA, and MaskDGA). The results show
that TITAN DGA achieves the lowest Fl-scores, demon-
strating its enhanced ability to evade detection while
generating domains that closely resemble real ones.

This work is organized as follows: Section II provides the

necessary background and reviews related work, identifying
key challenges in current DGA generation, such as the limi-
tations of sequential models. Section III details TITAN DGA,
which integrates a transformer-based architecture with a novel
iterative self-augmentation training strategy, and discusses
the challenges and considerations inherent in this approach.
Section IV presents the experimental setup and evaluates the
results of the method against established benchmarks. Finally,
Section V offers concluding remarks and outlines potential
directions for future work.

II. THEORETICAL REVIEW

This section covers the basics behind TITAN DGA: first,
a review of the evolution of DGAs from simple seed-based

methods to more complex wordlist and permutation schemes;
next, a discussion of the generative frameworks that enable
today’s adversarial domain creation; and finally, an exploration
of advanced training paradigms such as self-augmentation and
show how TITAN DGA advances the current state of the art.

A. Background

The Domain Name System (DNS) maps human-readable
names to IP addresses, but botnets exploit this flexibility
to hide their C&C infrastructure. Early malware used hard-
coded DNS records, but once discovered, defenders could
easily blacklist these endpoints [11]. To address this weakness,
DGAs emerged around 2008, enabling bots to compute daily
lists of pseudo-random domains from shared seeds and contact
whichever domains attackers registered [12].

Traditional DGAs fall into four categories: arithmetic-based,
hash-based, wordlist-based, and permutation-based [13]. Al-
though these early generators produced high-entropy domains,
their randomness became a detection point for machine learn-
ing classifiers using statistical distances or models like Ran-
dom Forests [14], [15]. Deep learning, particularly LSTM-
based architectures, further improved detection by modeling
sequential dependencies in legitimate domain names [16].
In response, adversarial DGAs began creating domains that
mimic benign linguistic features using two main strategies:
perturbation and generative modeling. Perturbation approaches
like CharBot introduce minimal character substitutions into
known good domains [17], while generative techniques like
DeepDGA and WordDGA use GANs trained on legitimate
domains to produce novel and evasive names [6], [18].

A standard GAN includes a Generator and Discrimina-
tor in adversarial training: the generator learns to produce
realistic samples from noise, while the discriminator learns
to distinguish them from real data. Many DGA frameworks
combine GANs with autoencoders pre-trained on legitimate
domains to capture structural features [6], [8]. While LSTMs
struggle with long-range dependencies, Transformers address
this through self-attention mechanisms that simultaneously
process all tokens in a sequence [19].

Given the complexity of these adversarial generation tech-
niques and their potential to evade detection, robust evaluation
methodologies are essential to assess both the quality of
synthetic domains and the effectiveness of defense mech-
anisms. Evaluating synthetic data quality and effectiveness
goes beyond simple statistical comparisons; it requires measur-
ing machine learning model performance under four distinct
training and testing protocols: TRTR (Train on Real/Test
on Real), which establishes a baseline by measuring model
performance exclusively on genuine data; TSTR (Train on
Synthetic/Test on Real), which determines whether synthetic
data can replace or augment real data; TRTS (Train on
Real/Test on Synthetic), which assesses how realistic and
evasive the generated samples are; and TSTS (Train on
Synthetic/Test on Synthetic), which measures the internal
consistency of the synthetic dataset itself, detecting issues like
mode collapse or insufficient diversity [20], [21].



A further variant, T(R+S) (Test on Real + Synthetic),
compares a single model against a combined test set of real and
synthetic samples, providing a more challenging assessment of
its resilience across authentic and generated distributions [22],
[23]. Finally, TR+S (Train on Real + Synthetic) examines
mixed-data training: models are trained on a union of genuine
and synthetic samples and then evaluated on a reserved set of
real data [24]. This setting determines whether augmenting
real datasets with synthetic DGAs enhances performance,
robustness, and generalization beyond what real data alone
can achieve [25], [26], a critical consideration for developing
more effective and resilient DGA classifiers.

B. Related Work

GANs have been successfully adapted to create realistic
network-related data, both at the packet [4] and domain
levels. In the domain of DGAs, several GAN-based and
hybrid architectures produce malicious-looking yet diverse
domain names. DeepDGA compresses real domains with an
autoencoder and uses a GAN generator, but cannot capture
long-range character dependencies [6]. Subsequent works such
as CDGA introduce ResNet blocks, tokenization and LSTM
encoders, yet still train autoencoder and GAN separately [8].
TITAN DGA unifies both stages, employs transformers to
model long-term token relationships, and incorporates a Kull-
back-Leibler divergence term to enrich its latent space. Alter-
native methods modify existing domains — DeceptionDGA
adjusts vowel-consonant ratios [3], CharBot randomly swaps
characters [17], and MaskDGA uses adversarial perturbations
extracted from substitute classifiers [10] — but depend on
access to detection models or on limited structural changes.
In contrast, transformer-GAN hybrids like Style Transformer-
GAN and TILGAN generate novel sequences by learning style
and content representations or latent embeddings without par-
allel data, demonstrating strong fluency, diversity and control
in text generation [27], [28].

As DGAs evolved, so did detection techniques—from
block-list matching and query correlation to feature-based
classifiers and deep models. Random Forest methods such as
FANCI use up to 26 handcrafted linguistic features (entropy,
n-gram statistics) to deliver real-time performance but lag
behind deep solutions in recall and adaptability [15], [29].
LSTM-based detectors like LSTM.MI address class imbalance
and achieve high Fl-scores [30], while hybrid CNN-LSTM
architectures (e.g., BILBO) combine local and sequential
feature learning to improve AUC and temporal robustness
[31]. These advances underscore the strength of end-to-end
deep learning for both generating and detecting adversarial
domains, motivating the focus on GAN-driven DGA synthesis
that maximizes diversity and evasion against heterogeneous
classifiers.

C. DISCUSSION

In summary, the evolution of malicious domain genera-
tion has progressed from simple domain manipulations to
sophisticated adversarial methods powered by GANs. Seminal

efforts like DeepDGA [6] and CDGA [32] enhanced realism
by coupling autoencoders with tokenization schemes, yet they
remained limited by distinct encoding/generation stages and an
inability to model long-range dependencies effectively [33].
By contrast, TITAN DGA, presented in the next section,
tightly integrates its autoencoder and GAN components, lever-
aging a transformer architecture and the Kullback-Leibler
divergence. This unified design produces coherent, highly
evasive domains out-of-the-box, without the need for classifier-
specific adjustments, thereby directly addressing the shortcom-
ings of prior approaches.

III. THE TITAN DGA ARCHITECTURE

The work focuses on generating domain names with a
GAN architecture built on transformers and augmented by a
self-augmentation module. This design allows the model to
capture both short- and long-range token dependencies while
leveraging the variability injected by self-augmentation to im-
prove generalization and robustness. Consequently, the model
achieves higher evasion rates and produces domains more
similar to real ones. The proposed TITAN DGA architecture
— shown in Figure 1 — comprises five main stages:

1) Datasets: represents the initial dataset of legitimate
domains used to pre-train the GAN, as well as the adver-
sarial domains selected during TITAN DGA’s retraining
stage. Additionally, the datasets used for training the
classification models are also processed during this step;

2) Preprocessing: in this stage, legitimate domains have
their TLDs removed and are then tokenized with Sen-
tencePiece — a subword tokenizer that builds a com-
pact, language-agnostic vocabulary and handles rare or
unseen character sequences by segmenting them into
statistically derived subword units — while also in-
serting special boundary tokens. Domains generated by
TITAN DGA are also tokenized using a simpler, rule-
based tokenizer. Finally, these processed legitimate and
generated domains are merged into a single dataset,
reducing overall vocabulary complexity and priming the
data for the autoencoder;

3) Transformer-based Autoencoder GAN: this module
combines a Transformer-based Autoencoder with a GAN
to learn compact latent representations of domain names.
The encoder projects tokenized domains into continuous
vectors that capture syntactic and semantic features,
which serve as real samples during GAN training. The
generator produces synthetic latent vectors while the
discriminator distinguishes them from encoder-derived
ones. The decoder reconstructs domain names from
both real and generated vectors, ensuring consistency
and syntactic validity. The system is trained end-to-end
with a loss function that incorporates Kullback—Leibler
divergence to regularize the latent space and enhance
generation quality, producing realistic, diverse domains
that retain the structure of legitimate examples [28];

4) Post-processing: after the decoder reconstructs the do-
main names, a validation filter ensures compliance with
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RFCs 1034 and 1035. Subsequently, a valid Top-Level
Domain (TLD) from a predefined list is appended to
each domain. This approach relieves the GAN of TLD
generation responsibilities while guaranteeing the struc-
tural correctness of the final domains;

5) Retraining: in this final stage, the structurally valid
domain names from the previous step undergo TLD
removal and are evaluated by three state-of-the-art DGA
classifiers: FANCI [29], LSTM.MI [30], and Bilbo [31].
Only domains that are misclassified as legitimate by
all three classifiers are retained, effectively filtering
out easily detectable DGA samples. These remaining
domains are then tokenized and incorporated into the
GAN’s training dataset for the next iteration.

A. Datasets

This research uses four datasets for different experimental
purposes. The first dataset, "OB” (Only Benigns), contains
240,000 legitimate domains from the Tranco list [34] and
serves two functions: initial GAN training and providing real
domain samples for self-augmentation. The second dataset is
a collection of ten datasets that systematically combine the
OB dataset with increasing amounts of TITAN DGA-generated
domains, with synthetic-to-real ratios from 0.10 to 1.00. The
third dataset, ”CT” (Classifiers Training), enables classifier
training on real-world data by combining 500,000 legitimate
domains from Tranco [34] with 500,000 DGA-generated do-
mains from DGArchive [35]. The DGA samples include ten
families with diverse generation methods: two hash-based
(Bamital and Dyre), five arithmetic-based (Banjori, Conficker,
Cryptolocker, Nymaim, and Pykspa), and three wordlist-based
(Gozi, Matsnu, and Suppobox). Finally, dedicated evaluation
datasets were constructed for each baseline DGA investigated
in this study: CDGA [32], CharBot [17], Deception DGA [3],
DeepDGA [6], and MaskDGA [10]. Each evaluation dataset
contains 10,000 legitimate domains from Tranco [34] and
10,000 domains generated by the corresponding adversarial
DGA.
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B. Preprocessing

The data preprocessing methodology varies based on
whether self-augmentation techniques are applied. The pre-
processing pipeline begins with the systematic removal of
Top-Level Domains (TLDs) from all domains within the OB
dataset. These TLDs, including standardized extensions such
as .com, .org, and .net, represent the highest hierarchical
level in domain name architecture and are derived from a
finite, predefined set maintained by international standards
organizations. Given their limited variability and adherence
to predetermined structural conventions, TLDs are deliberately
excluded from the generation process, as they do not contribute
meaningful diversity to the GAN training procedure.

Following TLD removal, the processed OB domains un-
dergo segmentation using SentencePiece [36], an advanced
text tokenization framework developed by Google specifi-
cally for neural text processing applications. This tool pro-
vides the critical advantage of enabling vocabulary definition
prior to model training, thereby establishing consistent tok-
enization standards across the dataset. Among the available
segmentation techniques, the Unigram Language Model ap-
proach was selected due to its demonstrated superiority in
handling out-of-vocabulary terms and morphological varia-
tions—characteristics frequently encountered in domain name
structures. This segmentation process decomposes domain
names into smaller subunits, as exemplified by the transforma-
tion of “facebook” into the tokens “’face” and ”_book”, where
the underscore indicates word boundary preservation.

The preprocessing pipeline concludes with the application
of a streamlined tokenizer that systematically maps the pre-
viously established tokens to corresponding numerical in-
dices, facilitating neural network processing. This tokenization
step incorporates essential special tokens, including start-of-
sequence (sos) and end-of-sequence (eos) markers, which
provide crucial structural information for sequence generation
tasks. Importantly, this unified tokenization process is applied
consistently to both the original OB domains and the syntheti-
cally generated domains produced during the retraining phase
for self-augmentation, ensuring methodological consistency



across all experimental conditions.
C. Transformer-based Autoencoder GAN

The GAN architecture employed in this work consists of
a generator, a discriminator, and a transformer-based autoen-
coder. In the autoencoder, both the encoder and the decoder
are composed by two self-attention layers with 16 attention
heads, followed by a feedforward layer with 512 units and
an embedding dimension of size 512. Both the generator
and discriminator are implemented as single-layer Multi-Layer
Perceptrons (MLPs) with 128 neurons. The LeakyReLU acti-
vation function is used to ensure training stability, and the loss
function is based on the Kullback-Leibler (KL) divergence, as
it encourages the generation of diverse samples that closely
follow the distribution of real data. The generator maps noise
samples from a standard normal distribution £ ~ N(0,1)
through the MLP g3(¢), resulting in an implicit latent distribu-
tion pg(z). The training objective is to align this distribution
with the aggregated posterior of the encoder, defined as
4¢(2) = Exp, (2) 26 (2]2)], by minimizing the KL divergence:

This term is incorporated into the overall loss function with
a weighting coefficient, encouraging the generator to capture
the full diversity present in the encoded distributions. Unlike
traditional variational autoencoders (VAEs), which regularize
each individual latent vector ¢(z|z) to match a fixed prior
(typically A/(0, I)), TITAN applies KL divergence at the level
of the aggregate latent distribution. Specifically, it aligns
the overall distribution of latent vectors produced by the
generator with that of the encoder, promoting compatibility
and diversity in the latent space without imposing a predefined
prior. In addition, a second KL divergence term is introduced
to enhance the decoder’s robustness. This auxiliary term
measures the discrepancy between the encoder’s distribution
over reconstructed samples Z = F(G(g(¢))) and the original
latent distribution g4 (2):

Laec = Dx1.(q4(2) || Pg(2)) 2)

This additional penalty ensures that the decoder learns to
handle latent representations generated by the GAN, promot-
ing higher fidelity in text reconstruction even when exposed
to latent vectors not seen during training.

D. GAN Training

For model training, the Adam optimizer was used across all
components of the GAN architecture. However, different learn-
ing rates were assigned to each module to address their specific
optimization requirements: the generator was trained with a
learning rate of (0.0004), the discriminator with (0.0001), and
the autoencoder with a higher rate of (0.06).

The latent input to the generator consists of 100-dimensional
vectors sampled from a standard normal distribution A/(0, I).
A batch size of 256 was adopted for balancing training stability

and efficient memory usage. Additionally, a 30% dropout
was applied at various points in the autoencoder, including
after the attention heads and the feedforward layer. Finally,
controlled Gaussian noise was introduced during both training
and inference within the autoencoder. This technique aims to
improve the model’s robustness by encouraging the learning
of latent representations that remain stable under small input
changes, thereby improving generalization performance.

E. Post-processing

The post-processing step involves two main tasks: vali-
dating domains generated by the GAN and assigning TLDs.
Generated domains are filtered according to the specifications
defined in RFCs 1034 and 1035, which establish the syntax
rules and naming conventions for domain names in the DNS
system. Beyond removing invalid domains, this validation
process also prevents the generation of structurally similar
variants, improving the overall syntactic quality of the output.

TLD assignment is performed using a fixed list that includes
the 50 most common traditional TLDs registered globally, as
well as the 50 most frequent new gTLDs, based on statistics
provided by [37]. The term “new gTLDs” refers to an expan-
sion introduced by ICANN starting in 2013, which includes
a wide variety of more descriptive or brand-oriented domains
such as .shop, .tech, and .xyz. This selection strategy
ensures structural consistency with real-world distributions and
increases the likelihood that the generated domains resemble
those commonly observed on the public internet.

Unlike other adversarial DGA models in the literature,
TITAN DGA performs a post-processing that enforces com-
pliance with DNS syntax standards and incorporates realistic
TLDs. As shown in Table I, domains generated by TITAN
DGA exhibit greater lexical coherence and semantic plausi-
bility compared to those produced by other models, many
of which generate purely random or malformed strings. This
qualitative advantage directly results from post-processing and
filtering stages, which are more rigorous than those used in
prior approaches.

F. Retraining

The retraining stage represents the core component of
the self-augmentation mechanism. In this step, the filtered
domains generated by the GAN — initially trained only on
legitimate domains — are evaluated by the FANCI [29],
LSTM.MI [30], and Bilbo [31] classifiers. Inference is per-
formed one classifier at a time, following an order based on
their performance on the CT dataset: starting with FANCI,
followed by LSTM.MI, and ending with Bilbo.

After each round of inference, domains that are classified as
true positives (i.e., correctly identified as DGAs) are removed.
Only those categorized as legitimate are passed to the next
classifier in the sequence. At the end of this filtering process,
a dataset containing 240,000 DGA domains that successfully
evaded all three classifiers is created. This dataset serves as the
foundation for constructing the various synthetic-to-real ratio
datasets. Before being reintegrated into the training pipeline,



TABLE I: Examples of domain names generated by different Adversarial DGA models (TLDs removed)

TITAN DGA CDGA MaskDGA CharBot Deception DGA DeepDGA
quickupsports riwoim aahrdjjrwth provenfvnners  jtrogani—ebuesmeorean-we firiaps
greenservice presyouryouth uoruiddvwdwuihkul kricmbc trtegogonsc sirgivrv
sebeautyproducts  numberconditions ggupitmefz bxzlerweb likinkew laner
fitnesslife360 plsystemlegaledu jxhwkhmsza guirpad yalowltiveraf mivognit
timemarketbox Venproevo wwypddbcoodl eicelkran liydchousyorkv qiurdeees

however, the domains are tokenized using SentencePiece [36]
to ensure consistent segmentation, aligned with the prepro-
cessing applied to the OB dataset.

IV. EXPERIMENTS AND RESULTS

The conducted experiments aimed to assess both the perfor-
mance and adaptability of the synthetic data produced by TI-
TAN DGA through the self-augmentation process. The gener-
ated domains were evaluated using well-established classifiers
from the literature to measure how effectively they can evade
detection. Additionally, their spatial distribution was analyzed
using dimensionality reduction techniques to examine disper-
sion and overlap with legitimate domains, providing insights
into structural similarity and evasion potential. A compre-
hensive dataset was constructed with sufficient representation
from major DGA families to enable robust training of the
classification models. The experimental procedure followed
these steps:

1) Training of classification models: Three classification
models were trained based on solutions from the liter-
ature [29]-[31]. Each classifier was trained individually
using 80% of the CT dataset. This paper implementation
of the FANCI model [29] used 16 features instead of the
original 21 features due to TITAN DGA not generate
TLDs. All classifiers were configured according to the
original architectural and hyperparameter specifications
described in their respective papers;

Classifier inference: After training completion, an in-
ference was performed using domains generated by TI-
TAN DGA, both before and after the self-augmentation
process. This evaluation measured the evasion success
of the generated domains by determining the extent to
which they were misclassified or remained undetected
by the classifiers;

Comparison with other DGAs under adversarial re-
training: To evaluate the robustness of the TITAN DGA
models against existing adversarial approaches, adver-
sarial retraining were performed using synthetic domains
generated by different DGA techniques. Five well-
established adversarial DGAs was included from the
literature: CDGA [32], CharBot [17], DeceptionDGA
[3], DeepDGA [6], and MaskDGA [10]. For each
adversarial DGA, the classifiers were retrained on a
balanced dataset consisting of 50% real domains and
50% synthetic domains generated by that specific model.
This experimental setup enabled a direct comparison
of evasiveness across different adversarial techniques
and revealed how the inclusion of adversarial domains
impacts detection performance;

2)

3)

4) Computation of complementary metrics: Additional
metrics were computed to assess the quality and distri-
bution of generated domains. These included the Wasser-
stein distance between generated and real domains, and
the structural distribution of data points in the vector
space. To analyze the latter, two widely used dimen-
sionality reduction techniques were applied: Principal
Component Analysis (PCA) and t-distributed Stochastic
Neighbor Embedding (t-SNE).

The experiments were validated using well-established eval-
vation metrics. Classifier performance was assessed using
five standard metrics: Precision, Accuracy, Recall, F1-Score,
and AUC/ROC (Area Under the Curve), which measures the
probability that a classifier ranks a randomly chosen positive
instance higher than a randomly chosen negative one. All
metrics range from O to 1, with higher values indicating
better performance. Initially, classifiers were evaluated on the
training dataset to validate their ability to distinguish between
legitimate and generated domains.

These metrics were then used to evaluate TITAN DGA'’s
evasion performance on datasets generated before and after
the application of self-augmentation. For evasion assessment,
lower metric values indicate better performance, as they re-
flect the classifiers’ inability to detect the generated mali-
cious domains. The performance of the DGA without self-
augmentation was compared against the worst-case evasion
scenario with self-augmentation, as well as against state-of-
the-art DGAs under adversarial retraining. Additionally, PCA
and t-SNE were employed to analyze domain distribution
in the latent space and to illustrate the separation between
legitimate and GAN-generated domains.

TABLE II: Performance of each classifier on CT dataset

Classifier | Accuracy | Precision | Recall | F1-Score | AUC/ROC
FANCI 0.8304 0.8394 0.8170 0.8281 0.8304

LSTM.MI 0.9460 0.9344 0.9594 0.9467 0.9879
BILBO 0.9498 0.9477 0.9521 0.9499 0.9895

As shown in Table II, all classifiers achieved solid perfor-
mance on the CT dataset, although with varying degrees of
effectiveness. Bilbo stood out with the best overall results,
reaching an Accuracy of 0.9498 and an AUC/ROC of 0.9895,
indicating excellent discrimination between benign and ma-
licious domains. LSTM.MI followed closely, also presenting
high performance (AUC/ROC of 0.9879), and balanced pre-
cision and recall as reflected in its F1-Score. FANCI, while
outperformed by the deep learning-based models, still obtained
competitive results, with an Accuracy of 0.8304 and Precision
of 0.8394. These findings reinforce the advantage of neural
networks in capturing complex DGA patterns, while also



TABLE III: Demonstration how different levels of self-augmentation affect classification performance. The synthetic-to-real
ratio represents the proportion of synthetic samples added to the real dataset (e.g., 0.10 = 10% additional synthetic data)

Synthetic-to-Real Ratio | Classifier | Accuracy | Precision | Recall | F1-Score | AUC/ROC
0.00 (baseline) BILBO 0.5055 0.5393 0.0754 0.1323 0.5217
0.10 FANCI 0.5206 0.5479 0.2364 0.3303 0.5206
0.20 BILBO 0.5099 0.5725 0.0778 0.1370 0.5354
0.30 FANCI 0.5201 0.5466 0.2352 0.3289 0.5201
0.40 LSTM.MI 0.5014 0.5111 0.0669 0.1183 0.5108
0.50 BILBO 0.5028 0.5226 0.0636 0.1134 0.5261
0.60 FANCI 0.4930 0.4814 0.1811 0.2632 0.4930
0.70 FANCI 0.4722 0.4167 0.1394 0.2089 0.4721
0.80 BILBO 0.5058 0.5454 0.0697 0.1236 0.5245
0.90 FANCI 0.4947 0.4860 0.1845 0.2675 0.4947
1.00 FANCI 0.5108 0.5262 0.2167 0.3070 0.5108

showing that traditional classifiers like FANCI remain effective
under certain conditions.

Table III shows that classifiers exhibited significantly lower
detection performance against domains generated by self-
augmented GANs compared to the baseline (0.00 ratio),
where GANs were trained exclusively on benign domains.
In this step, classifiers were trained on the same dataset
(CT) as in Table II and chose the classifier that achieved
better AUC/ROC for each synthetic-to-real ratio. For instance,
Bilbo’s AUC/ROC dropped from 0.5217 in the baseline to
0.4930 with self-augmentation using FANCI at a 0.60 ratio.
While these decreases appear modest (5.5%), they represent
substantial improvements in evasion capability given that
classifiers already struggled in the baseline scenario. This
finding highlights how even small perturbations can signifi-
cantly compromise detection systems when they operate near
their performance limits. FANCI consistently achieved the
highest recall and F1-Score values across ratios, suggesting
broader detection tendencies but with increased false positives.
The AUC/ROC was used as the primary evaluation metric
because it captures the classifier’s overall ability to separate
benign and malicious domains independently of thresholds,
enabling consistent comparison across different classifiers and
synthetic-to-real ratios while revealing subtle shifts in model
confidence crucial for evasion evaluation.

The motivation behind self-augmentation extends beyond
simply increasing training data volume to enabling feedback-
oriented refinement of the generator’s latent space. By in-
corporating its own successful outputs back into training,
the GAN iteratively explores regions of the latent space that
produce harder-to-detect domains. This process creates a form
of evasion-driven self-adaptation that would be difficult to
achieve through conventional data augmentation with benign
domains alone. Self-augmentation therefore acts as a mecha-

nism for incremental discovery of evasive structures, guided by
the classifier’s own detection weaknesses rather than relying
on manual data expansion.

Table IV summarizes the evasion performance of different
adversarial DGA models against adversarially retrained clas-
sifiers. Bilbo was selected for this evaluation due to its consis-
tently superior AUC/ROC performance on the CT dataset. De-
spite targeting a more robutst classifier, TITAN DGA achieved
more effective evasion than all the other adversarial DGAs
from the literature. Even at its least evasive configuration (0.20
synthetic-to-real ratio), TITAN outperformed its baseline (0.00
ratio) in Recall and F1-Score, demonstrating improved evasion
while maintaining realism. Compared to CDGA and CharBot,
TITAN with self-augmentation at 0.20 achieved respectively
up to 30.0% and 23.7% lower recall, and up to 18.8% and
17.6% lower Fl-score. These reductions indicate stronger
evasion performance, even in adversarial retraining scenarios,
where most models tend to overfit to detection patterns.

To assess the similarity between the distribution of domains
generated by each adversarial DGA and the distribution of
legitimate domains, the Wasserstein distance for each model
was computed. First, a Word2Vec Skip-gram model was
trained using the legitimate domains, with an embedding size
of 256 dimensions. For each DGA, the domain tokens were
mapped into the same embedding space. Then, for each of
the 256 embedding dimensions, the Wasserstein distance was
computed between the distribution of values for the legitimate
domains and that of the adversarial DGA domains. The final
aggregated Wasserstein distance was obtained by averaging
the distances across all embedding dimensions.

As shown in Table V, the TITAN DGA achieved the
lowest Wasserstein distance (0.00122) when compared to other
adversarial DGA models. This metric reflects the average
vectorial similarity between the generated domains and the

TABLE IV: Performance of the classifier retrained with adversarial retraining in several DGA families

DGA Family Accuracy | Precision | Recall | F1-Score | AUC/ROC
TITAN 0.6570 0.6721 0.6130 0.6412 0.7071
TITAN 0.20 Synthetic/Real ratio 0.6675 0.7099 0.5665 0.6301 0.7389
CDGA 0.7863 0.8137 0.7425 0.7765 0.8744
DeepDGA 0.9995 1.0000 0.9990 0.9995 0.9923
DeceptionDGA 0.7810 0.7461 0.8520 0.7955 0.8647
MaskDGA 0.9555 0.9691 0.9410 0.9548 0.9923
CharBot 0.7515 0.7256 0.8090 0.7650 0.8323




real domain distribution, as learned through word embedding
representations. The significantly lower distance achieved by
TITAN DGA indicates that its synthetic domains are not
only structurally coherent but also semantically aligned with
legitimate domain patterns.

TABLE V: Wasserstein distance from legit dataset

Adversarial DGA | Wasserstein Distance
TITAN 0.00122
CDGA 0.00527
DeepDGA 0.04157
DeceptionDGA 0.00309
MaskDGA 0.00989
CharBot 0.00241

This result highlights TITAN’s capability to generate do-
mains that are highly evasive and difficult to distinguish
from real ones. Such effectiveness is further supported by
the recall analysis presented in Tables III and IV, where
TITAN DGA—with self-augmentation—consistently achieved
the lowest recall values among all evaluated models. This
implies that the generated domains are more likely to bypass
detection mechanisms, reinforcing the practical impact of
TITAN’s latent space modeling and post-processing strategies.
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To assess the similarity between the domains generated
by TITAN DGA and legitimate domains, two dimensionality
reduction techniques were employed: PCA and t-SNE. The
PCA projection (Figure 2) shows that TITAN DGA domains
overlap substantially with the real domains in the reduced
space, indicating that their global distributional characteristics
are closely aligned. In addition, t-SNE (Figure 3) reveals
that TITAN-generated domains are densely embeded with
legitimate ones, reflecting strong local structure similarity in
the embedding space. Together, these projections confirm that
TITAN DGA is capable of producing highly realistic domains
that mimic both the overall and fine-grained distributional
patterns of legitimate traffic, reinforcing its evasiveness and
the challenge it poses for detection mechanisms.

V. FINAL REMARKS

This work introduces TITAN DGA, a novel architecture that
combines Generative Adversarial Networks, a Transformer-
based Autoencoder, and an adversarial self-augmentation strat-
egy to generate highly evasive domain names that closely re-
semble legitimate ones. By integrating these three components,
TITAN DGA addresses key limitations of prior adversarial
DGA models, including their inability to model long-range
token dependencies and adapt to evolving detection mecha-
nisms. The self-augmentation process enables the model to
iteratively refine its latent space based on its own evasive
outputs, producing domains that are both harder to detect and
more lexically and syntactically aligned with real-world traffic.

The evaluations demonstrate that TITAN DGA achieves
superior evasion performance even under adversarial retraining
scenarios, maintaining low detection rates compared to other
adversarial DGAs, even when classifiers are trained on its
generated domains. The self-augmentation mechanism shows
that TITAN DGA benefits from synthetic sample inclusion,
improving overall performance while remaining highly evasive
against classifiers. The similarity between TITAN-generated
domains and legitimate ones is demonstrated through lower
Wasserstein distances, and analysis of both PCA and t-SNE.
These results indicate that TITAN DGA domains follow a dis-
tribution closely aligned with legitimate domains, confirming
the effectiveness of the proposed approach.

Future work will aim to enhance the TITAN DGA archi-
tecture in three key areas. First, an adaptive self-augmentation
mechanism will be investigated, capable of dynamically ad-
justing synthetic domain injection rates based on feedback
metrics such as classifier uncertainty. This strategy is expected
to enable more effective refinement of evasive behavior during
training. Second, the architecture will be evaluated in more
realistic detection environments that incorporate contextual
and behavioral features, including DNS traffic patterns and
WHOIS metadata, to better assess real-world evasiveness ca-
pabilities. Finally, the use of alternative tokenization strategies
will be explored, such as pre-trained language models or
semantic embeddings (e.g., BERT, RoBERTa, or Word2Vec),
with the goal of enriching the model’s representational capac-
ity and further improving realism of generated domains.
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