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Abstract—Intrusion detection in virtualized environments is
vital due to the widespread adoption of virtualization technology.
A common strategy for achieving this task involves collecting
data from the virtual environment and providing it to intrusion
detection solutions. However, these solutions can be affected by
other elements present in the virtual environment. An approach
that has gained prominence is applying machine learning (ML)
models to perform anomaly-based intrusion detection based on
system call traces. In Linux-based environments, many tools
can be used for collecting the system calls issued by processes
and containers; two of the most popular are strace and sysdig.
This paper introduces a dataset of system call traces collected
with sysdig with a focus on anomaly-based intrusion detection
for containerized applications and uses this dataset to compare
the effectiveness of strace and sysdig data and evaluate the
performance of five different ML models for anomaly detection.
The results reveal that sysdig is an attractive option, enabling
the collection of system call traces with lower overhead than
strace while achieving good detection performance with several
ML models.

Index Terms—Intrusion Detection, Anomaly Detection, Security.

I. INTRODUCTION

Virtualization technologies within cloud computing have
emerged as a promising solution to address the challenges
posed by computing environments that rely on dedicated
hardware. Virtualization enables a single physical machine to
deploy and manage multiple virtual computing environments,
offering fine-grained control over available computing resources
and providing high flexibility, mobility, and scalability [1].
Consequently, it is possible to provide computing as a service
[2], one capable of delivering a myriad of other computing-
enabled services within virtual environments [3]–[5].

There are multiple strategies for virtualization. In particular,
operating system-level virtualization takes advantage of the
kernel to create an isolated environment for a specific process.
This virtualization strategy, also known as containerization,
enables resource sharing across a computing system while iso-

lating processes from each other and the underlying operating
system [6], [7]. Thus, containers offer low consumption of
computing resources, minimal processing overhead, and do not
depend on a complex hypervisor.

However, the popularity of containerized environments raised
security concerns given the lower degree of isolation compared
to hypervisor-based virtualization, with multiple attacks having
been explored and studied [8]. These attacks have exploited
various misconfigurations, deliberate backdoors, and software
vulnerabilities to perform attacks such as break-ins, privilege
escalation, side-channel attacks, and denial of service [8].

In light of the previously presented scenario, industry and
academic researchers have been exploring intrusion detection
systems. These systems aim to detect attacks within containers.
Such intrusion detection systems can assess both the network
and the host. Therefore, by employing data classification and
anomaly detection techniques, intrusion detection systems can
identify unexpected patterns and those that pose a risk to the
system, allowing managers to trigger mitigation and protection
mechanisms [7], [9]. Recently, several works have proposed
solutions for intrusion detection in virtualized environments
using techniques including system call analysis [7], [10], real-
time behavior monitoring [11], and rule-based or machine
learning-based analysis [12].

In Linux and other Unix derivatives, a tool often used
for capturing system calls issued by applications is strace
[13]. Despite having been used in the evaluation of intrusion
detection systems based on system call analysis [7], [14],
strace is not really suited for real-time data collection, since it
imposes a significant performance penalty on the monitored
applications. Therefore, a recent trend has been the use of
sysdig [15], a Linux-specific tool, to collect system call data
for IDS purposes. For instance, [16] have shown the feasibility
of using sysdig data to perform anomaly-based intrusion
detection for containerized applications based on Sequence
Time-Delay Embedding (STIDE) and Bag of System Calls



(BoSC). Within the same scope, [17] proposes a framework for
anomaly detection for containers running in Kubernetes clusters;
although the proposal leverages sysdig data for anomaly
detection using machine learning, it lacks empirical evaluation
of the intrusion detection aspects. Finally, [18] uses sysdig
data in an IDS that first classifies running containers using a
clustering algorithm (DBSCAN) and then performs anomaly
detection using a RandomForest classifier trained for each
specific container class, achieving positive results. So far, the
literature has not evaluated differences among machine learning
algorithms in this context, nor directly compared sysdig and
strace as data sources for anomaly detection based on system
calls.

This paper aims to bridge these gaps, comparing the
effectiveness of sysdig and strace data for anomaly-based IDS
and evaluating five machine learning algorithms in this context.
In summary, this paper presents the following contributions:

• We highlight the distinctions between using sysdig and
strace for intrusion detection;

• We develop a novel, publicly available dataset containing
system call traces collected with sysdig for 10 WordPress
plugins (including malicious and non-malicious execu-
tions); and

• We propose a Machine Learning (ML) approach for
intrusion detection using sysdig data, and evaluate it using
five different algorithms.

The remainder of this paper is structured as follows.
Section II provides background on anomaly-based intrusion
detection and system calls. Section III proposes an IDS
based on system call traces collected using the sysdig kernel
module. Section IV presents our experimental evaluation,
comparing the performance of ML algorithms with sysdig
data as well as the effectiveness of anomaly detection using
data collected with strace and sysdig. Section V reviews related
work on intrusion detection in container-based virtualization
environments. Finally, Section VI concludes the paper.

II. BACKGROUND

This section provides relevant background concepts in two
parts. In Section II-A, we present the fundamentals of anomaly-
based intrusion detection. In Section II-B, we define and explain
system calls.

A. Anomaly-based Intrusion Detection

In computing, it is possible to define an anomaly as a pattern
or phenomenon that deviates from the expected behavior of data,
commonly referred to as normal behavior [19]. It is important to
note that anomalies may arise in a computing system for various
reasons, including malicious activities, software or hardware
malfunctions, and incorrect configuration setups, among others.

Anomaly detection involves the process of identifying
unexpected patterns and bringing them to the attention of an
interested entity. Specifically, anomaly-based intrusion detection
systems typically collect events of interest that occur in a
target system and construct a statistical model describing the
normal behavior of these data. Consequently, data collected

during system operation are evaluated against this model, and
any deviation from the expected outcome is flagged as an
anomaly [20]. The outcome, in turn, can be presented as a
label (categorical result) or a score (continuous result) [21].

However, there is no universal anomaly detection solution.
Detection solutions typically focus on specific scenarios, consid-
ering their diverse and particular characteristics and behaviors
as parameters to identify a range of potential anomalies. Thus,
in the context of this paper, we regard anomalies as security
threats capable of compromising the computing system or
leaking data through the execution of malicious and undesirable
operations. The process of identifying such threats is referred
to as anomaly-based intrusion detection, or simply anomaly
detection.

B. System Calls

Applications in the user space interact with the operating
system via system calls. When an application needs resources
located in the kernel space, it initiates a request through system
calls to access these privileged resources. Examples of such
resources relate to the process life cycle, network operations,
and file management [7], [22].

Since system calls mediate the access of userspace processes
to critical system resources, monitoring these calls provides
rich insights into an application’s behavior. As noted by [23],
system calls can be categorized and classified based on their
threat levels. This categorization is valuable in the context of
intrusion detection processes [24].

Monitoring system-level calls for security purposes is a well-
established technique in the literature [25]–[27]. Furthermore,
other proposals have explored similar resources, such as system
calls for detecting security leaks and malicious intruding
processes, such as Binder calls in Android systems [28]–[30]
and WASI calls in WebAssembly applications [31], [32].

III. PROPOSAL

There are several tools and techniques for collecting and
monitoring information from running applications. For example,
tools such as strace [13] and sysdig [15] are commonly used
in Linux to record the system calls issued by applications.
However, while both tools serve the same purpose, they employ
different strategies.

strace uses the ptrace mechanism [33]: the kernel interrupts
every system call issued by the monitored process twice to
allow strace to collect data about the call (at entry to record
the arguments, and at exit to save the return value). Since
the system call is interrupted by the kernel and strace runs
in userspace, each of these interruptions involves at least two
context switches (kernel → user, user → kernel). The result is
that applications run much slower when monitored with strace,
and may even behave differently if they are timing-sensitive.

sysdig relies on a kernel probe (sysdig-probe) that, when a
system call is issued, gathers a small amount of data about the
call and writes it to a memory buffer. This buffer is mapped in
userspace, from where the data are read asynchronously by the
sysdig binary. Therefore, sysdig has a much smaller overhead



compared to strace, since system calls are only interrupted
while the necessary bits are copied to the buffer in the kernel,
with no context switches. These two approaches are shown in
Figure 1.
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Fig. 1. Capturing system call traces using strace vs sysdig.

Our previous work [7] explored anomaly-based intrusion
detection for containerized applications using system calls
collected with strace, achieving positive results. The supe-
rior performance of sysdig prompted us to investigate the
effectiveness of performing anomaly detection using system
calls collected with sysdig. The basic idea is to use sysdig
to collect system call traces from benign and malicious
containerized applications, and use these traces to train and
test machine learning models that perform trace classification.
Our experimental evaluation is presented in Section IV.

IV. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of our
proposal. Section IV-A describes the experimental methodology
and environment, and explains the strace dataset and how we
generated the new sysdig dataset. Section IV-B presents and
discusses our results.

A. Methodology

Assessing the effectiveness of sysdig data for anomaly-based
intrusion detection using machine learning classifiers involves
four basic steps:

1) Selecting suitable classification algorithms;
2) Finding or generating an appropriate dataset;
3) Training and testing the classifiers using this dataset; and
4) Evaluating the results.
We evaluated the following classification algorithms:
• RandomForest;
• XGBoost;
• Nu-Support Vector;
• MultiLayer Perceptron; and
• AdaBoost.

We selected algorithms that performed well in previous work,
enabling a comparison with other studies [7], [34].

While we were able to reuse the strace dataset from
[7], we did not find a sysdig dataset that was appropriate
for our evaluation, and so had to build a new dataset. For
this dataset, we conducted experiments on a system running
Linux Mint 21.2 (with kernel 5.15.0) and Docker (version
20.10.21) as the container engine. As a target application,
we used WordPress1 version 4.9.2 with ten different plugins2

with known vulnerabilities, as shown in Table I. Three of
these plugins—Social Warfare, File Manager, and Simple
File List—were the same evaluated in [7], enabling us to
compare results between sysdig and strace for these plugins.
The application traces were collected by manually interacting
with each plugin in isolation, performing malicious and non-
malicious interactions. Each trace contains all system calls
issued by the application during execution. The created sysdig
dataset encompasses 10 distinct attack types (three of which
overlap with those in [7]) and 10 normal patterns. In total, we
collected 100 traces, obtained by executing each pattern five
times. Our dataset is publicly available3.

The classification algorithms were trained with 50% of the
available data and tested with the remaining 50%. We used
the scikit-learn library [35], with default parameters for each
model.

B. Results and Discussion

Table II shows the results obtained by each classifier model
when applied to our sysdig dataset and the best results
from the strace dataset for three models—RandomForest,
MultilayerPerceptron, and AdaBoost. As mentioned earlier,
the sysdig tracer provides greater flexibility in managing a
large number of system calls. Therefore, our goal here is to
better understand how this monitoring perspective of sysdig
can be advantageous for intrusion detection.

The Receiver Operating Characteristic (ROC) curve indicates
that three of the classifiers achieve satisfactory results, and only
two classifier performs below 94%. Even without delving into
other metrics, it is evident that we have obtained classifiers
capable of effectively identifying threats. The values describe
a viable potential of using sysdig data for anomaly detection,
being also beneficial considering the use of a drive for the data
collection.

Precision analysis reveals that our models were affected
by false positives (which represent benign samples that are
misclassified as malicious), with AdaBoost and Multilayer
Perceptron (MLP) obtaining the best values. Additionally, we
observed an impact on false negatives (malicious samples
that are misclassified as benign) in terms of recall, with the
biggest impact in the XGBoost model. The overall effect on the
negative classes is reflected in F1Score, with MLP emerging
as the best classifier and only one model falling below the
80% threshold. Both the Balanced Accuracy (BAC) and Brier

1https://wordpress.org/
2https://wordpress.org/plugins/
3https://github.com/Carmofrasao/hids-docker



TABLE I
WORDPRESS PLUGINS USED IN OUR EXPERIMENTS.

Plugin Version Vulnerability

Social Warfare 3.5.2 stored cross-site scripting (CVE-2019-9978)
File Manager 6.8 upload and execution of arbitrary PHP code (CVE-2020-25213)
Simmple File List 4.2.2 upload and execution of arbitrary PHP code
Payments forms 2.4.6 arbitrary code injection
NEX-Forms 7.9.6 SQL injection by authenticated users (CVE-2022-3142)
Mail Masta 1.0 local file inclusion
Really Simple Guest Post 1.0.6 upload and execution of arbitrary PHP code
Paypal Currency Converter Basic for WooCommerce 1.3 read arbitrary files
LeagueManager 3.9.10 SQL code injection
CodeArt Google MP3 Player 1.0.11 server file disclosure

TABLE II
PERFORMANCE OF THE CLASSIFIERS FOR ANOMALY DETECTION.

Classifier ROC Precision Recall F1Score Accuracy BAC Brier

Our proposal using Sysdig data
RandomForest 90.84% 80.39% 83.63% 82.00% 82.00% 82.03% 18.00%
XGBoost 91.20% 80.85% 77.55% 79.17% 80.00% 79.95% 20.00%
Nu-Support Vector 94.14% 86.00% 87.76% 86.87% 87.00% 87.01% 13.00%
MultilayerPerceptron 95.88% 93.33% 85.71% 89.36% 90.00% 89.92% 10.00%
AdaBoost 95.84% 83.67% 83.67% 83.67% 84.00% 83.99% 16.00%

Best result for strace from [7] (window size 7, 10 executions)
RandomForest - 98.7% 73.0% 83.9% 94.6% - -
MultilayerPerceptron - 90.7% 67.0% 77.1% 92.2% - -
AdaBoost - 98.7% 73.0% 83.9% 94.6% - -

Score exhibit similar characteristics to the previous metrics,
indicating a minor impact from negative classes.

Table II also shows the best results for intrusion detection
using strace data from a previous study [7]. The higher recall
indicates that detection using sysdig presents a lower number
of false negatives in comparison to strace. However, the lower
values for the sysdig precision reflect a higher impact of false
positives in the models. The F1Score demonstrates that both
data sources have acceptable results for an anomaly detection
strategy, with MLP having the best performance for the sysdig
dataset. Detection using sysdig traces performs worse in terms
of accuracy than the strace data, but with better recall and
F1Score. Overall, both strace and sysdig data can be effective
for anomaly detection, without a clear winner in terms of
classifier performance.

Despite the models exhibiting a margin of error, it is crucial
to emphasize that we are exploring the potential of our proposal.
The results for sysdig data come from unoptimized classifiers,
meaning that there is room for improving the models. The
results obtained so far are promising for leveraging sysdig for
anomaly-based intrusion detection.

V. RELATED WORK

The literature encompasses numerous works focused on sys-
tem call-based anomaly detection in the context of containers,
as highlighted in Table III. These proposals have received
significant attention in recent years, creating solutions that
employ various techniques for anomaly detection via system
calls. The outcomes of these solutions vary widely, but most of

TABLE III
RELATED WORK USING sysdig AND/OR strace.

Reference Tool Description

[14] Strace From the point of view of the host, the BoSC
technique is applied for anomaly detection.

[16] Strace/
Sysdig

STIDE and BoSC technique for profiling Docker
containers.

[7] Strace Machine learning techniques were used to detect
anomalies in the Docker container from a host
perspective view. Also, a discussion of different
perspectives of view of virtualized environments
is presented.

[17] Sysdig A framework for intrusion detection in Kubernetes
clusters.

[18] Sysdig A clustering strategy for anomaly detection in
containers is presented.

them demonstrate promising potential to enhance the security
of computing systems.

The main differences between our research and previous
work are (i) a comparison of the effectiveness of strace and
sysdig data for anomaly detection based on the analysis of
system calls, (ii) the development of a publicly available sysdig
dataset, and (iii) an evaluation of the detection performance of
five different ML models using sysdig data.



VI. CONCLUSION

This paper presented an intrusion detection strategy based
on data collected by sysdig. We show a comparison between
our sysdig proposal and previous work using strace [7]. To
evaluate the strategy we built a dataset based on sysdig trace
collection, which was evaluated with different ML algorithms
and shown to be feasible to detect anomalies in containerized
virtual environments. This monitoring approach is less intrusive
to the system and allows collecting the data with lower overhead
when compared with strace.

For future work we will evaluate whether results can be
improved using data categorization and risk assessment of
system calls [23], [31]. As sysdig can provide additional data
about the execution of system calls, we will also investigate if
leveraging these data enhances our results.
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