How Risky Is It? A Closer Look
at Game Anti-Cheat Software

Amanda Viescinski Tiago Heinrich

Fed. University of Parand Max Planck Institute for Informatics

abviescinski @inf.ufpr.br theinric @ mpi-inf.mpg.de

Abstract—Anti-cheat software is a system designed to detect
cheats (or hacks) in a video game. This paper investigates
operations executed by anti-cheat software and their impact on
user privacy. We collected data and analyzed three popular anti-
cheat solutions: BattlEye, FACEIT, and Vanguard. Our analysis
reveals that these programs interact with system files, memory,
and users’ directories. In addition, the privileged access of these
anti-cheat solutions to the operating system and the lack of clarity
on what data is collected directly affect user privacy. This conduct
risks not complying with current regulations.

Index Terms—Anti-cheat, Software Analysis, Security

I. INTRODUCTION

The video game industry increased its revenue from
US$152.1 billion before COVID-19 to US$187.7 billion in
2024, according to Newzoo’s Global Games Market Report
[1]. This scenario emerged with significant financial appeal in
video games and a growing competitive scenario for its players,
who can seek victory at any cost, even using cheat software.
In particular, cheat software, also known as hacks or simply
cheats, is designed to provide an unfair advantage to a player.
It manipulates the game’s operations and resources, altering
its fundamental properties.

Game studios implement their countermeasures against cheat-
ing software and malicious players to prevent legitimate players
from suffering financial losses and a degraded experience [2].
One well-known strategy is anti-cheat software, which helps
prevent and detect cheaters. This software is typically installed
on players’ machines and actively collects system data to
analyze their actions within the game.

However, anti-cheat solutions are becoming increasingly
intrusive to improve the detection of malicious players in this
cat-and-mouse game, requiring comprehensive permissions and
high privileges on players’ devices. For example, many anti-
cheat alternatives run alongside the system, even when the
game is inactive. Moreover, their actions on the device are
obfuscated to make reverse engineering by cheat developers
as tricky as possible, preventing the discovery of weaknesses
that could be exploited [2]. Additionally, to perform detailed
analysis of specific data, some anti-cheat software frequently
sends files from players’ machines for remote verification on a
server. All these actions raise significant concerns about player
privacy, as it is not clear exactly what data is being collected
by anti-cheat solutions [3].

Examples of potential privacy breaches caused by anti-cheat
software are widespread and well-documented. As mentioned

Vinicius Fulber-Garcia Carlos Maziero
Fed. University of Parand Fed. University of Parand
vinicius @inf.ufpr.br maziero@inf.ufpr.br

in [4], after an update to the anti-cheat system of the game
World of Warcraft, part of the community felt their privacy was
compromised and, in order to continue playing, chose to close
all unnecessary applications, with some even abandoning the
game entirely. In [5], it is noted that specific anti-cheat solutions
have prevented players from connecting to servers simply by
using the word “cheat” in web browsers. Furthermore, the
Vanguard anti-cheat system, developed by Riot Games, initially
erroneously detected software and basic keyboard and mouse
drivers as cheats, leading to malfunctions in essential system
drivers and interfering with crucial tasks, such as cooling
system components, causing computers to overheat [6].

The anti-cheat solutions mentioned and many others used
in modern games operate with kernel-level privileges on
players’ devices, granting them access to various private user
information. This situation can pose a significant privacy issue
for benign players. Therefore, we must question whether it
is worth or necessary to implement such a high level of
surveillance to detect unfair activities and whether alternative
solutions do not operate at the kernel level yet still effectively
address the cheating problem.

This paper analyzes three popular anti-cheat software so-
lutions and their interactions with the operating system. We
monitor the activity and operations of these anti-cheat solutions,
including access to directories, granted permissions, network
communications, and queries or modifications to records,
identifying aspects that may compromise player privacy. Our
objective is to provide a comprehensive profile of modern
anti-cheat solutions, highlighting differences and similarities
in their operational characteristics, pointing out privacy risks,
and supporting the community with technical evidence that
demonstrates the need for a paradigm shift in the anti-cheat
software industry, where players’ privacy is also a concern.

Specifically, our main contributions are: (a) a detailed analy-
sis of three popular anti-cheat solutions, including uncovering
their operational flow; and (b) a comprehensive discussion on
the impact of anti-cheat software on user privacy and security.

The rest of this paper is organized as follows: Section II
explains the key concepts; Section III discusses the challenges
associated with anti-cheat software; Section IV details our
proposal; Section V presents our observation; Section VI ex-
plains General Data Protection Regulation (GDPR); Section VII
discusses the experiments and results; Section VIII relates
research in the area; finally, Section IX concludes the work.

II. ANTI-CHEAT SOFTWARE

Players use cheat software to gain an advantage in a video
game through illegitimate means [3]. It can be categorized
into several types. Among them are those that do not alter
the game’s fundamental rules — that is, they do not perform
actions that would be impossible under normal game conditions.
An example of this cheat software type is bots, designed to
perform automated actions within games. These bots typically
accumulate resources over extended periods without requiring
player interaction.

The fundamental rules of games can also be exploited by
cheat software. This means that the expected interactions
between players and the game’s digital world can be violated,
granting cheaters advantages that should be impossible to
achieve. These cheats typically employ code injection tech-
niques to modify memory data, actively altering game behavior
or capturing information to execute flawless actions (e.g.,
aimbots, wallhacks) [3].

Countermeasures against such cheats are known as anti-cheat
software. These programs are designed to detect cheats [6].
Once a cheat is detected, an anti-cheat solution can impose
penalties on the malicious player, ranging from gameplay
restrictions to outright bans [7]. Anti-cheat systems also
maintain records of players who have used cheats. Some are
more aggressive, enforcing bans across all games that use the
same anti-cheat software after a single detection [4].

Anti-cheat solutions employ various strategies to detect
cheating. These include detecting anomalous patterns in server
data, monitoring for sudden performance spikes, and identifying
inconsistent or unauthorized actions. Additionally, they perform
file integrity checks and memory scanning while the game is
running on the user’s machine [8]. Such solutions can also
be categorized into two broad types based on where they
are executed: server-side and client-side. Server-side solutions
operate based on the game rules defined by the server, and every
action performed by players and each game state is validated
on the server [8]. Client-side anti-cheats are installed directly
on players’ machines, analyzing the computer’s memory and
being capable of detecting even discreet and obfuscated cheats
— but they are vulnerable to reverse engineering, modifications,
and code injections by cheaters [6].

Examples of popular anti-cheat solutions currently available
on the market and widely used include Easy Anti-Cheat,
FACEIT, BattlEye, Valve Anti-Cheat, and Vanguard [9], [10].

III. THE SECURITY PROBLEM

Anti-cheat software may require access to the kernel level
of computing systems where they run, raising concerns among
users about potential violations of their privacy and the instabil-
ity such software could introduce to the system. Furthermore,
any vulnerability in this software could grant privileged access
to attackers, compromising system security [11]. An additional
concern is that some anti-cheats are launched before their
respective game is even started. For instance, Vanguard runs
as soon as the user’s operating system starts [6].

Although anti-cheat solutions’ consent forms briefly discuss
the strategy behind cheat detection and the use of unauthorized
software, these terms generally focus on the actions to be
performed and the information to be collected. They also warn
that only data essential for detecting cheating will be analyzed.
However, the scope of these needs is not clearly defined, and
the details of what constitutes a fundamental analysis are often
unclear or obscured [2].

Anti-cheat solutions have already led to recorded cases of
privacy invasion. A well-known example is the case of VAC,
Valve’s anti-cheat system, which was found to be directly
accessing users’ search history [8]. There have also been
instances of security breaches, such as with the anti-cheat
solution used in the game Genshin Impact, mhyprot2.sys, which
contains a vulnerability allowing attackers to disable antivirus
software running on players’ machines [11].

A notable case involving anti-cheats occurred with the ESEA
anti-cheat system. Like Vanguard, ESEA remains active even
when a monitored game is not running. Because it operates
with privileged permissions on players’ computers and works
hiding its actions, an employee of its developer company
inserted bitcoin mining malware, which ran covertly, without
users’ consent [2]. Such factors influence the risk this type of
software can bring to users and demonstrate the importance of
understanding how this monitoring is carried out.

IV. PROPOSAL

Our proposal aims to investigate the actions of anti-cheat
software and their impact on user privacy. For that, we capture
relevant data to evaluate the actions performed by anti-cheat
software, such as changes in system registry, permissions
granted to processes, directories accessed, dynamic link li-
braries (DLLs) used, and data transmitted over the Internet.

We deployed the monitoring on a computer with Windows
10 Pro (22H2, KB5046613) using Process Monitor (4.01) and
Process Explorer (17.05). Each game version was tested with
its corresponding anti-cheat version. Tibia (14.10.db74b1) was
considered with the BattlEye anti-cheat, while Valorant (9.06)
was selected with Vanguard. Additionally, we monitored the
FACEIT (2.0.26) independently, as it does not require a game
to run. Three separate captures were made for each anti-cheat
analyzed to avoid incompatibility.

We identified a difference in how the anti-cheats integrate
with the system. BattlEye runs independently of the system’s
life cycle, initiating and ending together with the game. In
contrast, Vanguard and FACEIT utilize a driver that launches
alongside Windows by default. Consequently, some of their
behavior was lost until the monitoring tools loaded. To address
this, we adjusted the anti-cheats startup times to ensure they
launched after both the system and the monitoring tools. This
did not affect game behavior. Despite this, monitoring remained
effective, as anti-cheats launch a process with their respective
games, which served as the monitoring target. Data collection
involved: (I) starting the monitoring tools, (II) launching the
game/anti-cheat, (IIT) capturing data, (IV) closing the game/anti-
cheat, and (V) saving and stopping the tools.

The BattlEye and FACEIT anti-cheats allowed the monitoring
tools to be executed fully alongside the games. The executions
conducted for both anti-cheats were about one hour apart.
For FACEIT, some data was collected with a user performing
standard operations on the system, while others were collected
without interference.

Vanguard’s data capture presented some challenges. An
error was displayed whenever the Process Monitor tool was
operating, requiring the system to be restarted for the game
to run correctly again. In an attempt to avoid erroneous or
unusual system configurations, no changes were made to get
around this problem. Therefore, complete captures of quick
matches were taken while the game was still running, with the
matches being finished before the error was displayed.

V. OBSERVATION

We observed that anti-cheats follow a four-phase pattern:
Initialization, Setup, Loop, and Termination. The Initialization
phase is the point at which the anti-cheat begins to execute.
In the Setup phase the anti-cheat software loads dependencies
and performs an initial scan. During the Loop phase, anti-
cheats monitor common actions for cheating software, behavior
changes, and unauthorized interactions. The Termination phase
occurs when the anti-cheat system is deactivated, completing
its execution and ending all operations. Table I summarizes
these phases for the analyzed anti-cheats.

A. Execution Pattern

This section analyzes the operations executed by the consid-
ered anti-cheat solutions. The analysis focuses on the unique
behaviors of each anti-cheat, detailing their interactions with
the operating system, registers, files, and remote servers.

1) BattleEye: As previously mentioned, the BattleEye anti-
cheat begins executing with the game it protects. It accesses
necessary resources, such as registers and DLLs, validating
them. One of the registers accessed is called Codeldentifiers,
which stores a log file path with details on running applications,
their parent process, and execution permission rules. This
registry is part of the Windows Safer API, which manages
application execution policies [12]. We also observed regis-
ters containing network and control panel information being
accessed. In the setup phase, the process runs its executable
and creates a .sys file, usually containing device drivers or
hardware configurations.

Unlike other anti-cheats, BattlEye operates through three
execution main loops, each performing distinct functions. DLL
loading, accessing encryption registers and certificates, and
forwarding UDP packets are executed across all loops. The
first loop verifies DLL integrity using hashes and the Crypt-
SIPDIVerifyIndirectData function. The second loop involves
read/write operations in the CatRoot directory (which stores
system certificates) and disk mapping data. The third loop
performs unique tasks such as validating a specific game DLL,
accessing records in shared folders, and manipulating files in
the AppData directory. Notably, these files contain certificates
and encrypted data.

2) FACEIT: FACEIT starts alongside the operating system,
initializes threads, checks registers, loads and validates DLLs,
and loads web application files (e.g., JS, JSON, node, and
ASAR formats). Furthermore, the process creates cache, tem-
porary, and log files. In an isolated test where only Vanguard
and FACEIT ran simultaneously, we observed that FACEIT
also queried Vanguard log files during these operations. More
specifically, FACEIT executed WriteFile and FlushFileBuffers
operations, which write data from buffers to files and then
clear the buffers. Still, in the setup phase, the process creates
child processes and executes the application’s .exe file.

During the loop phase, the FACEIT parent process performs
I/O operations on the cache and log files while consulting
registers with network information. The child processes ex-
change TCP and UDP packets. An investigation showed that
multiple communicated addresses were linked to Google and
Cloudflare, suggesting they may be CDNs. At the end of the
process, FACEIT stops accessing log files, DLLs, and registers,
finally terminating threads before shutting down.

3) Vanguard: Vanguard anti-cheat has two processes: VG-
Tray, which starts with the operating system, and VGC, which
runs with the game. Due to their distinct characteristics and
their different operations, VGTray and VGC are represented
separately in Table I. The VGTray Setup phase consists of
creating threads, consulting registers, accessing and verifying
DLL hashes, creating prefetch files, running its executable, and
manipulating the vgkboostatus.dat file. The .dat files can store
various types of data, including functions required by DLLs,
images, and audio.

In the loop phase, the process creates a thread, queries
the executable, and accesses the vgk service registry before
terminating the thread. It is important to mention that the
process remains in this phase for approximately 87% of its
total execution time. Towards the end of execution, multiple
TCP connections are established, and packets are transmitted.
Finally, the registers consulted, DLLs, .dar files, threads, and
the process are closed.

When the Valorant game starts, the VGC process is executed
and starts the setup phase. In this phase, the operations are
similar to those of VGTray, plus access files in the CatRoot
directory and handle application logs. Then, TCP connections
are established, and registers containing user names and monitor
data are consulted. Additionally, various system directories are
accessed, especially those for storing personal files, such as
OneDrive and Desktop. This phase includes the generation of
new logs and the transmission of TCP packets to Vanguard’s
servers. Finally, the anti-cheat writes additional logs, closes
registers and active threads, and shuts down.

B. Behavior comparison

This section analyzes the similarities and differences between
the operations executed by the anti-cheats investigated at each
phase of their life cycle. Although the end goal is the same
(detecting cheats), each software uses different approaches.
This variation directly influences the resources accessed and
how much information is collected.

TABLE I
ANTI-CHEAT EXECUTION FLOW AND OPERATIONS.

Anti-Cheat Initialization Setup Loop Termination
Load DLL
Access crypto registers & certificates
Check DLL hash
Close DLL
Forward UDP packet
Load DLL S
Create [hr?dds Read/Write CatRoot files Query reglsters)
Query registers Read/Write BattlEye’s .sys
Check DLL hash
BattlEye Game Access DLLs Create disk mapping Close DLL
Check DLLs hashes ‘ . . Close threads
. Access crypto registers & certificates o
Run BEService.exe Y Close open registers
Create BEDaisy.sys files Close DLLs and CatRoot files Close process
h Forward UDP packet
Load Tibia DLL
Access crypto registers & certificates
Check DLL hash
Access registers about user shell folders
Read/Write AppData directory
Close Tibia DLL
Forward UDP packet
Create threads
Query registers Close cache and log files
Access DLLs .
. Write to cache and log files Close DLL
Operating Check DLLs hashes
FACEIT . . Query registers with network information Closes access to open registers
System Load JavaScript/Node js files .
. Child processes exchange TCP/UDP packets Close threads
Read/Write Cache, Temp & Log files
. Close the process
Start child processes
RunFACEIT.exe file
Create threads Establish TCP connections
Query registers TCP stream
Operating Access DLLs gf;le \t]hr;::dsexe Close .dat files
Vanguard (VGTray) p . J Check DLLs hashes ¥ velray . . Close DLL
System - - Accesses vgk service registers .
Create a prefetch file Close threads Close open registers
Run vgtray.exe file Close threads
Read/Write vgkboostatus.dat file Close the process
Create threads
Query registers
Access DLLs Establish TCP connections Write logs
Check DLLs hashes Query registers Close o ge 1 resisters
Vanguard (VGC) Game Create a prefetch file Request directory information P €

Read/Write vgkboostatus.dat file
Run vgc.exe

Access CatRoot files
Read/Write Log files

Close threads

Write logs Close the process

TCP packets exchange

1) Initialization Phase: Anti-cheats activate at different
times. FACEIT and VGC/Vanguard start with the operating
system, whereas BattlEye and VGTray/Vanguard launch only
when the game runs. Regardless of their startup time, all operate
at the kernel level, ensuring privileged access to the system.
This access is crucial for detecting and mitigating cheats, which
can also function at this level [13]. By loading their drivers
during system startup, anti-cheats can verify the integrity of
other drivers and critical system resources. Anti-cheats that
launch with the game use alternative methods to validate the
environment, such as scanning RAM and analyzing its contents
for known cheat signatures or suspicious activity.

2) Setup Phase: Overall, BattlEye, FACEIT, and Vanguard
all start their execution by executing similar operations. First,
they access registers like Codeldentifiers, described earlier, and
CustomLocale, which defines several aspects of the system’s
locale. Furthermore, they execute their respective main files in
.exe format. On the other hand, these anti-cheats also execute
different operations. BattlEye is the only one that creates .sys
driver files, although they all access DLLs or registers related

to drivers. FACEIT, however, differs in creating numerous child
processes throughout its execution. Although both Vanguard
processes (VGC and VGTray) share operations in the setup
phase, VGC performs operations such as accessing files in the
CatRoot folder and reading and writing logs - characteristics
not observed in VGTray.

3) Loop Phase: In the loop phase, most of the operations of
BattlEye and Vanguard anti-cheats involve inspecting system
files. BattlEye concentrates on checking the hash of DLLs.
Notably, it transmits an UDP packet to its server after each
check. Among the DLLs analyzed are even those related
to Windows Defender settings. In contrast, VGC/Vanguard
performs a comprehensive scan of system files, including the
user’s home directories. FACEIT, on the other hand, primarily
manages cache and temporary files from both the application
and the system. Additionally, during this phase, anti-cheats
continuously exchange packets with their servers.

The directories analyzed by VGC/Vanguard include personal
ones such as Documents and OneDrive, as well as operating
system directories including system32, programfiles, and App-

data. An official statement from Riot Games [13] emphasizes
that Vanguard scans memory signatures looking for patterns
compatible with those used by cheating software, just like other
anti-cheats. After this operation, there is a significant increase
in communication traffic with its server via TCP, similar to the
behavior of BattlEye after analyzing the DLLs.

About DLLs accessed, around 21% of the entire list is shared
between all the anti-cheats. These DLLs allow access to various
components, including data about hardware and devices, as
well as events provided by the ntdll and ntmarta DLLs and
kernel-level functions with the kernel32 and KernelBase DLLs.
Further libraries retrieve system details, such as the file system,
running processes, and loaded drivers. For this purpose, the
SHCore, shell32, and shlwapi DLLs enable the execution of
PowerShell commands. One of the DLLs responsible for the
Remote Procedure Call Protocol (RPC) is also accessed by anti-
cheat solutions, rpcrt4. RPC allows communication between
processes on distinct computers, involving interaction between
remote devices. Moreover, the widp DLL, a Windows Defender
Application Control component, helps to restrict the execution
of programs and scripts on the system.

The DLLs exclusively accessed by each anti-cheat reveal
distinct monitoring strategies and system interactions. BattlEye,
for instance, utilizes: i) sfc, responsible for checking Windows
system files, which can be used to analyze file integrity and
restore corrupted or damaged files; ii) mpr, in charge of
managing communication with shared devices and directories
in a network; and iii) ncrypt, used to manage cryptographic
keys, data encryption and decryption operations, authentication
and protection of sensitive data. Within the set of DLLs used
only by FACEIT, we can highlight dbghelp, which provides
functions for debugging, reading stack traces, and manipulating
executable image symbols in a portable format (e.g., .exe, .sys).
It can, therefore, be used to inspect processes and system
memory. Vanguard, in contrast, incorporates the legacy Internet
Explorer iertutil DLL, which supports creating, manipulating,
and closing windows and tabs in the web browser.

4) Termination Phase: In the termination phase, all the anti-
cheat solutions close threads, terminate access to open registers,
and finalize their execution. In addition to these operations,
BattlEye directly manipulates system files in .sys format before
concluding its activity. FACEIT, however, closes cache and
log files, indicating more detailed management of this data.
VGTray, in contrast, establishes TCP connections and transmits
data before closing .dat files, while VGC, in a more simplified
way, records logs before finishing.

VI. SOFTWARE LICENSES AGAINST GDPR

The General Data Protection Regulation (GDPR) [14]
establishes the privacy laws of European Union citizens and
defines the responsibilities of entities when processing personal
data. In this case, personal data is information about an
identifiable natural person. The GDPR consists of 99 articles
that detail its legal requirements, plus 173 recitals that provide
context and complementary explanations to these articles. This

paper considers the GDPR articles to discuss the potential lack
of privacy in anti-cheat solutions.

It is essential to clarify some definitions to better understand
the concepts covered by the regulation. Processing refers to any
operation carried out with personal data, whether by automated
means or not. The controller defines the purpose and processing
methods, while the processor acts on their behalf. A third party
is any entity other than the data subject, controller, processor,
or their authorized agents.

Under the GDPR, software that handles personal data must
comply with principles such as data minimization, purpose
limitation, and transparency (Article 5M). In addition, the
regulation imposes data protection by design and default
(Article 25™), requiring solutions to implement data protection
measures from the outset and collect only the strictly necessary
information. Furthermore, software must guarantee secure data
processing (Article 32"%) using encryption, access controls, and
pseudonymization wherever possible.

In addition to the requirements for secure processing,
the GDPR establishes specific guidelines for storing data
collected by software such as anti-cheat systems. Article 32
requires appropriate security to prevent unauthorized access,
loss, or alteration. Furthermore, Article 5™ limits retention to
what is strictly necessary, in line with the principle of data
minimization, while Article 6™ defines legal bases such as
consent, contracts, or legitimate interest. In addition, Article
17t ensures the right to be forgotten, allowing users to request
data deletion when it’s no longer needed.

The GDPR also imposes specific governance requirements
to ensure data storage transparency. Article 30 obliges entities
to keep detailed records of their processing activities, including
the purpose of collection, the types of data stored, and the
security measures adopted. Article 33™ establishes that if there
is a personal data breach, the responsible entity must notify
the supervisory authority within 72 hours and notify affected
users, if necessary.

VII. DISCUSSION

Anti-cheat software lacks transparency regarding the opera-
tions it performs. The analysis of the execution flow we mapped
and software licenses reveals that these applications, in fact,
access system files, memory, and even users’ directories. It is
sufficient evidence to state that anti-cheats represent a potential
threat to users’ privacy. The level of access granted to anti-cheat
software makes them critical for system security since these
solutions can be attacked and/or compromised by malicious
entities. In these cases, attackers can gain comprehensive access
and control over the system.

Another point of attention refers to the characteristics that
define software as invasive of user privacy. An appropriate
definition is to consider as invasive any application that collects
and transmits information that can be used to identify an
individual [15], which is very similar to the operating pattern
of the anti-cheat software analyzed.

The lack of transparency behind anti-cheat software becomes
yet another criterion that makes its use dangerous. If this

software is compromised, the detection of malicious operations
becomes almost impossible. Our analysis demonstrates a
software operation cycle that reaches key elements of the
operating system, which directly impacts user privacy.

User data is being collected and stored on external servers.
This information, previously only found on the user’s machine,
is now found on external servers, where data protection is not
fully presented to users since not even the data being exfiltrated
is disclosed. This situation can leak sensitive data, such as user
names, emails, and passwords. Although all servers connected
to the Internet are subject to attacks and leaks, the information
stored by anti-cheat is particularly compromising, as it can store
any file on users’ computers, including banking information
written down in a simple text file.

GDPR highlights a way to enforce users’ privacy respect
when considering this niche of intrusive software. However,
changes in the execution model are necessary, considering the
adoption of less intrusive strategies, such as performing analysis
of game rules centrally on servers, which can help to maintain
both player privacy and justice in gaming environments.

VIII. RELATED WORK

Recent works discussed anti-cheat operations and their
implications for user privacy. In [8], the issue of privacy
invasion and security problems caused by kernel-level anti-
cheats is considered, providing alternative options for detection
systems, such as mirroring game rules on the server and
statistical analysis of player events and performance. The
work points out that anti-cheat solutions installed with kernel
permission can cause problems even with operating system
updates and, with the strategy of scanning the entire memory
of the device, raise numerous suspicions of invasion of privacy
of its users.

In [3], the differences between preventive and detective
solutions for cheating in online games are explored. The
study exposes several privacy and security problems in anti-
cheat solutions, such as the memory scanning strategy that
checks information from other processes running on users’
machines. BattlEye’s ability to upload user files to its servers
and execute shell code directly on users’ computers remotely is
also mentioned. The paper discusses how a deterrent alternative
could be designed and integrated during game development,
avoiding the need for intrusive third-party cheat monitoring
and detection solutions.

In [16], the similarities and differences between anti-cheats
and rootkits are analyzed, specifically at the kernel level. To
this purpose, seven typical rootkit behaviors are identified,
including evasion, execution time, information exfiltration, and
network manipulation. The investigation relied exclusively on
publicly available data from discussion forums and anti-cheat
documentation. As a result, the study concluded that BattlEye
and Easy Anti-Cheat did not exhibit enough characteristics to
be classified as rootkits. On the other hand, the FACEIT and
Vanguard anti-cheats met at least four of the seven criteria
established, coming closer to the behavior observed in rootkits.

Although such works conducted discussions, none executed
empirical tests to trace the running behavior of the anti-cheat
solutions and to analyze the potential privacy issues.

IX. CONCLUSION

This article presented an analysis of three popular anti-
cheat solutions, examining their interactions with the operating
system and their implications for user privacy. The life cycle
mapped for each anti-cheat indicates that these programs
access sensitive data such as system files, personal directories,
and memory. In this sense, the method of analyzing the
data accessed raises concerns about compliance with privacy
regulations. In particular, there is a lack of transparency about
what data is collected for processing. In addition, the fact that
the data is processed on external servers could potentially result
in sensitive user data leaking. These findings underscore the
need to revise anti-cheat terms of use to clarify data handling
practices, and to develop solutions that minimize system
privileges and prioritize local, privacy-preserving processing.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenagdo de
Aperfeicoamento de Pessoal de Nivel Superior — Brasil (CAPES)
— Finance Code 001 and Fundacdo de Amparo a Pesquisa e
Inovagdo do Estado de Santa Catarina (FAPESC).

REFERENCES

[1] Newzoo, “Newzoo’s global games market report 2024,” 2024.

[2] R. Greidanus, “Client-side anti-cheat in online games: Legal implications
from a privacy and data protection perspective,” Ph.D. dissertation, Tilburg
University, Tilburg, Netherlands, 2017.

[3] W. Ronkainen, “Prevention vs detection in online game cheating,” Ph.D.
dissertation, University of Oulu, Oulu, Finland, 2021.

[4] E. Wendel, “Cheating in online games a case study of bots and
bot-detection in browser-based multiplayer games,” Ph.D. dissertation,
Norwegian Univ. of Science and Technology, Trondheim, Norway, 2012.

[51 S. Pontiroli, “The cake is a lie! uncovering the secret world of malware-
like cheats in video games,” Virus Bulletin, 2019.

[6] B. Ven, “Cheating and anti-cheat system action impacts on user
experience,” Ph.D. dissertation, Radbound Univ., Netherlands, 2023.

[7]1 X. Lan and et al., “An overview on game cheating and its counter-
measures,” in 2nd Intl Symposium on Computer Science and Computa-
tional Technology, Huangshan, China, 2009, p. 195.

[8] A. Maario and et al, “Redefining the risks of kernel-level anti-cheat in
online gaming,” in ISCSCT, 2021, pp. 676—680.

[9] S. Pilipovic, “Every game with kernel-level anti—cheat software,” 2023,

https://tinyurl.com/23f2nbn2.

PCGamingWiki, “List of games with anti-cheat technology,” 2023, https:

/ltinyurl.com/3cwc2ays.

I. Basque-Rice, “Cheaters could prosper: An analysis of the security of

video game anti-cheat,” Honours Project Proposal, School of Design and

Informatics, Abertay University, 2023, https://tinyurl.com/mpf9km5z.

Microsoft, “Determine allow-deny list and application inventory for

software restriction policies,” 2024, https://tinyurl.com/5x4eujft.

Riot Games, ‘“/DEV: Vanguard X LoL,” 2024, https://tinyurl.com/

bvrxxp2t.

GDPR, “Regulation (EU) 2016/679 of the European Parliament and of

the Council of 27 April 2016 on the protection of natural persons with

regard to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46,” Official Journal of the

European Union, vol. 59, pp. 1-88, 2016.

M. Boldt and B. Carlsson, “Privacy-invasive software and preventive

mechanisms,” in /CSNC, 2006, pp. 21-21.

C. Dorner and L. D. Klausner, “If it looks like a rootkit and deceives

like a rootkit: A critical examination of kernel-level anti-cheat systems,”

in Proceedings of the 19th ARES, 2024, pp. 1-11.

[10]

[11]

[12]
[13]

[14]

[15]

[16]

