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Abstract. One of the challenges of the Network Functions Virtualiza-
tion (NFV) paradigm is to deploy virtualized network functions and ser-
vices efficiently. In particular, current solutions for multi-domain ser-
vice mapping present several restrictions regarding the choice of opti-
mization models and metrics. This lack of flexibility ultimately leads to
sub-optimized mappings that do not meet the (often conflicting) require-
ments of all the parties involved in the deployment process (e.g., network
operators, clients, providers). This work proposes GeSeMa (Genetic Ser-
vice Mapping), a new intelligent mapping solution based on genetic algo-
rithms. GeSeMa allows the specification of arbitrary optimization met-
rics, constraints, and different evaluation policies. We evaluate GeSeMa
through a case study, comparing its results with the results of a state-
of-the-art genetic-based mapping solution.

1 Introduction

Network Functions Virtualization (NFV) is driving a paradigm shift in telecom-
munications. NFV allows network functions that have been traditionally imple-
mented as physical appliances in hardware to be implemented as software that
runs on virtual machines [9]. Virtual Network Functions (VNF) [5] can be com-
bined to create virtual network services called Service Function Chains (SFC)
[7]. SFCs are compositions of multiple VNFs connected on a service topology.
The deployment of virtual services on a network requires that it is efficiently
embedded in the infrastructure [6,16].

Informally, the problem of mapping a network virtualization service con-
sists of defining where the network functions that make up the service will be
instantiated and executed. The problem becomes more challenging if the net-
work consists of multiple administrative domains. Different domains may have
restrictions on the number of services they run and the resource requirements
of the respective functions. In addition, the policies the domain adopts together
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with business rules adopted by each domain also have an impact on which alter-
natives are feasible and their costs. Moreover, there are network functions that
are native to specific domains, to which they must necessarily be mapped.

In general, there is a choice of where each function should be executed, which
depends on the policies and resources available in the domains. Mapping also
depends on the topology of the virtualized service and the multi-domain network
topology to which it will be mapped. In this case, the objective is typically to
reduce the amount of traffic transferred between domains as flows are forwarded
through the network service. Furthermore, other criteria can be defined for each
particular mapping process, such as maximizing the number of users and maxi-
mizing or minimizing the number of domains used to host the service. It should
also be taken into account that the mapping objectives usually change according
to the very nature of the service being mapped, the type of environment in which
they operate, and also the network technologies involved, such as 5G or earlier
cellular networks or even IoT or vehicular networks.

Traditional solutions for mapping VNF's are based on evaluation setups that
are often static in terms of the set of optimization metrics they employ, as
well as objectives and weights, lacking the flexibility required to customize their
execution [9,10,15]. Typically, those solutions only allow stakeholders to make
simple adjustments of the weights of pre-configured optimization metrics [§].
Thus, the requirements of the multiple stakeholders (i.e., clients, providers, and
network operators) are hardly met. A static strategy often leaves stakeholders
having to adapt their needs to the restrictions of the mapping solutions they are
using. The limitations can be critical in multi-domain environments [11,14,16,
18]. To the best of our knowledge, no current virtual service mapping solution
allows arbitrary optimization metrics and objectives to be defined.

In this work, we propose a new multi-domain mapping solution called Genetic
Service Mapping (GeSeMa). GeSeMa allows the evaluation setup to be cus-
tomized, providing high flexibility to adapt to the different needs of multi-
ple stakeholders and considering several features. To do that, the stakeholders
describe their needs and other service features on a standard request document.
GeSeMa then uses a multi-objective optimization metaheuristic based on genetic
algorithms to find mapping candidates in a feasible time. We evaluate GeSeMa
through a case study, including a comparison with a state-of-the-art genetic-
based mapping solution [11].

The rest of this work is organized as follows. Section 2 presents related work.
GeSeMa is presented in Sect.3. Evaluation results are in Sect.4, including a
case study comparing GeSeMa with a state-of-the-art mapping solution. Finally,
Sect. 5 concludes the paper and presents future work.

2 Related Work

There are often multiple possible mappings of a given virtualized network service
on a multi-domain environment. However, the performance of those distinct
mappings varies when different policies, constraints, and optimization metrics are
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employed [9]. Mapping solutions evaluate the multiple alternatives to guarantee,
for instance, the QoS (Quality of Service) and QoE (Quality of Experience) of
the final results.

Dietrich et. al. [3] propose a solution that optimizes the multi-domain map-
ping by relying on four static metrics: (i) minimization of financial costs; (ii)
minimization of the number of different providers and domains; (iii) minimiza-
tion of resource usage; and (iv) maximization of suitability weights. In [13],
a multi-domain mapping solution recovers information about financial costs,
transmission delays, and resource usage to evaluate and optimize (with a min-
imization objective) the candidate mappings. Finally, in [16], a multi-domain
mapping strategy is proposed that considers hybrid scenarios where private and
public domains provide optical network resources. The objective of that solution
is to minimize financial costs and the usage of frequency slots of the optical
channels connecting the domains.

The solution proposed in [18] consists of a multi-domain mapping technique
based on a vertex-centric algorithm. The solution triggers rounds of message
exchanges among providers to find candidate mappings iteratively. The mapping
algorithm uses a mechanism to avoid the concentration of the entire service
on a single provider. However, it does not optimize any specific metric, only
returning for the user a set of candidate mappings that fulfill the allocation and
instantiation constraints of the requesting service. With a method similar to [18],
DistNSE [1] finds candidate mappings and employs a process based on message
exchanges among providers. This solution evaluates two optimization metrics:
minimization of financial costs and stabilization of inter-domain load.

In [11], a multi-domain mapping technique based on a mono-objective genetic
algorithm is proposed. The objective of that solution is to allocate the network
functions of a network service chain on a multi-domain environment based on
a single indicator (F). This indicator represents multiple domain metrics, such
as link availability, bandwidth, and the number of network functions that each
domain can host, among others.

The solution proposed in [14] employs a mono-objective genetic algorithm
to map virtualized network services on physical substrate nodes. The solution
alms to optimize the consumption of computing and networking resources by
the network services. In this way, the authors propose an objective function that
minimizes the residual capacity of nodes to host functions and links to handle
their communication, given the mapped services.

Despite the fact that most of these solutions evaluate multiple optimization
metrics, they do not enable stakeholders to customize the evaluation setup (i.e.,
it is not possible to define/select neither the metrics employed by the optimiza-
tion process, nor the objectives/weights). This lack of customization makes it
difficult to model and evaluate policies that are closely related to the deployment
process (e.g., maximum delay, maximum geographical distance). Furthermore,
solutions in [13,16] present limitations in terms of the specification of domain
dependencies (i.e. they do not allow the specification of which functions should
be allocated to which particular domains). Thus, for example, these solutions
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are not suitable to embed hybrid services (i.e., those in which physical network
functions coexist with virtualized network functions along a service topology) in
multi-domain environments.

3 Genetic Service Mapping

In this section we present GeSeMa (Genetic Service Mapping), a solution that
employs genetic algorithms to map virtualized network services across multiple
administrative domains. GeSeMa enables stakeholders to define service and net-
work topologies, function and domain dependencies, and the evaluation setup
(optimization metrics, objectives, weights, and constraints). This custom infor-
mation is specified in a request document written in the YAML Ain’t Markup
Language (YAML).

3.1 GeSeMa’s Request Model

GeSeMa’s request model presents three main objects that define (i) the service
topology and the network functions (SERVICE); (ii) the optimization metrics and
objectives (METRICS); and (iii) the domains and their characteristics (DOMAINS).
A string specified according to the rules of the Service ChAin Grammar (SCAG)
[6] represents the service topology in the SERVICE object. Furthermore, for each
network function defined in the service topology, there is a corresponding entry
in the FUNCTIONS sub-object. This entry, identified by the function ID, specifies
the minimum resource requirements, including memory, virtualized processing
cores, and virtualized network interfaces, all defined as integer values.

The METRICS object defines metrics and objectives used by the genetic algo-
rithms of GeSeMa to search, evaluate, and optimize candidate mappings. Metrics
are of two categories: local or transition. Local metrics are used to evaluate the
allocation of network functions to domains, which correspond to the vertices of
a graph representing the infrastructure on which the service is to be mapped.
Local metrics include, for instance, the financial cost to allocate a function, and
the domain load, among others. Transition metrics are related to inter-domain
connections — which correspond to the edges of the infrastructure graph. Exam-
ples of transition metrics include delay, distance in hops, and geographical dis-
tance. The metrics and their categories are defined in the request model using
LOCAL and TRANSITION sub-objects, respectively. Each of these sub-objects can
define multiple metrics. A metric must be uniquely identified (by its ID), besides
having two mandatory attributes: OBJECTIVE and CONSTRAINTS. The objective
attribute shows the evaluation criteria for a particular metric, which can be
either MAXIMIZATION or MINIMIZATION. The last attribute (CONSTRAINTS) con-
sists of a list of strings, each of which refers to the constraints of an optimization
metric. Constraints define acceptance thresholds for the evaluation results of
optimization metrics. In order to check results with respect to thresholds, rela-
tional operators (“<”, “>", “<=" “>=" “==" and “l =") are employed to
compare numerical values with the corresponding thresholds.
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Finally, the DOMAINS object defines the physical and virtual environments
available and their transitions (connections). The domains are represented by
a directed graph G = (V, E). The set of vertices V' corresponds to the set of
domains, and the set of edges E represents the logical connections between
domains. The model keeps the information about LOCAL metrics of each domain
(vertex) and TRANSITION metrics associated with the edges. A particular domain
is thus defined with three sub-objects: RESOURCES, LOCAL, and TRANSITION. The
RESOURCES sub-object contains information about memory (MEMORY), virtual pro-
cessing cores (VCPU), and virtual network interfaces (IFACES) made available by
the domain. The LOCAL and TRANSITION sub-objects, in turn, define the metrics
associated with domains and their connections obtained either with benchmark-
ing or from catalogs; this is used by the optimization process. These sub-objects
are also related to the METRICS object, and there must be a correspondence
between metric identifiers and benchmark identifiers for both the LOCAL and
TRANSITION sub-objects. In special, each entry of the TRANSITION sub-object
determines to which domain the transition corresponds (using the domain unique
identifier) and then defines the values of the optimization metrics for the tran-
sition.

3.2 The Proposed Genetic Multi-domain Mapping Method

GeSeMa executes two well-known genetic algorithms: NSGAII [2] and SPEA2
[19]. Those algorithms have been successfully applied to solve networking prob-
lems, including fault diagnosis [4,12]. Note that the system can be extended
to include other algorithms. The stakeholders can choose the genetic algorithm
taking into account their characteristics, features of the requested service, and
the domains, plus the evaluation setup provided. The genetic algorithms model
the virtualized service mapping problem as follows:

Individuals: An individual’s chromosome is modeled as a vector with N > 1
genes (i.e., positions), where each gene corresponds to a network function of
the service topology (i.e., each function is mapped to a position in the vector).
Genes contain alleles, represented by integer values in the range [0, M — 1] which
correspond to the M > 0 domains available to map the network functions. Note
that, in GeSeMa, a valid individual is a candidate mapping.

Population: The initial population is created randomly or using a greedy-
based strategy. The initial population must not violate any function to domain
dependencies, if there is any (i.e., for instance, if a domain must host some
function, the index corresponding to the specific domain is fixed to the allele of
the constrained gene). The population size P > 0 is a parameter defined by the
stakeholders.

Objectives and Constraints: GeSeMa evaluates objectives (with the eval-
uation setup) and constraints (e.g., policies, network topology, computational
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resources, and dependencies) for all individuals of each generation. We use a
taboo list to keep invalid individuals and avoid re-evaluations in case of new
occurrences; If it happens, three actions are possible: (i) discard the individual
(a standard action); (ii) replace the individual with a new random individual (in
case policies or network topology constraints are violated); or (iii) reduce domain
redundancy (in case of computational resources constraints are violated).

Selection: The selection chooses individuals of a generation to crossover.
GeSeMa uses a tournament mechanism that randomizes I individuals and
returns the one that is the most fitted among them (i.e., the one on the best
Pareto frontier). The tournament size I > 1 is defined by the stakeholders.

Crossover: GeSeMa provides four crossover operators: Simulated Binary
Crossover, Half Uniform Crossover, Partially Mapped Crossover, and Subtour
Selection Crossover. The crossover operator and ratio (i.e., operator application
probability) are also defined by the stakeholders.

Mutation: The proposed solution employs two mutation operators: replace-
ment and swap. Replacement chooses a random gene and replaces its allele with
a new random value. Swap chooses two random genes and exchanges their alle-
les. Genes with domain constraints are never mutated. Similar to crossover, the
stakeholders can define the mutation operator and its ratio.

GeSeMa executes two main procedures: (i) validation and configuration of
the genetic algorithm; and (ii) creation and evolution of the population. The first
procedure uses the model specified in Subsect. 3.1 to validate the provided service
request, thus mapping high-level structures to iterable elements (i.e., dictionar-
ies, and lists). Next, the procedure checks previously defined genetic parame-
ters (i.e., population size, tournament size, crossover operator/ratio, mutation
operator/ratio, and the number of generations) and, if valid, it configures the
genetic algorithm. Finally, the first procedure generates a set of software elements
employed for the creation and evolution of individuals by the second procedure.

Figure 1 summarizes the second procedure of GeSeMa. At first, the network
service, encoded as a string according to the SCAG grammar, is converted to
a format that is processed by the genetic algorithms (Fig.1: A and B). The
initial population is generated with valid individuals in terms of the network
topology (network domain transitions) and domain dependencies (constrained
network functions pinned to their respective domains). Next, the individuals are
evaluated (Fig.1: C) considering the availability of computational resources in
the chosen domains and other constraints. In this way, each candidate is evalu-
ated iteratively, gene by gene for all metrics. Results of all genes are aggregated
to define the overall result for each metric. Finally, GeSeMa executes selections
(Fig. 1: D) in addition to the crossover and mutation genetic operations (Fig. 1:
E and F, respectively) to evolve the population. All the stages depicted in Fig. 1
C, D, E, and F represent the processing done to create a generation of indi-
viduals (Fig.1: G). Finally, after each generation has been created, the genetic
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Fig. 1. Summary of the GeSeMa Workflow

algorithm saves the best-fitted results (local Pareto frontier) for reusing in future
generations. After a predetermined number of generations, GeSeMa returns the
last Pareto frontier found as the final result (Fig.1: H).

In particular, the evaluation stage (Fig.1: C) produces information that is
relevant for the next stages. Local optimization metrics are computed with the
current gene’s allele. Transition optimization metrics, in turn, are processed when
a domain transition occurs. The transition metrics use the current gene’s allele
and the alleles of previously related genes. Besides the allele, for each gene,
there is a so-called relation array with indexes of previously related genes (i.e.,
previous network functions that have a connection with a particular network
function in the requested service topology). In this way, linear chromosomes can
represent branched service topologies. The set of partial evaluation results (i.e.,
by gene/allele) are jointly processed, and the individuals are classified in terms
of Pareto frontiers.

4 Experimental Evaluation

In this section, we present an empirical evaluation of GeSeMa! For the experi-
ments, we employed the topology that corresponds to the Amazon AWS network,
consisting of 114 domains [17]. All the experiments were executed 30 times with
a confidence level of 95%. Preliminary experiments were run to determine values
for the parameters of the genetic algorithms.

GeSeMa is compared with GA+LCB, which is a mapping solution based on
a mono-objective genetic algorithm [11]. In addition to the traditional mapping
process (mapping the main network functions of a network service), GA+LCB
includes a backup mapping mechanism that creates a backup schema for the

! The implementation is available at https://github.com/ViniGarcia/NFV-FLERAS.
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requested network service. However, as GeSeMa does not create backups, for
comparison purposes, GA+LCB is executed to map the main functions, not
the backups. The GA+LCB objective function was configured to maximize the
modified domain importance (impy from [11]), which consists of the maximiza-
tion of three metrics — link availability (day), bandwidth availability (deg), and
the availability factor (Aj) — and the minimization of a single metric — inter-
domain delay (ddg). The GA4+LCB solution computes this evaluation setup as
E = wl xnor(day) + w2 x nor(dcy,) + w3 * nor(Ay) + w4 * (1—nor(ddy)), where
nor indicates a normalization function and w,, the metric weight (Zizl wy, = 1).

Both GeSeMa and GA+LCB are employed to map a network service with
9 generic network functions. Two restrictions have to be guaranteed by both
solutions: the result mapping of network functions should not exceed the compu-
tational resource limits of the domains, and no more than two network functions
should be mapped to each domain. Furthermore, both solutions were config-
ured to obey both maximum delay and minimum availability constraints. The
values for metrics dcy and Ay are defined randomly in the intervals [100, 500]
and [0.95,0.99], respectively; the value of day is 114 for all the domains (the
network topology is a complete graph); and the value of ddj is defined consid-
ering the geographical distance between pairs of domains gdj ;+r in the curve
gk gin * (1 — emor9drrin) =4y 4 0.05. As required by GA+LCB, the initial
domain and the final domain are specified in the mapping request document.

The genetic parameters of GeSeMA were configured to be as similar as possi-
ble to GA+LCB. GA+LCB includes a crossover of half of the population using a
personalized algorithm. Thus, we configured GeSeMa with a crossover ratio of 0.5
using the SBX algorithm (SBX has similar behavior to the GA+LCB crossover
algorithm). The mutation ratio is set to 0.05, GA+LCB uses a specific, simple
mutation algorithm; GeSeMa uses a replacement mutation algorithm. GA+LCB
executes a traditional roulette selector; GeSeMa employs a binary tournament
selector. GA4+LCB creates the initial population based on a k-shortest path
algorithm; GeSeMa creates the initial population randomly. GA+LCB uses a
self-designed mono-objective genetic algorithm with elitism features; GeSeMa
adopts SPEA2. The population size of 50 was the same for both solutions, as
well as the execution of 20000 generations. Finally, we removed the parameter
weighing of GA4+LCB and evaluated the Pareto Frontiers of the returned results
for both solutions.

The first experiment compares the quality of the candidates returned by
GeSeMa and GA+LCB. We use the mean of the relative Pareto frontiers for the
comparison (smaller numbers are better). Figure 2 shows the mean frontiers of
candidates returned for two cases: “complete” (frontiers of all candidates from all
executions are used to compute the mean value) and “top 10” (frontiers of top ten
candidates of all executions are used to compute the mean value). The GA+LCB
solution presented a better mean of the relative frontiers in the “complete” case.
However, GeSeMa surpasses the GA+LCB results in the “top 10”7 experiment.
This behavior occurs due to the number of candidates returned from GA+LCB
at each execution: precisely one. Thus, GA4LCB returns a total of 30 candidates
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with the best F value achieved in each execution of the solution. GeSeMa, in
turn, returns the entire Pareto frontier, which typically contains multiple can-
didates. In this experiment, GeSeMa provided approximately 49 candidates per
execution, from a total of 1463 candidates evaluated in the “complete” case.
Some of these candidates are not better fitted than the ones returned by the
GA+LCB, but, as demonstrated by the “top 10” case, the best candidates of
GeSeMa are more fitted than the best candidates of GA+LCB.

The second experiment compares the mean execution times of GA+LCB
and GeSeMa to map the service in the AWS network topology. Figure 3 shows
the results. GeSeMa presented a better mean execution time: 104% faster than
GA+LCB. These results can be explained as follows. First, GeSeMa employs a
lightweight random initial population strategy, while GA+LCB uses a k-smallest
path heuristic to create a possibly more fitted initial population. Thus, the
GA+LCB strategy requires the execution of shortest path algorithms that take
quite a lengthy amount of time to run in large network topologies. Second, the
evaluation of multiple optimization metrics with a mono-objective genetic algo-
rithm requires an aggregated index (in GA4+LCB, called F). The creation of this
index imposes extra time to process the normalization and weighting required
by each generation. Third, GA4+LCB does not have any mechanism to avoid the
evaluation of candidates which have been already discarded but reappear during
the execution of the genetic algorithm. GeSeMa, in turn, uses a taboo list to
ignore those candidates.

5 Conclusion

The deployment of virtualized network functions and services depends on proper
resource allocation while guaranteeing that restrictions are respected. In this
context, multi-domain mapping allows embedding a network service across a
distributed environment consisting of multiple administrative domains. Current
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multi-domain mapping solutions do not enable the stakeholders to customize
their evaluation setups. In this paper, we presented Genetic Service Mapping
(GeSeMa), an intelligent mapping solution that uses genetic metaheuristics to
execute a customizable mapping of service topologies across multi-domain envi-
ronments. We evaluated the feasibility and performance of GeSeMa compared
with another state-of-the genetic-based alternative. The results confirm that
GeSeMa produced mappings of superior quality with lower execution times.
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