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Abstract. Network intrusion detection systems (NIDS) must inspect multiple parts of a packet to detect patterns
of known attacks. With the advent of XDP, it has become feasible to implement such a system within the ker-
nel’s own network stack for the evaluation of ingress traffic. In this work, we propose Sapo-boi, an IDS solution
consisting of two modules: (i) the Suspicion Module, an XDP program capable of processing packets in parallel,
discarding packets considered safe, and redirecting suspicious packets for verdict in user space through XDP sockets
(AF_XDP); and (ii) the Evaluation Module, a user-level process capable of finding the rule to which the suspicious
packet should be analyzed in constant time and triggering notifications if the suspicion is confirmed. The system
demonstrated superior results in terms of packet analysis rates and CPU usage compared to traditional IDS alterna-
tives (Snort and Suricata). Furthermore, Sapo-boi presented a higher rate of alerts in attack scenarios compared to
another state-of-the-art in-kernel IDS solution.
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1 Introduction
The number of potential threats to connected systems grows
in proportion to the increasing use of computer networks for
enabling efficient and effective communication in the mod-
ern world. In this context, security solutions play a crucial
role in detecting, preventing, and mitigating these threats, en-
suring the confidentiality, integrity, and availability of pro-
cesses and data.
In particular, Network Intrusion Detection Systems

(NIDS) are a class of tools designed to detect attack patterns
in network traffic. The primary goal of a NIDS is to inform
relevant entities by triggering alerts when attack patterns are
identified. It’s worth noting that, due to their typical use
of Deep Packet Inspection (DPI), these systems— even in
well-known implementations like Snort 1 and Suricata2—of-
ten present low performance in packet processing and high
packet drop rates Erlacher and Dressler [2018].
As a strategy to address the performance challenges asso-

ciated with NIDS, technologies for accelerating network traf-
fic processing can be employed. Among these technologies,
batch processing tools such as the Data Plane Development
Kit (DPDK) Conole et al. [2024] and PF_RINGBiscosi et al.
[2024] stand out. However, these tools typically impose high
demands on computational resources, especially CPU, and
can significantly increase packet processing latency Du et al.
[2023].
Other prominent technologies, such as Extended Berke-

1https://www.snort.org
2https://suricata.io

ley Packet Filter (eBPF) and eXpress Data Path (XDP), have
gained popularity for various networking applications Sund-
berg et al. [2023]; Abranches et al. [2021], yet they remain
relatively underexplored for implementing IDS solutions.
Considering the potential advantages and features of

eBPF/XDP, and intending to create an effective NIDS solu-
tion that outperforms traditional alternatives, this work intro-
duces Sapo-boi: the Evaluation and Traffic Processing Sys-
tem using BPF and XDP for Intrusion Detection.
Sapo-boi is a NIDS consisting of twomodules: one operat-

ing in user space (EvaluationModule) and the other in kernel
space (Suspicion Module). The Suspicion Module inspects
network traffic in parallel, detecting threat-related patterns
at the first layer of the kernel’s network stack. It forwards
suspicious packets to the Evaluation Module via XDP fam-
ily sockets. The Evaluation Module then conducts a deep
inspection to confirm attacks, triggering alerts as needed.
The main contributions are: (i) the design, development,

and deployment of a robust IDS that processes packets via
XDP and forwards traffic through XDP sockets, sending
metadata along with packets to user space to aid in deep in-
spection tasks; and (ii) the experiments conducted to com-
pare the computational performance of the proposed solution
with three existing IDS solutions: two entirely running in
user space (Snort and Suricata) and one operating in both
kernel and user space (Wang and Chang [2022]).
The results demonstrated the efficiency and effectiveness

of the Sapo-boi solution. Despite every compared solution
capacity to fully perform as an signature-base NIDS, CPU us-
age was significantly lower compared to the user-space-only
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solutions and was very similar to the kernel-based solution.
Furthermore, Sapo-boi achieved the highest alert-triggering
rate in attack scenarios, outperforming all the tested alterna-
tives.
The remainder of this work is organized as follows: Sec-

tion 2 presents background concepts; Section 3 presents the
related works; Section 4 describes the architecture and im-
plementation of the proposed solution; Section 5 details the
experimental setup and methodology; Section 6 presents and
discusses the experimental results; Section 7 outlines limita-
tions and future works; and, finally, Section 8 concludes the
paper.

2 Background
In this section, concepts, technologies, and algorithms used
in this article are introduced. The discussion will encompass
BPF (Berkeley Packet Filter) and XDP (eXpress Data Path)
technologies, Network Intrusion Detection Systems (NIDS),
the pattern detection algorithm Aho-Corasick Aho and Cora-
sick [1975], the AF_XDP socket family Kernel [2024], and
concepts related to BPF Type Format (BTF) and softirqs.

2.1 Intrusion Detection
Intrusion detection refers to the process of monitoring a com-
puter system for signs of attacks, whether through analyz-
ing events within the operating system and its applications
or inspecting network traffic Liao et al. [2013]. To auto-
mate this process, mechanisms known as Intrusion Detection
Systems (IDS) are employed. IDS can be classified based
on the source of information they analyze—Host-based IDS
(HIDS) for host-based monitoring and Network-based IDS
(NIDS) for network-based monitoring—or based on the ap-
proach used for detection—signature-based IDS, which de-
tects known attack patterns/signatures, or anomaly-based
IDS, which identifies abnormal behavior Bace and Mell
[2001]. This work focuses specifically on network-based in-
trusion detection using the signature-based approach.

2.1.1 NIDS (Network Intrusion Detection System)

Intrusion Detection Systems (IDS) in networks are programs
designed to examine network packets to detect attack pat-
terns. Often, Network IDS (NIDS) must perform Deep
Packet Inspection (DPI) Lin et al. [2008] on each packet,
which significantly impacts their performance.

As indicated in Figure 1, port mirroring is employed when
NIDS are in execution. This means that the NIDS process
copies of packets and therefore are non-blocking, allowing
normal packet reception to continue uninterrupted. Figure 1
also illustrates that NIDS takes as input a configuration file
and a rules file. The configuration file allows for defining
variables and behaviors that the NIDS will adopt, such as
specifying the local network address or instructing the sys-
tem not to perform DPI on encrypted packets. The rules file
serves the purpose of defining attack signatures, specifying
which patterns the system should detect through DPI to indi-
cate in its logs that there has been an intrusion attempt. Fig-

ure 2 illustrates an example of a rule supported by IDS like
Snort and Suricata.

INTERNET ROUTER SWITCH
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Figure 1. NIDS Operating with Mirrored Traffic

The first field specifies the action to be taken if the rule
is matched. The second and third fields denote the source
IP address and source port, respectively. Following the ar-
row, we have the destination IP address and port. The part
enclosed in parentheses is known as the rule options. In this
case, this rule will generate an alert only if, when the packet
is processed: i) the source port is 13; ii) the destination ad-
dress is within the network 192.168.1.0 (after NAT) and the
destination port is 99; iii) the string ’pattern’ is found any-
where in the packet payload. The sid (signature id) refers to
the unique identifier of the rule (signature) and is not related
to the DPI process.alert tcp any 13 -> 192.168.1.0/24 99 (content: “pattern”; fast_pattern; content:”otherPattern”; sid:1)

alert tcp any 13 -> 192.168.1.0/24 99 (content: “pattern”; sid:156)
Figure 2. Exemple of an IDS Rule

The trigger for a rule to generate an alert is that all patterns
contained within it must be present in the packet. If any of
the loaded rules generate an alert, the system stops analyzing
the current packet. In other words, for each packet, the sys-
tem will test each loaded rule until one of themmatches. The
loaded rules are evaluated from top to bottom, and once one
rule generates an alert, no further rules are evaluated. This
means the rules operate under a logical OR condition. Since
all patterns within a rule must be present in the packet, pat-
terns within a rule form a logical AND condition.

2.1.2 Contents and Fast Patterns

Rules in an IDS can include an option named content. The
contents within a rule represent the patterns that the system
should find in the packet for that rule to generate an alert. A
rule can contain zero or more contents.
Every rule in an IDS (which contains one ormore contents)

has a single fast pattern, which can be specified in the rule
using the keyword fast_pattern, followed by a content. If no
fast pattern is specified, the IDS will use the longest content
in the rule as the fast pattern. Figure 3 illustrates the use of
fast patterns, showing that the string ”pattern” is the fast pat-
tern in this rule. Note that if the keyword “fast_pattern” were
not present, the fast pattern of the rule would be “otherPat-
tern”, since it is the longest content in the rule.
This mechanism exists for performance reasons. In order

to conserve computational resources during the processing
of a single packet, the system attempts to match the payload
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alert tcp any 13 -> 192.168.1.0/24 99 (content: “pattern”; fast_pattern; content:”otherPattern”; sid:1)

alert tcp any 13 -> 192.168.1.0/24 99 (content: “pattern”; sid:156)
Figure 3. Explicit Fast Pattern in an IDS Rule

of the analyzed packet only against the fast patterns of the
loaded rules. If none of these fast patterns is found in the
packet, there is no need to evaluate it further against the re-
maining contents. A fast pattern should be chosen such that,
if found, there is a high likelihood that the represented rule
will be matched. In other words, the fast pattern should be
the most representative pattern, one that best defines the at-
tack. If the fast patterns are common and/or small strings, the
system’s performance will be severely impacted, because all
other patterns in the rule will be checked once the fast pattern
is present.

2.2 BPF
BPF (Berkeley Packet Filter) was proposed in 1993 with
the aim of optimizing the performance of tcpdump Roesch
et al. [2024b]. The classic BPF, as it became known, could
compile a tcpdump filtering expression into BPF instructions,
which were then executed in a virtual machine within the
Linux kernel.
Recent versions of this technology, called eBPF (En-

hanced BPF), have become more versatile. BPF programs
are now used as metrics and/or tools to measure/process
events within the kernel. By utilizing hooks present in the
kernel, it’s possible to instrument syscalls, kernel functions,
interrupts, andmore. For example, counting howmany times
the ‘fork()’ syscall has been executed using a BPF program
that acts as a callback, updating a counter each time the
syscall is invoked. In other words, the BPF program has been
attached to a kernel hook that calls it every time ‘fork()‘ is
invoked.
With the advent of this technology, it became possible to

define user-level programs to run in the BPF virtual machine
(VM) within the kernel. The BPF VM acts as a sandbox,
meaning that before a BPF program is loaded, a verifier stat-
ically analyzes the code and ensures that a set of restrictions
are met. Among these, notable restrictions include the max-
imum number of instructions in a BPF program, which can-
not exceed 1 million, and verification of each memory ac-
cess (not in the stack section) to ensure it is valid (not out of
bounds).

2.2.1 BPF Maps

BPF also facilitates inter-process communication (IPC) be-
tween kernel space and user space through key-value data
structures known as maps. To create maps in kernel space,
it is possible to define a section in the BPF file, specifying
the map type, as well as the key and value types, the maxi-
mum number of entries, and the map’s name. Maps provide
IPC because both the user and kernel programs can write in-
/read from them. In other words, they allow the exchange of
program data through shared memory.
There are currently 33 different types of BPF maps. A

few of them represent generic data structures, for example
BPF_MAP_TYPE_HASH, BPF_MAP_TYPE_ARRAY,
BPF_MAP_TYPE_QUEUE, BPF_MAP_TYPE_STACK,
which allow storage of user-defined structures. On the other

hand, there are specific purpose BPF maps, for example
BPF_MAP_TYPE_XSKMAP, that is filled with descriptors
to XDP sockets, allowing packet redirection from kernel
to user spaces; and BPF_MAP_TYPE_PROG_ARRAY,
which allows a BPF program to call another BPF program
by storing a reference to the program in the map.
Sapo-boi uses mainly 3 types of maps: Hash maps, to rep-

resent Aho-Corasick automata; Array ofMaps, a special type
that allow for storing maps in an array; and XSK maps, to
perform XDP sockets operations.

2.2.2 BPF helper functions

Functions responsible for interacting with the system or ex-
ecution context called from BPF programs are known as
helper functions. These functions can be used, for example,
to print debug messages, return the time elapsed since the
system boot, and manipulate network packets, among other
tasks.

2.3 XDP
XDP (eXpress Data Path) is a hook located in the kernel’s
network stack. Figure 4 illustrates this structure.
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Figure 4. Linux Kernel Network Stack (Adapted from Vieira et al. [2020])

Since XDP (eXpress Data Path) is the first layer after the
network interface for incoming packets, a BPF program run-
ning at this layer represents the earliest possible point where a
received packet can be processed by a user-defined program.
An XDP program, which is what a BPF program run-

ning on the XDP hook is called, can return 5 types of ac-
tions: 1) XDP_PASS: The packet continues to the network
stack. 2) XDP_DROP: The packet is dropped. 3) XDP_TX:
The packet is transmitted back out the same network in-
terface it was received on. 4) XDP_ABORT: Indicates an
error during processing; the packet may be dropped. 5)
XDP_REDIRECT: The packet is redirected to another net-
work interface, to another CPU, or to a user space program.

Note that before taking any of these actions, the packet can
be processed and modified by the XDP program, provided it
adheres to the restrictions imposed by the BPF verifier.
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2.4 AF_XDP
BPF programs are limited in the number of instructions they
can execute. If more processing is required, the packet must
pass through the network stack to reach a user space program.
XDP address family sockets (AF_XDP or XSK) are de-

signed to redirect incoming packets from the kernel to user
space. In this regard, they are similar to sockets in the
AF_PACKET family, but they offer superior performance
because no copy of the packet is sent to the network stack.
This allows for a partial bypass of the kernel’s network stack
(partial because there still needs to be an XDP program that
redirects the packet, which is part of the network stack).
AF_XDP sockets are directly tied to a user space memory

region called UMEM (User Mode Memory). This region is
divided into buffers of equal size, where packets transferred
from or destined to the kernel are stored. The size and num-
ber of these buffers can be configured when the user program
allocates memory for UMEM. In addition to the buffer set,
UMEM also includes two rings: the fill ring and the comple-
tion ring.
The fill ring stores the relative addresses of packets whose

ownership has been transferred from user space to the ker-
nel, while the completion ring stores the relative addresses
of packets that now belong to user space. Here, the relative
address denotes the offset of the packet from the beginning
buffer of UMEM to which that position in the ring refers, as
depicted in Figure 5.

RX Ring

TX Ring

Fill Ring

Completion Ring

UMEMAF_XDP

Packet buffers

Received packets

Packets to transmit

Buffers to be filled by kernel

Buffers to be filled by user

Figure 5. AF_XDP Sockets Architecture (Adapted from Karlsson and
Töpel [2018])

An XDP socket, also allocated by the user, has 2 rings:
RX (receive) and TX (transmit), for received and transmitted
packets, respectively. When a packet is received, the kernel
populates a descriptor in the RX ring. This descriptor points
to a packet buffer in UMEM where the packet is stored, in-
dicates its offset within that buffer, and specifies the size of
the packet.
To receive packets through XDP sockets, a user program

must first write relative addresses into the fill ring and then
submit these addresses to the kernel. The kernel subse-
quently reads an address (the first one added by the appli-
cation, following FIFO policy) and writes the packet data to
the indicated address in UMEM.Afterward, the kernel writes
this address to the RX ring of the socket that received the
packet. The application then reads the address from the RX
ring (which is the first address it placed in the fill ring).
The next steps are as follows: (i) The application reads

the packet by reading from the specified address in UMEM.
(ii) After processing the packet, the application recycles the
address by placing it back into the fill ring for future packet
reception.
Each socket is attached to a queue on the network card.

When initializing a socket, the user-space process needs to
specify which network card and which queue on that card
the socket will be associated with. Sockets associated with
different queues are unaware of traffic redirected by others.
Each socket is connected to a UMEM, but a single UMEM

can be associated with multiple sockets as long as they are
on the same queue of the network card. In other words, the
UMEM is indirectly associated with a single queue on the
network card.
All four types of rings described are FIFO (First-In-First-

Out) data structures. The fill and TX rings are considered
producers (written by the application and read by the kernel),
while the RX and completion rings are consumers (written
by the kernel and read by the application).
For the producers (fill and TX rings), the application must

reserve slots in the ring. Once these slots are filled with rela-
tive addresses from UMEM, they should be submitted to the
kernel.
For consumers, the user program needs to peek into the

ring: if packets are available, they can be consumed. Once
the packets from a slot are read, the slot should be released
so that the kernel can fill it again.

2.5 Aho-Corasick Algorithm

The Aho-Corasick algorithm is used for pattern matching in
a long text. This algorithm is efficient in finding an arbi-
trary number of substrings within a given string. Therefore,
it aligns well with the objectives of an IDS, as these systems
aim to identify malware signatures in the payload of a packet.
For this reason, the Aho-Corasick algorithm is utilized by
Snort and Suricata Waleed et al. [2022].
The output of the Aho-Corasick algorithm is an automa-

ton capable of recognizing any of the patterns provided as
input within any given string. Table 1 illustrates an exam-
ple of a state transition table for an automaton with patterns
“ar” and “ara”. The table shows the current state, the transi-
tion character, the new state, and which pattern was matched.
It abstractly represents the automaton. When iterating over a
string, each transition can be executed in a single line of code
using a key-value data structure, such as BPF maps, specifi-
cally BPF_MAP_TYPE_HASH.

Table 1. Output of Aho-Corasick Algorithm for Strings “ar” e “ara”
State Transition New State Pattern id
0 a 1 -
1 r 2 1 (ar)
2 a 3 2 (ara)
1 a 1 -
3 r 2 1 (ar)

The algorithm has a time complexity of O(n + m + z),
where n is the size of the string in which patterns are being
searched, m is the sum of the sizes of all patterns, and z is
the number of patterns found in that string. Therefore, it can
be concluded that the smaller the size of the automaton, the
better the performance of this algorithm.
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2.6 BTF
The BPF Type Format (BTF) emerged with the goal of en-
abling sections with debugging information in BPF object
code, similar to DWARF, which allows the creation of such
sections in object files generated from C and C++ code. An
evolution of BTF has allowed writing in a metadata informa-
tion section, which can be sent along with the packet through
the XDP program to the user application via AF_XDP sock-
ets.

2.7 Softirq
Every time a packet arrives through the network interface
card, it triggers a hardware interrupt (IRQ - Interrupt Re-
Quest). When this happens, the kernel takes over from a
process executing on a CPU core and handles the interrupt
(forced preemption). Subsequently, the kernel’s network
stack needs to process the packet. This processing is carried
out by softirqs, which are software tasks executed immedi-
ately after a hardware interrupt.
The entire kernel network stack operates within

the context of softirqs. For incoming packets, the
NET_RX_SOFTIRQ softirq handles the processing.
Since XDP programs reside within the network stack, they
execute in the context of softirqs as well. Therefore, to
measure the CPU time of an XDP program, one should
observe the time that the processor spends in softirq context.

2.8 Perf events
Perf events represent a generic way to send data from
a BPF program to a user-space process. To use
them, it is necessary to set up a BPF map of type
BPF_MAP_TYPE_PERF_EVENT_ARRAY, which enables
Inter-Process Communication (IPC) between programs in
different spaces.

3 Related Work
Network attacks occur frequently for various reasons, includ-
ing politics, economics, society, racism, sports, games, and
attempted fraud Abhishta et al. [2020]. Therefore, effective
ways to detect such abuses become crucial. Snort Roesch
et al. [2024a] emerged in 1998 as an evolution of tcpdump,
capable of pattern detection in the payload of network pack-
ets. Starting from 2021, with the release of version 3, Snort
transitioned into a multi-threaded IDS.
Suricata emerged in 2010 intending to be more efficient

than Snort, using a multi-threaded approach from its incep-
tion. There is a wide range of studies comparing the per-
formance of these two systems, most of which used single-
threaded Snort Park and Ahn [2017] White et al. [2013] Al-
bin and Rowe [2012] Murphy [2019], all showing Suricata’s
significant superiority in terms of CPU and memory usage
and packet loss rates. However, a more recent study Waleed
et al. [2022] shows that there is now closer proximity be-
tween the IDS, even though Suricata remains more efficient.
The study also demonstrates that Snort’s packet loss rate be-
came insignificant at transmission rates lower than 1 Gbps

and the performance difference using different approaches
for pattern recognition and packet capture. A 2020 study Hu
et al. [2020] also compares Snort 3 with Suricata, this time
using higher transmission rates, from 10 to 100 Gbps. As ex-
pected, running those solutions in conjunction with the host
destination means the latter does not receive packets in their
entirety, as the presence of the systems increases CPU time
in softirq context, consequently resulting in packet loss.
Both Snort and Suricata allow the use of BPF for traffic fil-

tering. These filters work the same way as those in tcpdump,
even having the same syntax. However, neither of them al-
lows pattern matching in kernel space. A BPF system capa-
ble of performing DPI in a video streaming and Internet of
Things context is described in Baidya et al. [2018], but the
system only works for specifically formatted packets, which
does not suit IDS general purposes.
In the context of networking with BPF, it’s demonstrated

in Viljoen and Kicinski [2018] and Xhonneux et al. [2018]
that it is possible to perform packet switching and routing us-
ing BPF, and even offload these functionalities to smart net-
work interface cards. In-Kev Ahmed et al. [2018] allows the
construction of Service Function Chains (SFCs) using con-
secutive calls to BPF programs. The system provides the
capability to build Network Functions Virtualization (NFV)
functions directly in the kernel, at any layer of the network
stack.
Scholz et al. [2018] provide detailed insights on the costs

associated with applications regarding function instrumenta-
tion and performance analysis of BPF programs aimed at fire-
wall systems. To do so, they compare XDP programs with
iptables and nftables and, besides published in 2018 when
the restrictions imposed by the BPF verifier were more strict
than today, they showed that XDP programs exhibited supe-
rior performance related to packet loss and CPU usage.
Shuai and Li [2021] introduce a modification in Snort to

enable packet capture using the Data Plane Development Kit
(DPDK), showing that the rate of analyzed packets (and con-
sequently the rate of generated alerts) reaches rates close to
100%. However, CPU usage tends to be at considerably
higher rates.
Kostopoulos [2024] detail an anomaly detection system

based in BPF whose idea is to demonstrate that it is possible
to extract features from known attacks and train a specific
machine learning model developed for the task. The struc-
tures representing the trained model are then stored in BPF
maps. Using the payload of the incoming packet along with
the weights and biases of the model, it is possible to calculate
a value that the author referred to as the “Malicious Indica-
tor Number”, which determines the verdict for that packet.
As this work’s goal is to compare the computational perfor-
mance of signature-based solutions, Kostopoulos [2024] is
out of scope, due to proposing an anomaly IDS.
The work most similar to this is proposed by Wang and

Chang [2022]. In their study, the authors detail a system
architecture that, similar to this work, consists of two pro-
grams: one in user space and another in XDP, in which only
suspicious packets transition from kernel to user space. The
main difference lies in how communication occurs between
these two processes. While the authors of Wang and Chang
[2022] chose to send packets and data through perf events,
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Table 2. Scope of Related Work
Work DPI with BPF Comparison of/with Snort 3 and Suricata System Proposed Packet Capture methods evaluation

Baidya et al. [2018] Yes No Yes No

Waleed et al. [2022] No Yes No Yes

Hu et al. [2020] No Yes No Yes

Kostopoulos [2024] Yes No Yes No

Wang and Chang [2022] Yes No Yes No

This work Yes Yes Yes Yes

this work utilizes XDP sockets, designed precisely for this
purpose. Regarding the results, the maximum throughput,
which is the maximum transmission rate possible before the
overhead generated by the system results in packet loss, is
three times higher than that of Snort. Suricata and other sys-
tems were not compared. Additionally, the study shows that
the CPU time spent in softirq context (processing the ker-
nel network stack) in their system is lower than that used by
Snort.
Table 2 shows the scope of the related work discussed in

this section which is the most similar to the current. The
second left-most column shows if authors were able to per-
form DPI in kernel context, followed by a column that indi-
cates if there is a comparison with/between Snort and Suri-
cata. Next, a column representing if the work does propose a
system, or simply compares existing work, and lastly, if the
authors evaluated different approaches of capturing packets
for posterior analyses.

4 Project and Implementation
The proposed solution in this work, named Sapo-boi, in-
Portuguese acronym for Traffic Evaluation and Processing
System using BPF and XDP for Intrusion Observation, con-
sists of two main modules: (i) Suspicion Module, imple-
mented as an XDP program running at the kernel level, re-
sponsible for identifying fast patterns from loaded rules; and
(ii) Evaluation Module, a program executed as a user-level
process, whose objective is to determine if other patterns
(contents) related to the rule referenced by the fast pattern de-
tected in the Suspicion Module are present in the suspected
packet.
Figure 6 depicts the high-level architecture of Sapo-boi.

On the left side, the system’s initialization phase is repre-
sented. Initially, the Evaluation Module is responsible for
loading the SuspicionModule (XDP program) within the ker-
nel, as well as the BPF maps that that component will use.
Consequently, the Evaluation Module must process the rules
and populate two structures: (i) BPF maps, which represent
Aho-Corasick automata constructed from the fast patterns of
the rules; and (ii) contents automata, graph structures resid-
ing in user space until the end of the IDS execution, respon-
sible for pattern detection in packets deemed suspicious.
Once all the BPF maps and user-space structures are pop-

ulated, the execution phase begins. In this phase, incoming
packets are processed by the SuspicionModule. If a packet is
considered suspicious, it is redirected to user space via XDP
sockets for further processing in the Evaluation Module. If
the latter determines that the packet is indeed malicious, it
will write to the log file, indicating which rule triggered the
alert.
It is worth noting that, like traditional NIDS (Figure 1),

the proposed solution processes copies of the packets; that
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Figure 6. Sapo-boi’s Architecture

is, in the event of an XDP_DROP action (packet discard),
the original traffic is not affected in any way. Thus, if no
fast pattern is found by the Suspicion Module, the copy of
the packet under analysis is immediately discarded. In this
situation, the packet discard action indicates that it was con-
sidered safe and does not require further processing by the
Evaluation Module.
On the other hand, in the presence of a fast pat-

tern in a packet under analysis, the Suspicion Module
sends the latter to the Evaluation Module via XDP sock-
ets. To achieve this, the solution relies on BPF maps
(BPF_MAP_TYPE_XSKMAP), which must be created and
initialized from the Evaluation Module, allowing communi-
cation between the twomodules. Once the BPFmaps are pre-
pared, the Evaluation Module enters a standby mode, await-
ing the arrival of suspicious packets.
The following subsections detail the operations performed

by each of the Sapo-boi modules.

4.1 Suspicion Module
The Suspicion Module receives network traffic directly from
the interface, without any prior processing. Technically, this
means that the interpretation of the headers of the traffic units
(frames and packets) is performed by the module itself. For
example, when considering a TCP flow, the module must
initially identify the Ethernet header, followed by the IP and
TCP headers, to finally be able to inspect the payload.
It should be noted that incoming traffic may present encap-

sulation with VLAN headers. Thus, the Suspicion Module
will discard these headers until the corresponding Ethernet
header is detected.
Once the Ethernet header is obtained, the ethertype op-

tion is located, which indicates the next protocol related to
the network layer. If the observed protocol is not IP, the
packet is discarded. Otherwise, if an IP packet is detected,
the module will consider two possible cases for the transport
layer: TCP and UDP. Other possible protocols result in the
packet being discarded.
Also, for the SuspicionModule to execute efficiently, mul-

tiple CPU cores must be used concurrently. This is only
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possible if the network card supports multiple queues for
Receive Side Scaling (RSS). Specifically, RSS is responsi-
ble for allowing traffic to be distributed among processors
through indirection tables Woo and Park [2012]. The pro-
cessing performed by the Suspicion Module will be detailed
in the following subsections.

4.1.1 Kernel space pattern detection

Once the received traffic is identified, the Suspicion Mod-
ule checks for the existence of fast patterns using BPF maps
of type hash (BPF_MAP_TYPE_HASH). These maps allow
for the definition of abstract key/value structures, represent-
ing the states of an Aho-Corasick automaton. Specifically,
the keys represent a state of the automaton (integer) and a
transition (character/byte), while the values define the result-
ing state of the transition. Table 1 accurately shows the struc-
ture of the map, where the keys are represented by the current
state and the transition character, and the value is the result-
ing state, as well as a flag indicating if this is a final state
(meaning that there is a match).
Note that the pattern matching is performed by the Sus-

picion Module by iterating over every byte of the analyzed
packet payload, and a state transition in the Aho-Corasick
automaton is performed by checking if a key belongs to the
map, being a key defined by the evaluated byte and the cur-
rent state of the automaton. Since hash maps are optimized
for search, the transition is done in constant time.

4.1.2 TCP and UDP ports

As discussed in Section 2.5, the Aho-Corasick algorithm be-
comes more efficient for smaller automata, as both the total
size of the patterns and the potential number of pattern com-
binations are reduced. Therefore, to create smaller automata,
segmentation by TCP/UDP destination and source ports is
used, from now on referred to as port pairs.
This form of segmentation provides a way to separate IDS

rules so that the generated automaton contains only the fast
patterns of rules related to a specific port pair. Thus, the fast
patterns of the rules of each port pair are mapped to a sin-
gle automaton. Figure 7 illustrates an example of separating
rules into port pairs. It can be observed that the rule with
signature ID (sid) 4 is present in all port pairs, and therefore
in all automata since it does not specify specific source and
destination ports of interest. This phenomenon can impact
the IDS performance, as the fast pattern corresponding to sid
4 will be tested for all incoming traffic.

alert udp any 13 -> any 42 (content: “dog”; sid: 1;)
alert udp any any -> any 42 (content: “cat”; sid: 2;)
alert udp any 13 -> any any (content: “bird”; sid: 3;)
alert udp any any -> any any (content: “turtle”; sid:4;)

Pair 0, (13, 42): sid 1, 2, 3, 4
Pair 1, (any, 42): sid 2, 4
Pair 2, (13, any): sid 3, 4
Pair 3, (any, any): sid 4

Figure 7. Rule Grouping by Port Pairs

When the SuspicionModule verifies that a packet contains
TCP or UDP headers, it retrieves the source and destination
ports from the header and then analyzes only the automaton
relevant to that port pair. If no automaton is found, the packet
is discarded because there is no loaded rule that could con-
sider the packet malicious.

The automaton related to the defined port pair is made
available to the Suspicion Module through a BPF map, as
demonstrated in Figure 8. Each entry in the map has a key
composed of two 16-bit integers representing the source and
destination ports. The value stored for this key is an index
pointing to a map that informs the Suspicion Module where
the automaton to be analyzed is located. If there is no entry
in the port pair map, it means that no rule has been loaded for
the packet’s port pair, resulting in processing interruption and
packet discard.

Ports BPF Map
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Is there an 
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Figure 8. Packet Path in Suspicion Module

Once the relevant index is determined, the program ac-
cesses the specific automaton for the port pair of the packet
under analysis. Then, from this automaton, if a fast pattern
is found in the packet’s payload, it is sent to the Evaluation
Module; otherwise, the packet is discarded.

4.1.3 Metadata

When a fast pattern is found in a packet, the Suspicion Mod-
ule redirects the entire packet, along with a set of metadata,
to the Evaluation Module. In the XDP context, metadata is
defined by an abstract data structure added before the start
of the packet. To add such metadata, the program resets
the pointer to the beginning of the packet and then calcu-
lates the size of the structure, thereby increasing the data
space as needed. This operation is performed using the
bpf_xdp_adjust_meta helper function.
In general, the Suspicion Module sends three pieces of in-

formation as metadata: (i) the index in the map array, ob-
tained through the port pairs map; (ii) the index of the iden-
tified rule determined by the found fast pattern; and (iii) an
integer representing the offset between the start of the packet
and the start of the packet’s payload. These pieces of infor-
mation allow the Evaluation Module to efficiently identify
the rule that needs to be evaluated, as it can tell beforehand
which port pair the rule belongs to and the index of the rule
within that port pair, as well as where to look in the packet.

4.1.4 Packet redirecting to Evaluation Module

Once all the steps depicted in Figure 8 are completed, the sus-
picious packet and its metadata are forwarded to the Evalua-
tion Module via XDP sockets. For this purpose, there needs
to be an XSK type BPF map, where a key corresponds to the
index of the network card queue from which the packet was
received, and the value designates the socket descriptor re-
sponsible for handling the redirect. The redirecting process
is carried out using the bpf_redirect_map helper function.

4.1.5 Suspicion Module Overview

As one could see in the previous sections, the SuspicionMod-
ule is a XDP program able to fetch a packet’s port pair and an
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Aho-Corasick automaton map associated with that port pair.
It is also responsible for redirecting packets to the Evaluation
Module if a malicious pattern is found. Algorithm 1 shows
how port pair and automaton map fetching occurs. Note that
the XDP program receives a pointer to the beginning of the
packet, parses every header until found the TCP/UDP port
pair, then uses this information to lookup for the appropriate
automaton map in the BPF map arrays discussed in Section
4.1.2. Note that the packets themselves do not need to be
modified to serve as input to the Aho-Corasick algorithm, it
is only necessary to parse them until reaching the payload
area. If none automaton map is found in the specific array of
maps, the packet is discarded, meaning port pair in the packet
does not have any automata to be analyzed.

Algorithm 1 Suspicion Module Action when a packet is re-
ceived:
Require: pkt_start: pointer to beginning of packet
Require: TCP_map_array: TCP map array of maps
Require: UDP_map_array: UDP map array of maps
1: eth_type ← parse_eth_hdr(pkt_start)
2: pkt_start ← pkt_start + sizeof(eth_hdr)
3: if eth_type = IPv4 then
4: ip_type ← parse_ipv4_hdr(pkt_start)
5: pkt_start ← pkt_start + sizeof(IP v4_hdr)
6: else if eth_type = IPv6 then
7: ip_type ← parse_ipv6_hdr(pkt_start)
8: pkt_start ← pkt_start + sizeof(IP v6_hdr)
9: else
10: return XDP_DROP
11: end if
12: if ip_type = TCP then
13: is_TCP ← TRUE
14: src_port, dst_port ← parse_tcp_hdr(pkt_start)
15: pkt_start ← pkt_start + sizeof(T CP_hdr)
16: else if ip_type = UDP then
17: is_TCP ← FALSE
18: src_port, dst_port ← parse_udp_hdr(pkt_start)
19: pkt_start ← pkt_start + sizeof(UDP_hdr)
20: else
21: return XDP_DROP
22: end if
23: ports.src_port ← src_port
24: ports.dst_port ← dst_port
25: if is_TCP then
26: automaton_map, port_pair_index ←

lookup(T CP_map_array, ports)
27: else
28: automaton_map, port_pair_index ←

lookup(UDP_map_array, ports)
29: end if
30: if automaton_map = NULL then
31: return XDP_DROP
32: end if

On the other hand, Algorithm 2 describes automa-
ton lookup via BPF maps. As input, there are the
port_pair_index, the offset until reach the packet’s pay-
load and the automaton_map, all of them obtained as de-
scribed in Algorithm 1. Pattern matching is done by iterat-
ing over every byte of the payload of the packet. If there
is a match with the current state and the evaluated byte, the
state should be updated. If a final state is reached, the pro-

gram allocates space for packet metadata, fill the informa-
tion described in Section 4.1.3 (received as input) and send
the packet to userspace via XDP sockets. Note that the
bpf_redirect_map helper function receives a descriptor
to a XDP socket, obtained from the queue id on which the
packet was received. It is also important to highlight that if
none pattern is found when looping through the whole pay-
load, the packet is dropped.

Algorithm 2 Suspicion Module Action when looking for a
pattern:
Require: port_pair_index: port pair map index fetched in Algo-

rithm 1
Require: offset: packet offset until reach payload
Require: automaton_map: automaton map fetched in Algorithm

1
1: xsk_desc ← XDP socket descriptor for this queue
2: state ← 0
3: for byte ∈ packet_payload do
4: state ← lookup(automaton_map, state, byte)
5: if state.is_final then
6: meta ← bpf_xdp_adjust_meta()
7: meta.rule_index ← state.rule_index
8: meta.port_pair_index ← port_pair_index
9: meta.offset ← offset
10: return bpf _redirect_map(xsk_desc)
11: end if
12: end for
13: return XDP_DROP

4.2 Evaluation Module

The Evaluation Module is not limited to processing rules
based on suspicions raised by the Suspicion Module; it per-
forms a series of operations even before the latter starts func-
tioning. These operations are essential for the correct and log-
ical operation of the proposed IDS and include program load-
ing, map creation, metadata structure registration, rule pro-
cessing and loading, and initialization of XDP socket maps
and packet handling. Below, the complete set of operations
performed by the Evaluation Module is detailed.

4.2.1 Suspicion Module loading and Maps creation

The first operation performed by the Evaluation Module is
loading the BPF object file and attaching the XDP program
to a specific network interface. This operation not only loads
the program that runs the Suspicion Module but also con-
structs all the maps present in the object file. In other words,
the maps described in Section 4.1 are created at this moment,
although they are not yet initialized.

4.2.2 Metadata registration

The second operation involves registering the BTF metadata
structures. These structures enable the transfer of (meta)data
from the kernel space to the user space along with the redi-
rected packets, provided that all fields are properly registered
with the kernel and alignment constraints are met.
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4.2.3 Rule Processing

After creating the maps and registering metadata, the next
step is processing the rules. The operations performed based
on the loaded rules determine the port pairs maps, map array,
and per pair automata, as seen in Figure 8. The first step is to
determine the port pairs, similar to what is shown in Figure 7.
These pairs are structures that contain, among other elements,
an array of rules. The pairs themselves are also stored in an
array, as indicated in Figure 9. It is important to note that
there is an array for TCP ports and another for UDP ports
(differentiated according to the transport layer protocol).

Rules file

Map of Port PairsPort pairs array

Rules array

AC 
automaton of 
rule j

Port pair i

Map of Fast Patterns’ 
Automata for Port Pair i

fast pattern for 
rule j

fast patterns for 
port pair i

index i 
(value)

Evaluation 
Module

Figure 9. Structures in the Evaluation Module

Each rule within a port pair is handled distinctly regarding
its fast pattern and other contents. The fast pattern of each
rule is stored in a list, which will later be converted into an
automaton and then into a specific port pair’s BPF map. Fig-
ure 9 shows the fast patterns of port pair i being inserted into
the same automaton map. In addition to state and transition
information, this BPF map will have entries representing the
final states of the automaton, with a field indicating which
rule was matched. More specifically, the index of the rule in
the pair’s rule array.
Therefore, when the SuspicionModule finds a fast pattern,

it can send to the EvaluationModule the index of the port pair
array, as well as the index of the rule array within that pair,
indicating the rule that needs to be evaluated. Thus, the Eval-
uation Module can locate the desired rule in constant time.
The next step is to add the ports and the pair index to the port
pair’s BPF map (note that this map has a key of a port pair
and a value of the index in the map array, as seen in Figures
8 and 9). This way, the same index:

• In the kernel map array, represents the map that contains
the fast patterns for that port pair.

• In the user space port pairs array, represents the port pair
whose rule has the same fast pattern that was found by
the Suspicion Module (XDP program).

The contents, on the other hand, are treated individually
for each rule. For each rule in the pair, an Aho-Corasick au-
tomaton will be created (unlike fast patterns, where one au-
tomaton is created per port pair). It is important to note that
since this evaluation takes place in user space, individual rule
automata should no longer be represented by BPF maps, to
be represented as graph structures instead. This way, there
is no more need to call BPF map helpers when analyzing the
packet (in user space).

4.2.4 AF_XDP operations

After preparing the rules and patterns, the socket and UMEM
(user memory region where the suspicious packets will lay)

structures are initialized, along with the socket map. Ini-
tially, memory is allocated for the UMEM region where
packet buffers will reside. In this proposal, 4096 frames
of 4096 bytes each were allocated, resulting in a 16MB
area per UMEM. This size was chosen to ensure that even
with high transmission rates and sending by the Suspicion
Module, the UMEM still has space to receive new pack-
ets. Next, the UMEM is registered in the kernel using the
xsk_umem__create libbpf function. Note that each socket
has an associated UMEM. In other words, the number of
sockets and UMEMs used by the system is the same.
Therefore, the next step is to create the XDP socket associ-

ated with the allocated UMEM. This operation is performed
by the xsk_socket__create function. After creating the
socket and associating it with a UMEM, the next step in-
volves adding relative addresses (offsets in a buffer, as de-
scribed in Section 2.4) to the UMEM’s ring fill. These ad-
dresses indicate to the kernel where to write the suspicious
packets. Failing to complete this step would result in the in-
ability to forward traffic to the Evaluation Module because
the kernel would have no place to write the packets.
With the UMEMs and sockets initialized, they are finally

added to the XDP socket map. To achieve this, a positive
integer index is added as a key in the socket map. This in-
dex represents the queue index of the network card where the
socket will operate. The value associated with the key is the
socket file descriptor, obtained using the xsk_socket__fd
function.

4.2.5 Packet managing and processing

After initialization of the AF_XDP actions, the Evaluation
Module can start waiting for suspicious packets. At this
point, a thread is associated with each XDP socket created
in the previous step. Through the technologies used, there
are two ways to receive packets: (i) continuously executing
the recvfrom syscall for all socket descriptors; and (ii) us-
ing the poll function, which takes a list of socket descrip-
tors and returns the number of descriptors where there is an
event. For the proposed IDS, the second option was chosen
due to the ease of managing multiple sockets (and queues)
through a unified function. When the poll function returns,
the threads on which the associated XDP socket has an event
are executed.
Thus, when events of interest occur, it is checked whether

there has been any new write operation in the RX ring of
the socket where an event was detected. During this write,
an available memory space in the UMEM’s ring fill is occu-
pied. This space is then utilized by the Evaluation Module,
aided by the xsk_ring_cons__rx_desc function, to obtain
the relative address (offset from the beginning of the buffer)
and the size of the received packet. After this process, the
used memory space is returned to the UMEM’s ring fill as
available for reuse, ensuring address recycling.
With the relative address and size information, the

xsk_umem__get_data function is used to obtain the abso-
lute address, and consequently, the packet and metadata redi-
rected by the Suspicion Module. Finally, the packets and
metadata are processed according to the following pipeline:

• The metadata is processed and interpreted. This means
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the application knows which port pair is of interest,
which automaton should be analyzed, and the offset
within the packet that represents the start of the payload.

• If the Evaluation Module determines that the rule has
no additional contents beyond the previously detected
fast pattern, the rule is accepted, an alert is generated,
and processing is terminated.

• If there are patterns to be analyzed, the EvaluationMod-
ule converts the packet payload into a character array
and analyzes it using an automaton associated with the
rule’s previously detected fast pattern.

• If the total number of patterns found equals the num-
ber of patterns registered in the rule being analyzed, the
rule is accepted, an alert is generated, and processing is
terminated. Otherwise, the packet is considered falsely
suspicious, no alert is yet triggered, and the Evaluation
Module evaluates the payload again for possible fast pat-
terns different from the one matched by the Suspicion
Module. If none is found, processing is terminated, else
the remaining rule contents will be evaluated.

5 Experimental Setup

The experiments focus on analyzing four IDS solutions: (i)
Sapo-boi, developed as part of this work; (ii) PF IDS, de-
scribed in Wang and Chang [2022], but reimplemented in
this work due to the unavailability of source code; (iii) Snort,
version 3.81.84; and (iv) Suricata, version 7.0.5.
PF IDS is divided into an XDP program and a user-space

process, enabling fast pattern detection within the kernel and
discarding packets deemed safe. It is important to highlight
that we referred to the solution proposed in Wang and Chang
[2022] as “PF IDS” because it utilizes perf events to transfer
packets from kernel space to user space, whereas Sapo-boi
redirects them using XDP sockets.
The analyses are primarily based on three factors: (i) the

rate of non-analyzed packets; (ii) CPU usage across kernel,
user, and softirq contexts; and (iii) the number of potential
alerts missed during communication between modules for
Sapo-boi and PF IDS.
Additionally, this section describes the network topology

used in the tests, along with the specifications of its compo-
nents. It is important to note that during the experiments,
each IDS was executed individually under the same set of
rules, using identical hardware and the same underlying soft-
ware. In other words, every effort was made to ensure the
same execution conditions as much as possible for all four
solutions.
Regarding XDP in-kernel solutions (Sapo-boi and PF

IDS), the tests were conducted by adding a memory copy op-
eration to the driver space, immediately before the BPF pro-
gram is executed. This adjustment was necessary to emulate
the packet acquisition process performed by user-space solu-
tions, which operate on copied traffic. In other words, the
kernel used for testing Sapo-boi and PF IDS differs slightly
from the standard kernel used for testing Snort and Suricata.
The primary difference is a call to the memcpy function in the
mlx4 driver, before invoking the XDP program.

Table 3. Description of the hosts executing the tests
Operating System Ubuntu 24.04 LTS; Kernel 6.8.0-31-generic; x86_64
Network Interface Card Mellanox Technologies MT27500 [ConnectX-3] 10Gbps
CPU 12th Gen Intel(R) Core(TM) i7-12700; 16 cores
RAM 16GB
Link SPF+ E124936-D copper bidirectional

The following subsections provide details about the exper-
imental testbed and the auxiliary software used in the tests.

5.1 Hardware and Software
The network topology used for the experiments is described
as follows: a host runs the evaluated IDS, while a sender gen-
erates traffic to the host at various transmission rates (band-
width). Table 3 presents the specifications of the two com-
ponents mentioned (both have identical specifications). The
network interface cards of the two machines are connected
via a bidirectional Small Form-factor Pluggable (SFP+) ca-
ble.

5.2 Rules and Configuration
The rules used in the experiments are a modified subset of the
Snort registered ruleset Roesch et al. [2024a]. As described
in Wang and Chang [2022], two types of rules were removed
to form the subset used. First, rules without a content option
were excluded. Next, rules requiring Snort plugins and/or
modules were also removed. In addition to that, Snort sup-
ports rules with contents and port declarations negated, those
rules were also excluded. The resulting subset was used to
test Sapo-boi, PF IDS, and Snort. For Suricata, slight modifi-
cations to the ruleset were necessary because Snort and Suri-
cata do not share the same syntax for rule construction.
Regarding the configurations, all preprocessors, plugins,

and modules of both Snort and Suricata not directly involved
in pattern detection were disabled, except for those that dis-
play processing statistics at the end of the IDS execution.
Snort and Suricata were tested using their default packet cap-
ture models. Specifically, Snort was tested with the libdaq li-
brary, which provides an abstraction layer for libpcap, while
Suricata captured packets using AF_PACKET sockets.

5.3 Generating and Sending Traffic
In order to generate traffic, a program that analyzes the rules
and forges malicious packets using the Scapy Python library
was used. Additionally, the iperf3 utility was used to gen-
erate non-malicious traffic. The traffic generated by these
tools was stored in pcap files.
The traffic is sent from the sender to the host running the

evaluated IDS using the tcpreplay tool, which allows for
setting the link’s bandwidth, thereby enabling the evaluated
IDS solution to be stressed with higher or lower reception
rates over time intervals.

6 Results Evaluation
This section presents and discusses the results obtained from
the conducted experiments, considering the experimental
setup outlined in Section 5.
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6.1 Non-analyzed Packet Rate
This section details two approaches used to verify the rate
of packets not analyzed by the systems. Unanalyzed packets
are defined as those that reach the destination host where the
IDS solution is located, but due to high transmission rates,
the number of rules, and the nature of the traffic, the solution
is unable to capture the entire set of incoming packets for
evaluation. For simplicity, the rate of unanalyzed packets
will be referred to as the packet loss rate.

The first approach refers to the number of flows present in
the transmitted traffic. In this context, the number of flows
determines how many different source and destination IP-
port pairs are in the traffic. It is important to note that the
number of flows in the traffic may affect the IDS solutions’
ability to process packets, especially if the evaluated traffic is
segregated by flow for load balance among available CPUs.
The second approach concerns the number of rules loaded

by the IDS. As expected, the higher the number of rules, the
higher the rate of packets that the solutions fail to analyze.
However, it is observed that in-kernel solutions experience
a smaller variation in this rate, whereas Snort and Suricata
present a significant increase in their packet loss rates as the
number of rules grows.
Snort and Suricata provide the number of packets analyzed

at the end of their respective executions, allowing for the cal-
culation of how many packets were not evaluated, given the
total number of packets sent. For Sapo-boi and PF IDS, a
packet counter was added to the Suspicion Module (XDP
program) via a BPF map, enabling the determination of the
number of packets analyzed by these systems. The follow-
ing subsections detail the experiments conducted for both ap-
proaches.

6.1.1 Number of Flows

Before diving into the results presented by the IDS solutions
regarding the number of flows present in the network traffic,
it is important to understand how incoming packets are seg-
regated for processing. In modern NICs, this is done via the
RSS (Receive Side Scaling) algorithm. RSS detects IP-Port
pairs and, based on a hash table, determines which CPU will
process the incoming packet Woo and Park [2012].
Figure 10 shows the processed packet rate by CPU for 20-

and 500-flow traffic. Both traffic scenarios contained the
same number of packets of the same size. Note that for 500
flows, every CPU receives packets to process; however, for
20 flows, CPUs 0, 1, 2, 3, 8, and 13 remain idle. As a result,
each active CPU must process a higher number of packets in
order to evaluate all of them.
Figure 11 shows that Suricata exhibits lower packet loss

rates as the number of flows the system analyzes increases.
Suricata’s strong performance is attributed to its ability to use
RSS as a load balancer, which distributes the flows among
the available CPUs. This ensures a balanced distribution of
packets across CPUs, thereby maximizing the total number
of packets analyzed.
However, when the number of flows is low, Suricata suf-

fers from having all traffic redirected to a smaller number
of CPUs for processing, which increases packet loss rates.
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Snort is unaffected by this issue, as the system acquires pack-
ets on a single core, meaning that packet processing occurs
across multiple cores, but traffic capture is limited to one
core. Figure 11 shows a comparison of the packet loss rates
of the four analyzed solutions when loaded with 13,000 rules.
All traffic (3 million packets, with 1,000 bytes of payload)
sent to the host is free of malicious packets. The first graph
shows traffic with 20 flows, while the second shows traffic
with 500 flows.
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For kernel-based systems (Sapo-boi and PF IDS), packet
loss remained at zero for all bandwidths, regardless of the
number of flows. This is because there is no malicious traf-
fic, so packets are considered safe as soon as the system rec-
ognizes that the source and destination ports will not trigger
any alerts. Since XDP is capable of processing 24 million
packets per second on a 6-core machine Høiland-Jørgensen
et al. [2018], these results are expected.
Regarding Suricata, it is noteworthy that high-flow traf-

fic benefits the system. At 10 Gbps with low-flow traffic,
Suricata experienced a packet loss rate of 89.61%. However,
when the traffic type changed to high-flow, this rate dropped
significantly to 14.68%. Additionally, the loss rates remain
close to zero up to 7 Gbps, increasing to 2.65% at 8 Gbps,
then 13.74% at 9 Gbps and 14.68% at 10 Gbps. This exper-
iment highlights the importance of user-space IDS solutions
being able to detect and leverage the RSS technology avail-
able in modern NICs for packet acquisition. It also confirms
the expected trend: the higher the bandwidth, the higher the
packet loss rates.
Snort exhibited very similar loss rates in both scenarios,
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showing behavior opposite to that of Suricata and indicating
that the number of flows does not affect the number of pack-
ets analyzed by the system. For example, at 8 Gbps with low-
flow traffic, the loss rate was 82.76%, while with high-flow
traffic, it slightly increased to 82.97%. At 10 Gbps, the loss
rates were 85.15% and 84.57%, respectively. These results
underscore that Snort lacks effective load-balancing mecha-
nisms for data acquisition among processors.

6.1.2 Number of Rules

The number of rules loaded by an IDS, as well as the band-
width at which traffic is received, are the most critical fac-
tors for analyzing packet loss in traditional IDS solutions.
However, kernel-based systems, due to their implementation,
tend to exhibit significant variations in loss rates primarily in
response to changes in bandwidth, while showing minimal
variation relative to the number of loaded rules.
Table 4 presents the results obtained for different systems,

with varying transmission rates and numbers of rules. The
high-flow traffic transmitted consists of 3 million packets,
each with a 1000-byte payload size, of which 5% were ma-
licious. Of the total packets, 90% were TCP, and 10% were
UDP. Each data point in Table 4 represents the mean and
standard deviation from 10 executions of the analyzed IDS
for each number of rules and bandwidth.

Table 4. Packet Loss Rates for the Evaluated IDS
Num. Rules Bandwidth Sapo-boi PF IDS Snort Suricata

1

1 Gbps 0% ± 0 0% ± 0 0% ± 0 0% ± 0
2 Gbps 0% ± 0 0% ± 0 0% ± 0 0% ± 0
4 Gbps 0% ± 0 0% ± 0 0,07% ± 0,009 0% ± 0
8 Gbps 0% ± 0 0% ± 0 0,13% ± 0,03 2,31% ± 0,03
9 Gbps 0% ± 0 0% ± 0 0,2% ± 0,01 2,39% ± 0,04
10 Gbps 0% ± 0 0% ± 0 0,2% ± 0,09 2,41% ± 0,05

2000

1 Gbps 1,84% ± 0,03 1,83% ± 0,01 0% ± 0 0% ± 0
2 Gbps 2,19% ± 0,002 2,19% ± 0,30 44,3% ± 0,004 0% ± 0
4 Gbps 2,18% ± 0,003 2,19% ± 0,09 74,42% ± 0,005 0,28% ± 0,01
8 Gbps 2,20% ± 0,02 2,20% ± 0,08 88,95% ± 0,03 2,99% ± 0,8
9 Gbps 2,19% ± 0,02 2,19% ± 0,02 89,66% ± 0,05 3,55% ± 0,47
10 Gbps 2,20% ± 0,02 2,20% ± 0,02 89.47% ± 0,06 3,83% ± 0,93

8000

1 Gbps 1,84% ± 0,04 1,84% ± 0,01 3,74% ± 0,009 0% ± 0
2 Gbps 2,20% ± 0,03 2,19% ± 0,03 53,55% ± 0,01 0% ± 0
4 Gbps 2,20% ± 0,03 2,23% ± 0,07 78,70% ± 0,005 0,49% ± 0,01
8 Gbps 2,19% ± 0,02 2,19% ± 0,15 90,81% ± 0,02 4.17% ± 0,03
9 Gbps 2,20% ± 0,02 2,25% ± 0,05 90,02% ± 0,05 5,24% ± 0,07
10 Gbps 2,19% ± 0,01 2,22% ± 0,04 91,39% ± 0,04 6,22% ± 0,08

13000

1 Gbps 1,84% ± 0,03 1,84% ± 0,01 8,55% ± 0,01 0% ± 0
2 Gbps 2,18% ± 0,02 2,22% ± 0,03 56,24% ± 0,009 0,002% ± 0,006
4 Gbps 2,20% ± 0,01 2,20% ± 0,04 79,92% ± 0,004 0,61% ± 0,05
8 Gbps 2,20% ± 0,02 2,20% ± 0,18 91,36% ± 0,02 5.49% ± 0,09
9 Gbps 2,19% ± 0,01 2,18% ± 0,02 91,63% ± 0,05 6,77% ± 0,8
10 Gbps 2,19% ± 0,03 2,22% ± 0,56 91,55% ± 0,05 7,88% ± 2,52

16000

1 Gbps 1,84% ± 0,03 1,85% ± 0,01 8,41% ± 0,01 0% ± 0
2 Gbps 2,19% ± 0,01 2,18% ± 0,03 56,20% ± 0,01 0,012% ± 0,008
4 Gbps 2,21% ± 0,03 2,18% ± 0,03 79,91% ± 0,004 0,73% ± 0,09
8 Gbps 2,19% ± 0,01 2,22% ± 0,14 91,26% ± 0,02 7,88% ± 0,06
9 Gbps 2,19% ± 0,01 2,20% ± 0,05 91,63% ± 0,05 8,60% ± 1,26
10 Gbps 2,23% ± 0,01 2,22% ± 0,02 91,70% ± 0,05 9,61% ± 1,01

It can be observed that Sapo-boi and PF IDS have a low
loss rate. This phenomenon can be attributed to the integra-
tion of the IDS into the kernel’s network stack, ensuring that
if a packet is processed by the stack, it has already been eval-
uated by the IDS. The differences in loss rates between Sapo-
boi and PF IDS stem from the methods used by each system
to send suspicious packets to the EvaluationModule and, pri-
marily, from the significant variance in execution data across
runs. However, when considering the standard deviation, the
loss rates for both systems are effectively equivalent.
Another important observation is that both in-kernel solu-

tions do not fail to evaluate a single packet when loaded with
a single rule. This can be attributed to the fact that the loaded

rule did not match any port pair in the traffic used, which al-
lows the system to terminate processing before executing any
pattern-matching routine, as explained in Section 4.
Snort exhibits high loss rates, failing to analyze over 50%

of packets when loaded with 8000 rules at 2 Gbps, and over
90% at 8 Gbps. Notably, there is a significant increase in
packet loss between 1 Gbps and 2 Gbps for all rule sets start-
ing from 2000 rules, indicating that the packet arrival rate
heavily impacts Snort’s ability to analyze packets. Although
not shown in the table, Snort’s loss rate at 2 Gbps was 2.31%
with 200 rules. However, this rate increases to 26.71% with
500 rules at the same bandwidth, highlighting the system’s
sensitivity to increases in the number of loaded rules.
Snort analyzes more packets than Suricata when loaded

with a single rule. However, as the number of rules increases,
it becomes evident that Suricata maintains low loss rates,
whereas Snort begins to fail to analyze a progressively larger
number of packets. For instance, Suricata loses only 4.17%
of packets at 8 Gbps with 8000 loaded rules, while Snort
loses over 90% under the same conditions. These results
demonstrate that Suricata scales more effectively than Snort.
For comparison, Sapo-boi and Suricata were tested with

16,000 rules, across bandwidths ranging from 7 to 10 Gbps.
The results are shown in Figure 12. It is observed that Suri-
cata’s loss rates increase significantly, indicating that both
the number of rules and the bandwidth indeed affect the sys-
tem’s ability to evaluate packets. In contrast, for Sapo-boi,
the loss rate remains relatively stable up to 10 Gbps.
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Figure 12. Sapo-boi and Suricata with 16,000 Rules

Figure 13 illustrates the point at which the loss rates be-
tween Sapo-boi and Suricata reverse. Since the loss rates of
PF IDS are comparable to those of Sapo-boi, considering the
standard deviation, and Snort exhibits high loss rates for vi-
sualization purposes, both systems were excluded from the
analysis. The graphs for 1 and 4000 rules show Suricata’s
superiority, with only a small discrepancy between the rates.
With 7000 rules, the loss rates are equal for both systems up
to 5 Gbps. However, from 8 Gbps onwards, Suricata experi-
ences higher loss rates. The remaining graphs emphasize the
growing disparity in loss rates beyond 8 Gbps, once again
highlighting the stabilization trend in Sapo-boi and the in-
crease in Suricata’s loss rates.
In summary, three main findings emerged from the analy-

sis:

• Snort and Suricata exhibit different packet loss rates.
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While Snort fails to analyze 5% of packets at 1 Gbps
with 8000 rules, Suricata shows a similar loss rate at 9
Gbps with the same number of rules, highlighting Suri-
cata’s superior performance among user-space systems.

• Packet loss rates in user-space systems are heavily influ-
enced by the number of loaded rules, whereas for kernel-
based solutions, this influence is reduced.

• Suricata performs excellently with high-flow traffic and
a low number of rules. However, as the number of rules
increases, packet loss rates also rise. As shown in Fig-
ure 13, there is always an inflection point where Sapo-
boi outperforms Suricata when both solutions operate
with 7000 or more loaded rules.

6.2 CPU Usage
Table 5 shows the CPU usage of the four evaluated systems
for 1, 500, 8000, and 16000 rules. The data represents the
mean of 10 executions for each IDS. The standard deviation
is not provided to maintain the table’s readability, and in ad-
dition to that, the main goal of the table is to show the differ-
ences in CPU usage among the solutions, not the variation
between executions of the same IDS. Each cell in the table
should be interpreted as follows: ‘user’ refers to CPU usage
in the user context, ‘kernel’ represents CPU time in the ker-
nel context, and ‘softirq’ denotes usage in the softirq context.

<user>-<kernel>**<sofirq>

The data in Table 5 represents the total CPU usage across
each processor core. Since the host running the systems has
16 cores, the rates range from 0% to 1600%. CPU usage in
user and kernel spaces was collected using the pidstat utility,
while CPU time in the softirq context was gathered using
the mpstat tool. The traffic used in the tests is the same as
described in Subsection 6.1.2.
The first notable point in the table is the significant dis-

crepancy between the values for the kernel-based IDS solu-
tions (Sapo-boi and PF IDS) and the user-space IDS solu-
tions (Snort and Suricata). This disparity can be explained
by the fact that kernel-based systems discard non-suspicious
packets immediately after evaluation. Since only 5% of the
traffic in this test is malicious, these systems can discard 95%
of incoming packets, thereby avoiding the complex process-
ing typically performed in the kernel network stack, which is
executed in the softirq context.

Table 5. CPU usage used by evaluated IDS.
Num. Rules Bandwidth Sapo-boi PF IDS Snort Suricata

1

1 Gbps 0-0**3 0-0**2 480-582**514 143-75**117
2 Gbps 0-0**2 0-0**2 436-636**634 272-172**270
4 Gbps 0-0**7 0-0**9 604-784**725 230-168**256
8 Gbps 0-0**27 0-0**26 606-940**897 325-240**351
9 Gbps 0-0**28 0-0**26 584-978**939 393-280**390
10 Gbps 0-0**29 0-0**32 572-1000**971 421-316**424

500

1 Gbps 2-9**24 1-6**6 1372-226**225 256-82**121
2 Gbps 1-8**56 1-7**16 1278-303**328 312-128**192
4 Gbps 2-13**74 2-6**35 1296-304**305 299-150**208
8 Gbps 3-9**118 3-8**58 1010-528**532 565-263**344
9 Gbps 4-10**121 4-8**66 1013-585**588 624-303**381
10 Gbps 4-10**177 4-8**81 978-618**625 670-339**404

8000

1 Gbps 4-18**43 7-9**11 1432-168**177 376-88**122
2 Gbps 4-21**70 11-12**25 1346-252**279 421-109**154
4 Gbps 5-24**103 12-13**33 1327-271**275 388-131**178
8 Gbps 5-32**230 13-11**110 1121-490**495 876-303**337
9 Gbps 6-33**236 13-13**157 1057-541**544 952-354**377
10 Gbps 8-46**240 16-20**160 1019-581**584 1019-385**396

16000

1 Gbps 2-17**45 6-8**11 1391-228**228 500-67**88
2 Gbps 6-26**84 10-12**25 1274-322**301 477-87**109
4 Gbps 6-25**107 10-12**42 1315-284**285 925-167**158
8 Gbps 7-32**208 11-14**177 1088-515**521 1234-314**338
9 Gbps 7-32**291 15-15**181 1021-577**574 1199-404**400
10 Gbps 7-32**300 16-12**220 976-612**614 1146-379**389

It’s also important to highlight the zero CPU usage in
both user and kernel contexts when Sapo-boi and PF IDS
are loaded with a single rule. This behavior occurs because
no packets are sent to the Evaluation Module of these sys-
tems. In other words, no operations involving XDP sockets
or perf events are performed, resulting in 0% kernel space
usage. Furthermore, as no packets are delivered to the Eval-
uation Module, user space usage also remains at 0%.

The third point worth highlighting is that Sapo-boi utilizes
more CPU than PF IDS in both kernel and softirq contexts,
while consuming less in user space. This occurs because ad-
ditional processing is required in kernel and softirq contexts
to perform operations with XDP sockets compared to perf
events. While perf events only involve the creation and dis-
patch of events, the steps required for the proper usage and
operation of XDP sockets are more complex. As detailed in
Subsections 2.4 and 4.2.4, for each packet received by the
Evaluation Module, several BPF helpers must be invoked to
maintain the correct relative address lists used by the mod-
ules for packet writing and reading.

The slightly higher processing time in user space for PF
IDS, when more rules are loaded, can be attributed to the
fact that perf events are received in a manner that requires
extracting packet data from the event. This process is more
resource-intensive than directly receiving the packet through
XDP socket redirection.

Lastly, it is noteworthy that Suricata consistently outper-
forms Snort in the comparison between user-space systems.
Additionally, it is interesting to observe that for these sys-
tems, CPU usage rates in the kernel and softirq contexts are
similar. This similarity arises because packet capture and
copying, which occur in the kernel, happen concurrently with
network stack processing—also handled within the softirq
context. In other words, for Snort and Suricata, kernel usage
represents packet copying during network stack processing,
while softirq measures the overall network stack processing,
including packet copying.
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6.3 Loss Rate Within Modules Communica-
tion

As kernel-based IDS solutions must send suspicious packets
to the Evaluation Module (user space) for verdict, it is im-
portant to assess the actual packet delivery rate to the user
application. Figure 14 illustrates the number of lost packets
across bandwidths ranging from 1 to 10 Gbps, with 13,000
loaded rules. The tests were conducted using the same traffic
described in Subsection 6.1.2.
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Figure 14. Packet Loss Rate for Kernel-based IDS Modules Communica-
tion

It is observed that up to 5 Gbps, both Sapo-boi and PF IDS
successfully delivered all packets to the Evaluation Module.
However, starting from 6 Gbps, PF IDS begins to experience
packet (event) loss, with the number of lost packets increas-
ing as the bandwidth rises.
In contrast, Sapo-boi is capable of delivering all packets

for evaluation, regardless of the bandwidth. This is because
Sapo-boi fully redirects the packet to the user application,
whereas PF IDS generates and sends perf events, which may
not be successfully received by the user application, particu-
larly at high receive rates.
In technical analysis, it can be stated that Sapo-boi is more

robust and reliable than PF IDS, as 100% of the packets
deemed suspicious by the Suspicion Module are guaranteed
to be evaluated by the Evaluation Module. This also implies
that the amount of malicious behavior alerted by PF IDSmay
be lower than that reported by Sapo-boi, due to the potential
loss of events during module communication.

7 Limitations and Future Work
XDP/BPF programs must tackle several restrictions imposed
by the BPF verifier before they can be loaded into the ker-
nel. The main restriction regards the maximum number of
instructions a BPF program may contain: a million bytecode
instructions. Furthermore, to minimize XDP program size
and prevent extensive BPF-to-BPF tail calls, Sapo-boi fo-
cuses on detecting attacks solely through pattern-matching
operations.
In this way, the experiments were conducted only for

signature-based NIDS, allowing equality among the solu-
tions, assuring that only the subset of rules supported by
Sapo-boi were used in the tests. This means Snort and Suri-
cata did not have to perform complex functionality other than
pattern matching. But, it’s important to keep in mind that, de-
spite Sapo-boi and PF IDS outperform those user-space solu-
tions in the context of the experiments, they can only execute

a subset of the consolidated solutions functionality.
Another limitation regards the experiments. Well-known

datasets that represent real-life traffic faithfully, such as CI-
CIDS, could have been used for testing. However, as this
work focuses on evaluating the computational performance
of the solutions, it was not necessary to have traffic in these
terms. Therefore, we gave preference to well-behaved traf-
fic, in which we could control the rate of malicious traffic
and packet size and header information, in order to learn how
those metrics influence the solutions’ behavior. It is also im-
portant to highlight that, as showed in Section 6, the perfor-
mance of a user space signature-based NIDSmainly depends
on the number of rules Lin and Lee [2013], when evaluated
for the same set of traffic.
By knowing its operation, a malicious actor could perform

a DOS atack in the Suspicion Module, if he/she knows be-
forehand which set of rules is loaded. Then, they can forge
packets to contain patterns that almost match the installed
ones, forcing the module to change the Aho-Corasick au-
tomaton state very often, causing processing time waste. For
future work, Sapo-boi can be extended to detect this type of
behavior, closing the connection as soon as the attack begins.
Encrypted traffic is a known issue in NIDS research. Sapo-

boi, as other NIDS (not HIDS), is not able to perform DPI
appropriately in this case, because the traffic has not been
yet decrypted. However, Sapo-boi can be turned into a HIDS,
by installing it in the network nodes, instead of operating in
the switch’s mirrored traffic. For future work, Sapo-boi can
be extended, by using BPF instrumentation capabilities, to
fetch the packets after decryption, as well as operate with
other HIDS capabilities, such as syscall instrumentation and
file changes verification.

8 Conclusion
As the bandwidth for receiving traffic increases, it is of great
interest that a NIDS maintains reasonable rates of packets
analyzed, CPU usage, and alerts generated. By using two
modules in separate parts of the operating system, the IDS
solution proposed for this work, Sapo-boi, is capable of expe-
riencing less packet loss and CPU usage than Snort and Suri-
cata. It also does not lose events in communication between
modules, unlike another evaluated kernel-based approach.
The aforementioned modules are: the Suspicion Module,

an XDP program capable of determining if an incoming
packet is suspicious using the Aho-Corasick algorithm at the
first layer of the kernel network stack, and sending it to a
user-space process for final veredict via XDP sockets, dis-
carding other packets deemed safe (not suspicious); and the
Evaluation Module, a user-space process capable of finding
the rule that should be analyzed against the suspected packet
received from the Suspicion Module in constant time, gener-
ating alerts if suspicion is confirmed.
This work demonstrates that, despite facing strong kernel

restrictions, XDP programs can be used for complex tasks
such as pattern matching within the kernel. The study also
highlights the feasibility of packet redirection with metadata
at high rates of reception using XDP sockets, a topic that is
uncommon in the literature.
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The efficiency and effectiveness of NIDS are of great
impact in a society increasingly connected and generating
massive amounts of network traffic. In this work, Sapo-
boi, a BPF signature-based NIDS focused on minimizing
packet loss and alerts, was proposed. It outperformed re-
sults obtained by market solutions like Snort and Suricata,
and showed competitive advantages in specific aspects com-
pared to a state-of-the-art BPF NIDS proposal.
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