
Journal of Internet Services and Applications, 2025, 1:1, doi: 10.5753/jisa.2025.xxx
 This work is licensed under a Creative Commons Attribution 4.0 International License..

Vines: A CloudStack Platform for the Orchestration and Holistic
Management of Virtualized Network Functions and Services
José Flauzino [Federal University of Paraná | jwvflauzino@inf.ufpr.br]
Vinicius Fülber-Garcia [Federal University of Paraná | vinicius@inf.ufpr.br]
Alexandre Huff  [Federal Technological University of Paraná | alexandrehuff@utfpr.edu.br]
Giovanni Venâncio [Federal University of Paraná | giovanni@inf.ufpr.br]
Elias P. Duarte Jr. [Federal University of Paraná | elias@inf.ufpr.br]

Abstract
Network Function Virtualization (NFV) is changing the way networks are built and maintained by replacing tradi-
tional middleboxes with software that runs on commodity hardware. This paradigm shift not only increases flexibil-
ity but can also reduce the cost of building and maintaining the network. The ETSI NFV-MANO reference model
is currently widely adopted as the de facto NFV standard, with a large number of compliant platforms currently
available. In this work, we propose Vines (Vines Is an NFV-MANO Extensible Solution), a CloudStack-based plat-
form that supports NFV technology and is compliant with the ETSI NFV specifications. Vines includes an NFV
Orchestrator (NFVO) that enables the creation of complex network services composed of multiple individual func-
tions. Management & orchestration are holistic, in the sense that they provide a comprehensive set of functionalities
for heterogeneous network functions and services. Moreover, nearly all NFV developments have been done on the
OpenStack cloud platform. Vines opens up the possibility of using NFV solutions on Apache CloudStack, one of
the most widely used cloud platforms worldwide. Experimental results are presented showing that Vines has the
same performance level as the widely used OpenStack/Tacker.

Keywords: Network Functions Virtualization, Network Management, Network Services, Cloud Computing.

1 Introduction

Network Functions Virtualization (NFV) allows the replace-
ment of hardware-based middleboxes by virtualized soft-
ware that runs on off-the-shelf servers (Mijumbi et al., 2015).
NFV enables the implementation of Network Functions (NF)
to be decoupled from physical network equipment. Thus,
NFs such as firewalls, load balancers, intrusion detectors,
among others, can be implemented in software that is ex-
ecuted as VNFs (Virtualized Network Functions). Further-
more, NFV also allows the composition of SFCs (Service
Function Chains), which are complex network services con-
sisting of multiple VNFs (Fulber-Garcia et al., 2020). NFV
has also been employed to run arbitrary computing services
within the network (Venâncio et al., 2022; Turchetti and
Duarte, 2015; Turchetti and Duarte Jr, 2017). The NFV
paradigm has the potential to increase flexibility and reduce
both the capital (CAPEX) and operational (OPEX) costs to
build and maintain the network (Martins et al., 2014; Yousaf
et al., 2017; Venâncio et al., 2019).
The European Telecommunications Standards Institute

(ETSI) has proposed the NFV-MANO (NFV - MANage-
ment and Orchestration) architecture as a standard for NFV
technologies. The architecture consists of a set of specifica-
tions related to the deployment and lifecycle management of
virtual network functions and services (ETSI, 2014). NFV-
MANO (or simplyMANO) defines several functional blocks.
The Virtualized InfrastructureManager (VIM) is in charge of
managing and orchestrating the physical and virtual infras-
tructure resources. The VNF Manager (VNFM) is mainly
responsible for managing the lifecycle of VNFs, which in-
volves actions such as deploying, updating, and removing

VNFs. The NFV Orchestrator (NFVO) is mainly in charge
of managing the lifecycle of network services (Huff et al.,
2020). In addition, there is the VNF functional block; and
each VNF has an associated EMS (Element Management
System), which is responsible for traditional FCAPS (Fault,
Configuration, Accounting, Performance, and Security) man-
agement functionality.
Solutions that implement the NFV-MANO architecture

are usually based on cloud computing platforms. Cloud com-
puting is a key NFV enabler that simplifies the orchestration
and management of virtualized resources (which includes
virtual compute, storage, and networking) and provides the
means to automate management operations (Chiosi et al.,
2012). In particular, cloud computing platforms are used
as the VIM in an NFV environment, while the VNFM and
NFVO blocks are typically developed as modules adjacent
to the cloud platform.
The MANO architecture has been widely adopted: mul-

tiple compliant platforms are currently available. An NFV
platform is a system that implements the functional blocks
of NFV-MANO, providing a higher-level abstraction layer
for the development of NFV solutions, as well as their
management and orchestration. To the best of our knowl-
edge, all current NFV platforms are based on a single cloud
platform: OpenStack (OpenStack, 2025). Examples include
OSM (Open Source MANO) (ETSI, 2025), Open Baton
(OpenBaton, 2025), in addition to Tacker (Tacker, 2025),
which is an OpenStack project. Curiously, Apache Cloud-
Stack (ASF, 2025a), despite being one of the most adopted
open source cloud platforms worldwide (Flexera, 2022), has
been barely explored in the context of NFV, and in particular
the NFV-MANO architecture.

https://orcid.org/0000-0001-8235-4897
mailto:jwvflauzino@inf.ufpr.br
https://orcid.org/0000-0003-1544-6315
mailto:vinicius@inf.ufpr.br
https://orcid.org/0000-0003-0371-4837
mailto:alexandrehuff@utfpr.edu.br
https://orcid.org/0000-0001-7620-3793
mailto:giovanni@inf.ufpr.br
https://orcid.org/0000-0002-8916-3302
mailto:elias@inf.ufpr.br

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

In this work, we fill this gap by presenting Vines (Vines
Is an NFV-MANO Extensible Solution) an NFV platform
for Apache CloudStack. CloudStack is adopted by a very
large number of relevant companies and organizations world-
wide (ASF, 2025b). With Vines, NFV users/operators have
a choice of cloud platforms to employ. Compared to Open-
Stack, CloudStack tends to be simpler to manage. An Open-
Stack environment requires the deployment of a myriad of
individual components, such as the Tacker NFV project, the
Nova project to provide compute instances, the Neutron net-
work as a service project, andmany others. On the other hand,
CloudStack is based on pluggable services, which are exe-
cuted integrated with the cloud.
Vines addresses limitations of NF management, compared

to how it is done on other NFV platforms. One can fully com-
prehend this point only by grasping the subtle differences be-
tween NF and VNF. The core NFV element is the NF, which
is itself decoupled from the way it is implemented, which
could be either in hardware or software, including as a VNF.
Consider as an example an IDS (Intrusion Detection System)
implemented as a VNF. In order to fill the needs related to
the management and orchestration of NFs running in virtual-
ized environments, it is necessary to extend traditional man-
agement models (Mijumbi et al., 2016). Thus, considering
the IDS example, one problem is managing the lifecycle of
the VNF that implements the IDS (deploying, removing, scal-
ing in and out, etc.) while another problem comprises manag-
ing the IDS itself (reconfiguring the intrusion detection rules,
reinitializing the detector, etc.). The major problem we see
in other NFV platforms (that Vines solves) is that other plat-
forms provide facilities for the management of the VNF life-
cycle, but require manual management of individual NFs.
The management of an NF includes operations such as in-

stalling and configuring the network software on the virtual
host (i.e., virtual machine or container), on which the NF is
running. Furthermore, there are other tasks such as starting,
stopping, and restarting the NF. On the other hand, the VNF
lifecycle management operations, as mentioned earlier, in-
clude deploying, updating, etc. Note that there are lifecycle
operations that may involve one or more management oper-
ations related to the NF. For example, the complete deploy-
ment of a VNF instance may require the installation, config-
uration, and initialization of the NF to be executed. All cur-
rent NFV platforms present limitations in this aspect. One
common limitation is the provision of a reduced set of NF
management features. Most NFV platforms only enable the
automatic execution of a script during the deployment of a
VNF. This script may contain instructions for the installation,
configuration, and initialization of the NF. However, there
is no support for any other NF management operations af-
ter the deployment, which must be done manually. One of
the reasons for that limitation is the fact that current NFV
platforms have poor support for VNF Execution Platforms
(VNF-ExPs) (Garcia et al., 2019b), such as ClickOS (Mar-
tins et al., 2014), Click-on-OSv (da Cruz Marcuzzo et al.,
2017), COVEN (Garcia et al., 2019a), among others. Note
that while NFV platforms are systems that provide/support
the whole NFV environment, VNF-ExPs can be seen as spe-
cialized virtual hosts for running NFs. Thus, while NFV plat-
forms are capable of executing VNFs instantiated in this way,

they are not able to interact with the VNF-ExPs interfaces
that enable the management of the NFs themselves.
In this work, we present the design, implementation, and

evaluation of Vines, an open-source NFV solution compliant
with NFV-MANO and natively available for CloudStack.We
propose an architecture that explores the NFV-MANO frame-
work in-depth. In this sense, in addition to a VNFM and an
NFVO (both featured by other NFV platforms), Vines also
has a VNF-ExP called Leaf. Vines also includes a compre-
hensive and effective EMS, in addition to supporting VNF
Packages (VNFPs). The EMS combined with the VNFM al-
lows what we call “holistic VNF management”, as the EMS
makes it possible to execute all the required NF manage-
ment operations transparently and independently of VNF-
ExPs on which they are running (including, but not limited
to, Leaf). In addition to the VNF lifecycle management oper-
ations that are also available in other NFV platforms (such as
VNF deployment, updating, removal, autoscaling, and self-
healing), Vines also supports NF management operations,
such as those for installing, configuring, starting, and stop-
ping the network software itself, without requiring the man-
ual procedures of other NFV platforms.
Furthermore, Vines also includes an NFVO for the orches-

tration and management of SFCs. As mentioned above, an
SFC consists of a chained composition of multiple VNFs.
Traffic is steered through an SFC, being forwarded across
the VNFs in a predetermined order. The Internet Engineer-
ing Task Force (IETF) proposed a reference architecture for
SFCs. That architecture mainly comprises traffic classifica-
tion and forwarding elements, allowing the orchestration and
deployment of fully functional virtual services. The Vines
NFVO is capable of composing and orchestrating SFCs over
CloudStack’s native virtual networks.
Vines was implemented and is publicly available1. Exper-

imental results are presented, which involved the execution
of multiple different VNF and SFC operations. Comparisons
prove that Vines is competitive, presenting the same perfor-
mance level as the widely adopted OpenStack/Tacker plat-
form.
The main contributions of this work are the following:

• We present Vines, which is to the best of our knowledge
the first CloudStack NFV platform fully compliant with
the ETSI NFV-MANO specifications;

• Vines allows both VNF and NF management, through a
comprehensiveVNFM/EMSdesigned to enable holistic
VNF management;

• Vines also includes an orchestrator that allows the com-
position of complex SFCs consisting of multiple VNFs;

• The architecture, design, and implementation of the
NFV platform are described, including functionalities
and challenges;

• An empirical evaluation is presented, including compar-
isons with OpenStack Tacker.

The rest of this work is organized as follows. Section 2
presents an overview of related work. Section 3 details Vines,
its architecture, and discusses design decisions. Section 4 de-
scribes the implementation, and Section 5 presents experi-

1https://www.inf.ufpr.br/jwvflauzino/vines/

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

mental results. Finally, Section 6 concludes the paper and
presents future research directions.

2 Related Work
In this section, we present an overview of related work, in-
cluding some of the most relevant open-source NFV plat-
forms available. Tacker (Tacker, 2025) is an NFVmodule de-
signed for the OpenStack cloud computing platform. Open-
Stack is thus the corresponding VIM of this NFV platform.
In practice, Tacker runs with several other OpenStack mod-
ules (e.g., Keystone, Neutron, Nova, etc.) as well as third-
party modules, such as Open vSwitch, for instance. Tacker
includes both the NFVO and VNFM functional blocks, and
thus supports the VNF lifecycle management, including the
deployment, updating, removal, monitoring, and scaling of
VNFs, and also of virtual network services (implemented as
SFCs). In terms of NF management, Tacker neither has an
EMS nor supports third-party EMSes. As a result, only some
primitive NFmanagement tasks that can be executed through
the cloud-init (Canonical, 2025a) application, which allows
network operators to run shell scripts to configure an NF dur-
ing its deployment. Note that in this section we do not con-
sider NFV simulation and emulation tools (Son et al., 2019;
Tavares et al., 2018).
Open Baton (OpenBaton, 2025) is an extensible NFV-

MANO platform that also includes an implementation of an
NFVO and a generic VNFM. Open Baton has mechanisms
that allow on-demand implementation of adapters to support
external VNFMs. Although OpenStack is the sole cloud plat-
form supported as VIM, OpenBaton allows users to imple-
ment drivers to support other VIMs (no CloudStack driver is
currently available). Open Baton supports the composition
of network services (implemented as SFCs) and monitoring
based on Service Level Agreements (SLAs), which includes
scaling and recovery operations. In addition, Open Baton pro-
vides a generic EMS that runs within each VNF (acting as a
Management Agent - MA) that allows the execution of life-
cycle scripts (which must be included in the corresponding
VNF Package) during VNF deployment. Open Baton also
provides a Juju VNFM Adapter in order to allow users to
deploy Juju Charms as VNFs.
Hosted by the ETSI NFV working group, Open Source

MANO (OSM) (ETSI, 2025) delivers an NFV-MANO
stack that implements three NFV-MANO functional blocks:
NFVO, VNFM, and VIM. Thus, OSM includes functional-
ity such as VNF lifecycle management, network service or-
chestration (SFCs), and infrastructure resource orchestration.
This NFV platform employs OpenStack as the primary VIM,
but it also supports other VIMs such as OpenVIM, Ama-
zon Web Services (AWS), Microsoft Azure, Google Cloud
Platform, VMware vCloud Director, and Kubernetes. OSM
also provides templates for lifecycle operations that are per-
formed internally to VNFs (called ‘Day 1” and “Day 2”).
However, the execution of these templates depends on the
availability of particular technologies, such as SSH (Secure
Shell) and proxy charms (Canonical, 2025b).
Cloudify (Cloudify, 2025) is an open-source, multi-cloud

orchestration platform, founded by the GigaSpaces company.

One of the primary focuses of Cloudify is on the lifecycle
automation of cloud-based services. Presenting multiple ap-
proaches to provide Environment as a Service (EaaS), Cloud-
ify also supports NFV. In the context of NFV-MANO, Cloud-
ify implements a generic VNFM and an NFVO for lifecycle
service management. For the infrastructure resource orches-
tration, Cloudify relies on OpenStack.

T-NOVA (Kourtis et al., 2017) provides a MANO stack
to enable the management of NFV-based services, including
support for multiple phases of the service lifecycle, namely
resource discovery, service mapping, service deployment,
and monitoring. The system was also developed as part of
the EC FP7 T-NOVA project, and released as an open-source
code. TheMANO stack offered by T-NOVAwas built around
the TeNOR orchestrator, which was developed as part of the
project. TeNOR includes modules such as NFVO, VNFM,
and NFV repositories. T-NOVA adopts OpenStack as VIM
and employs OpenDaylight to orchestrate the network infras-
tructure.

ONAP (Open Network Automation Platform) (ONAP,
2025) is a platform that provides features for the manage-
ment, orchestration, and automation of network and edge
computing services by leveraging SDN and NFV technolo-
gies. ONAP is an open-source project hosted by the Linux
Foundation. Its functional architecture is organized into two
main parts, called Design-time and Run-time. While the
Design-time domain provides features related to onboarding
services and resources into ONAP, the Run-time environ-
ment provides a framework for the instantiation and config-
uration of services and resources. As part of the Run-time
set of components, ONAP originally had an EMS driver to
support EMSes from different vendors. However, the EMS
driver has been deprecated since the ONAP Guilin Release
(ONAP, 2024).

Anuket (Anuket, 2025) is a Linux Foundation open-source
project that was formed by joining the OPNFV (Open
Platform for NFV) and Cloud iNfrastructure Telco Task-
force (CNTT). OPNFV, in turn, focuses on building an
NFV ecosystem by integrating components from upstream
projects related to cloud computing and SDN, such as
OpenStack, Kubernetes, Ceph Storage, OpenDaylight, OVN,
DPDK, and others. To also encompass VNFM and NFVO ca-
pabilities, OPNFV employs Tacker and ONAP.

Table 1 summarizes the main features of the platforms
mentioned in this section. It is important to note that all these
platforms have several limitations regarding themanagement
of the VNF component, especially the NF itself. Currently,
Tacker, OSM, and ONAP do not provide a native EMS, and
neither provide explicit support for third-party EMSes. Open
Baton, in turn, offers a configurable EMS, but the inclusion
of this EMS requires changes to the VNF execution platform,
and may even require kernel code changes if the VNF exe-
cution platform is based on an unikernel operating system.
Furthermore, it is evident that current NFV-MANO projects
are highly dependent on OpenStack as the sole underlying
VIM.

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

Table 1. Open-source NFV Platforms.

NFV Platform NFVO VNFM Supported VIMs Provides/Supports
EMS

Provides/Supports
VNF-ExP

OpenStack/Tacker ✓ ✓ OpenStack. - -

OSM ✓ ✓

OpenStack,
OpenVIM, AWS,
Microsoft Azure,

Google Cloud Platform,
VMware vCloud Director,

and Kubernetes.

- -

Open Baton ✓ ✓ OpenStack. ✓ -
OPNFV/Anuket ✓ ✓ OpenStack and Kubernetes. - -
ONAP ✓ ✓ OpenStack and Kubernetes. - -
T-NOVA ✓ ✓ OpenStack. - -
Cloudify ✓ ✓ OpenStack. - -
Vines ✓ ✓ CloudStack. ✓ ✓

3 The CloudStack/Vines NFV Plat-
form

This section presents the proposed Vines NFV Platform. Ini-
tially, Vines is presented in the context of the NFV-MANO
reference architecture. Next, we delve into the Vines architec-
ture, emphasizing its ability to facilitate holistic management
of the VNF lifecycle. Finally, a description of the strategy to
compose and manage multiple VNFs into SFCs concludes
the section.

3.1 Vines and the NFV-MANO Reference Ar-
chitecture

Figure 1. CloudStack/Vines within the NFV-MANO reference architecture.

OSS/BSS

NFV-MANO

NFVI

VNF

EMS

Virtualization Layer

Hardware Resources

Service, VNF
& Infrastructure
Description

NFVO

VIM

Virtual
Storage

Virtual
Compute

Compute Storage Network

Virtual
Network

VNFM
Ve-Vnfm-em

Os-Ma-Nfvo

Or-Vnfm

Ve-Vnfm-vnf

Vn-Nf

Vi-Ha

Nf-Vi Or-Vi

VNF
Catalog

NS
Catalog

NFVI
Resources

NFV
Instances

Vi-Vnfm

CloudStack

Vines

The main purpose of Vines is to make NFV technology
natively available in Apache CloudStack, being fully com-
pliant with the ETSI NFV-MANO architecture. First of all, it
is worth noting that CloudStack (without Vines) does support
themanual instantiation andmanagement of VMs that run ap-
plications that can be considered to be VNFs (ASF, 2025c).
As that documents mentions that “instantiating a [VNF] ap-
pliance is actually simply provisioning a VM”, the single dif-
ference is that “end-users need to create at least 3 networks
(north, south, and management) and then attach the relevant

networks to the VM.”
Furthermore, it is also possible to build an external agent

that works as an interface for components of the NFV-
MANO architecture; for example, in (Bondan et al., 2019)
a VNFM external to CloudStack manages network functions
running on CloudStack. However, to the best of our knowl-
edge, there is no other CloudStack solution that implements
the full NFV-MANO reference architecture. In this way,
Vines is the first complete, native CloudStack NFV-MANO
solution.
Figure 1 presents CloudStack/Vines within the NFV-

MANO reference architecture. The traditional CloudStack
modules (the cloud platform itself) correspond to the VIM
functional block of the NFV-MANO architecture, which
manages the NFVI computational resources. Thus, Vines ex-
tends the capabilities of the CloudStack platform, by provid-
ing the functionalities of several NFV-MANO blocks, ab-
stracting virtualization details, and providing a high-level
interface for the management and orchestration of net-
work functions and services. Vines itself consists of several
MANO components, in particular the VNFM and the NFVO,
but also features other functional blocks, such as the VNF
and EMS blocks. In the next two subsections, the Vines ap-
proach to VNF management and SFC orchestration are de-
scribed, respectively, together with a description of the Vines
VNFM and NFVO, plus other components.

3.2 Vines: VNF Lifecycle Management
VNF instances are the elements that process data (network
packets/traffic) and can be chained together to compose com-
plex network services. VNF management is thus one of the
key functionalities of an NFV platform. The VNFM (VNF
Manager) Venâncio et al. (2021) is the NFV-MANO module
primarily responsible for managing the lifecycle of VNFs,
but to carry out its tasks in an effective manner other MANO
modules are required, in particular the EMS (Element Man-
agement System).
The main challenge of VNF management is that VNFs are

highly heterogeneous. First of all, the corresponding NFs im-
plement a wide range of functionalities. Furthermore, each
VNF (even those that have the same functionality) may have

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

specific implementations that are also widely different from
each other in several aspects. For instance, some can be in-
stantiated through specialized VNF-ExPs while others are
stand-alone. They can also have completely distinct commu-
nication interfaces. Moreover, the set of management opera-
tions available (or required) by each function can also vary.
In order to deal with these issues, the NFV-MANO refer-

ence architecture defines the VNFP (VNF Package), which
specifies for each VNF the management artifacts available.
They can come as management scripts, software images
that can be directly executed, or even the source code it-
self. Along with the Management Server, Vines maintains
a VNF Catalog, composed of a set of VNFPs that con-
tain the necessary artifacts for instantiating and managing a
VNF. NFV-MANO uses TOSCA (Topology and Orchestra-
tion Specification for Cloud Applications) for the description
of NFV elements and their interconnections (ETSI, 2014).
Therefore, the standard VNFP model for Vines was defined
based on the TOSCAYAMLCloud Service Archive (CSAR)
(ETSI, 2018) specification. As shown in Figure 2, each
VNFP contains a directory TOSCA-Metadata with the file
TOSCA.meta, which includes definitions used as input to
parse the rest of the contents of the CSAR file, such as sub-
directories, VNFD (VNF Descriptor), management scripts,
binary files, among others.

Figure 2. An example of the VNFP structure (CSAR) that Vines supports.

META

YAML

BIN

SH

SH

SH

MF

VNF Package

TOSCA-Metadata

TOSCA.meta

Definitions

VNFD.yaml

Files

Application

Scripts

install.sh

start.sh

stop.sh

MRF.mf

Also related to VNF management, the NFV-MANO ref-
erence architecture includes the EMS functional block. The
EMS allows the VNFM to deal with all the heterogeneity.
With an EMS, the VNFM is able to precisely determine how
each VNF is managed. However, it is beyond the scope of
NFV-MANO to specify the internal structure of the EMS (as
well as of the VNFmodule). A general EMS architecture has
been recently proposed (Fulber-Garcia et al., 2023). But, in
practice, it is left to each system to implement the model. Un-
fortunately, most NFV platforms either lack or have very
primitive EMS implementations. Some VNF vendors also
provide specific EMS solutions for their functions.
Most of the NFV platforms described earlier do not have a

native EMS, including OpenStack/Tacker, OSM, and several
others. Open Baton, on the other hand, does have a simple

EMS that is executed within each VNF instance. That EMS
simply mediates the communication between the VNF and
the VNFM. However, this approach has several disadvan-
tages: (i) either the VNF source code or the corresponding
VNF-ExP code has to be changed to include the EMS. In the
case of VNF-ExPs that are based on a unikernel/minimalist
OS (like OSv or Click OS, for example) it is necessary to
change the kernel itself; (ii) the communication between the
VNFM and each specific VNF (i.e., the EMS inside it) re-
quires some specific communication protocol and its imple-
mentation, for example AMQP (AdvanceMessageQueueing
Protocol) and RabbitMQ, respectively, in the case of Open
Baton.
On the other hand, the Vines EMS is external to the VNF.

Our proposed architecture extends the NFV-MANO specifi-
cation by defining the internal structure of the EMS to ad-
dress FCAPS functionality, providing holistic VNF manage-
ment. Thus, while the communication between the VNFM
and the Vines EMS occurs in a standardized way, the com-
munication between the EMS and the VNF can be done using
different protocols and technologies. The Vines architecture,
as well as the internal structure of the EMS and VNF blocks,
are described below.
Figure 3 presents an overview of the Vines VNF manage-

ment architecture. The figure shows a simplified CloudStack
scenario, composed of a single management node and mul-
tiple compute nodes. The relationship between the VNFM
and the other NFV-MANO blocks that make up the archi-
tecture is also shown. Vines is designed so that its core is
part of the main CloudStack application, known as Cloud-
Stack Management, which operates on a type of node called
Management Server. As a result, users (network operators)
access the VNFM of Vines through the CloudStack API (Ap-
plication Programming Interface). The figure also shows that
compute nodes run a CloudStackAgent (which in some cases
is the virtual machine hypervisor itself) and the interface be-
tween Management and Agent.

Figure 3. The Vines VNF management architecture.

CloudStack Host

EMS 1 EMS 2 EMS n

CloudStack Management

CloudStack Management Server

VNF 1 VNF 2 VNF i

CloudStack API

VNF 3 VNF i+1 VNF n

VNF
Catalog

Hypervisor

CloudStack Agent

VNFM

Implemented Modules Communication Original Components

...

... ...

Vines implements a generic VNFM that has the basic func-
tionalities for managing the lifecycle of VNFs. Note that all
NFV platforms described in Section 2 have similar VNFMs.
One of themain contributions of Vines is actually the fact that

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

it presents enhancedmanagement capabilities, which heavily
rely on a comprehensive EMS. The Vines VNFM uses the
interface between two native applications: CloudStack Man-
agement and CloudStack Agent. Actually, this interface can
be thought of as between VNFM and VIM, since it is through
the CloudStack Agent that the Vines VNFM can request the
hypervisor to manage the NFVI resources. Examples of such
requests are those to instantiate, scale, or remove a VM that
runs an NF. However, Vines heavily relies on the EMS com-
ponent to be able to achieve full VNFmanagement. The EMS
component is described next. Each VNF has a correspond-
ing EMS, while an EMS can be responsible for one or more
VNFs.
The proposed EMS architecture is shown in Figure 4

with the corresponding VNF and the remaining NFV-MANO
functional blocks. The EMS was designed to be flexible
enough so that it is capable of handling heterogeneous VNFs
properly. The EMS communicates with different functional
blocks of the NFV-MANO architecture. The communication
with the VNFM is through a standard interface specified as
the NFV-MANO reference point Ve-Vnfm-em. Despite the
fact that the NFV-MANO documents mention that the EMS
communicates with both VNF and OSS/BSS (Operations
Support System / Business Support System), those interfaces
are not specified in the ETSI documents. To fill this gap,
Vines defines these reference points and corresponding in-
terfaces.
We define the reference point between OSS/BSS and EMS

which is called Os-Em, while Em-Vnf represents the refer-
ence point between EMS and VNF. The interfaces for these
reference points are adapted from those previously specified
by NFV-MANO for the Ve-Vnfm-em and Ve-Vnfm-vnf refer-
ence points (ETSI, 2020). Those interfaces encompass the
entire set of operations available to the related blocks. The
Os-Em reference point includes all the interfaces of the Ve-
Vnfm-em reference point. The EMS receives requests from
both the VNFM and the OSS/BSS. Since the OSS/BSS is an
external entity, their requests must go through an access con-
trol process. That is not the case for VNFM requests. The
Em-Vnf reference point, on the other hand, adopts the oper-
ations of the Ve-Vnfm-vnf reference point. The only excep-
tion is the Indicator VNF interface since the EMS does not
subscribe to the VNF to receive notifications. Actually, the
Vines EMS has a notification service, which actively moni-
tors VNFs to obtain the required data and thus provide the
required information.
Figure 4 shows the internal architecture of the EMS and

VNF blocks and their interactions with other blocks of the
NFV-MANO reference model. Next, we describe the EMS
and then the VNF block in detail. The proposed internal mod-
ules of the EMS functional block are the following:

• Access Interface: exposes an access interface to the set
of EMS operations, bringing together all the interfaces
specified by the NFV-MANO reference point Ve-Vnfm-
em, as well as the Os-Em (specified in this work);

• Access Control: authenticates the entities requesting
VNF lifecycle operations and verify that they have the
proper permissions to perform each operation;

• VNF Information Base (VIB): a database to store the

Figure 4. The Vines EMS and VNF execution platform: architecture.

OSS/BSS NFV-MANO

NFVI

VNF

EMS

NFVO

VIM

Management Agent

Execution Platform

Access Control Access Interface

VNFM

V
e

-V
n

fm
-e

m

Os-Ma-NfvoOs-Em

Ac-Ai

Ai-Dc

Dc-Ed

Or-Vnfm

V
e

-V
n

fm
-v

n
f

E
m

-V
n

f

M
a

-M
v

Vn-Nf

Nf-Vi

Or-Vi

Vi-Vnfm
Ma-Nf

Nf-Vnic

NF VNFP

Management
VNIC

VNIC

Modules of the EMS and VNF
implemented/specified by Vines

Functional blocks of the
NFV-MANO architectural framework

NFV-MANO scope

VNF - Execution Platform
proposed by Vines

Internal modules of the VNF-ExP
(included but not implemented by Vines)

Interfaces related to EMS and VNF
blocks implemented by Vines

Other NFV-MANO interfaces

Abstract interfaces

Execution point

Perf. Monitor

Driver ControllerVIB

Fault Monitor

Extended Driver

information provided by theVNFM regarding theVNFs
for which the EMS is responsible. The VIB can main-
tain both VNF configuration and monitoring informa-
tion. Information in this database is used by the EMS to
implement FCAPS management functionalities;

• Fault Monitor:monitors the state of the VNFs that are
registered in the VIB and employs a predefined fault
monitoring policy. Based on those predefined policies,
this module sends failure notifications to the VNFM;

• PerformanceMonitor: collects data related to VNF re-
source usage. The VNFs must be registered in the VIB
and have a predefined performance monitoring policy.
This module notifies the VNFM in case the policy is
violated;

• Driver Controller: forwards requests received by the
Access Interfacemodule to an ExtendedDriver (defined
below) through which it communicates with the VNF,
properly handling the VNF-ExP interface;

• Extended Driver: acts as a communication broker be-
tween EMS and VNF. It can perform functionalities
such as parameter conversion, reassemble URIs, and
execute different call methods (e.g., HTTP, SSH, and
Socket), among others. There must be an Extended
Driver for each specific type of VNF-ExP interface.

In the context of the architecture shown in Figure 4, the
main blocks are the OSS/BSS, VNFM, EMS, and VNF.

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

Figure 5. Execution of VNF management operations.

Access ControlAccess InterfaceVNFM Network Operator

1: Requests the operation

3: Requests the operation
4: Asks for permission

5: Check permissions

2: Selects the
corresponding EMS

6: Validates the operation

7: Forwards the request
8: Selects the
Extended Driver

9: Requests the operation

10: Executes
the operation

11: Returns outputs

12: Returns outputs

13: Returns outputs

Driver Controller Management Agent

VNF-ExPElement Management SystemVines

All communications between these blocks are performed
through the interfaces defined for the Ve-Vnfm-em reference
point (specified in the NFV-MANO architecture), and by the
Os-Em and Em-Vnf reference points, which were defined
earlier in this work. Through the set of interfaces provided
by the Access Interface module, the OSS/BSS and VNFM
blocks can request the EMS (respectively, through the Os-
Em and Ve-Vnfm-em reference points) to execute each of the
operations for which it is responsible. Security is also a con-
cern for NFV (Krishnan et al., 2020). Requests received by
the Access Interface module are authenticated by the Access
Control module and forwarded to the Driver Controller. The
VNF-ExP specified in the request is used by the Driver Con-
troller to forward the request to the corresponding Extended
Driver. The Extended Driver is designed to handle heteroge-
nous VNF-ExPs in a transparent way, dealing with each type
of VNF-ExP. Therefore, it is one of the components that al-
low Vines to provide holistic VNF management.
The OSS/BSS and VNFM functional blocks can also use

the operations provided by the Access Interface module to
subscribe to the corresponding EMS to receive notifications
of certain events from a specific VNF. However, in the case
of OSS/BSS, the permission for this type of subscription is
defined by each VNF and is specified as a monitoring pol-
icy that is evaluated by the EMS Access Control module.
Two EMS modules – Performance Monitor and Fault Mon-
itor – use the interfaces defined by the Em-Vnf reference
point to collect data on resource usage and check that the
VNF is fault-free, respectively. These two modules notify
the VNFM and/or the OSS/BSS based on the current sub-
scriptions. Therefore, they are the ones that enable both au-
tomatic scaling and automatic recovery of VNFs, which are
key components for the dynamic allocation of resources for
VNFs and SFCs (St-Onge et al., 2023). However, note that
bothmodules only perform notifications upon the occurrence
of certain VNF conditions, they do not make any decisions.
Finally, an EMS stores data about each VNF instance in

the VIB module. Thus, in Vines, each EMS has its own VIB,
which can be accessed by all other internal modules.Multiple
types of data are stored in the VIB, such as unique identifiers
for each VNF, data about resource usage, fault monitoring

policies, the IP address of the management network interface
of each VNF, and the required VNF-ExP, among others.
Our proposed EMS enables the management not only of

VNFs instantiated on VNF-ExPs but also those that run di-
rectly on a regular VM. For example, an EMS can manage a
VNF via the SSH protocol (available on most VMs), or via
the interface provided by a VNF-ExP (such as a RESTful
API). Nevertheless, we argue that using a specialized envi-
ronment such as a VNF-ExP can lead to more fine-grained,
efficient, and secure management.
Actually, Vines provides a VNF-ExP - which is presented

in Figure 4, and is internal to the VNF block. The architecture
defines theminimum requirements to enable the instantiation
and management of NFs in a standardized, simplified, and
flexible manner. The internal modules of the VNF-ExP are
described below:

• Management Agent: the module that provides an inter-
face to several operations related to the management of
the lifecycle of each VNF;

• Network Function: the network function software to
be executed. Thismay consist of one ormoreVNFCom-
ponents (VNFCs);

• VNFP: a directory containing descriptors, scripts, and
other items related to the VNF (please refer to Figure
2).

The sequence diagram in Figure 5 summarizes the execu-
tion of VNFmanagement operations. The diagram illustrates
how Vines interacts with the VNF-ExP when managing the
NF running on a VM. The network operator requests the exe-
cution of an operation to the Vines VNFM (e.g., install, con-
figure, start, or stop the network function). Next, the VNFM
selects the corresponding EMS, and sends the operation to
be executed. The EMS checks for permissions and forwards
the request to the VNF-ExP, which executes and returns the
outputs which eventually reach the network operator.

3.3 Vines: SFC Orchestration
Similar to the VNF Catalog, Vines also maintains along with
the Management Server a repository called Network Service

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

Catalog. This repository consists of descriptors such as the
NSD (Network Service Descriptor) and the VNFFGD (VNF
Forward Graph Descriptor), which specify the VNF chain
that comprises each network service.
Vines also includes an NFVO to perform NFV orchestra-

tion, including the composition of network services. Like its
VNFM, Vines’ NFVO is designed to be part of the main
CloudStack application (CloudStack Management). There-
fore, its functionality can also be accessed by network op-
erators through the native CloudStack interface.

Figure 6. The CloudStack/Vines NFVO Architecture.

CloudStack Management

CloudStack Management Server

CloudStack API VNF
Catalog

NFVOVNFM

Implemented Modules Communication Original Components

NS
Catalog

CloudStack Host

EMS 1 EMS 2 EMS n

VR 1 VR n VNF iVNF 1 VNF i+1 VNF n

Hypervisor

CloudStack Agent

...

...... ...

The NFVO has interfaces to other NFV-MANO functional
blocks that are fundamental to its orchestration activities. For
instance, the NFVO has direct access to NFV repositories
and the VNFM. The interface with the VIM (CloudStack it-
self) is established through the CloudStack Management and
CloudStack Agent applications, allowing the NFVO to ac-
cess the virtualized resources. Figure 6 presents an overview
of the Vines service orchestration architecture, that extends
Figure 3 used to illustrate the VNFmanagement architecture.
Figure 6 shows the relationship between the NFVO and the
other Vines components.
CloudStack deploys client VMs in the so-called Guest net-

works. Each Guest network is isolated and the communica-
tion of a VM with other Guest networks or networks outside
the cloud is routed through a Virtual Router (VR) that acts as
the gateway. In CloudStack, a VR is implemented as a sys-
tem VM, that is a VM specifically prepared to act as a virtual
element in the cloud network (even having an internal agent).
Vines instantiates a VNF in a Guest network with a system
VM acting as a VR. Figure 7 illustrates instances of VNFs
connected in a typical CloudStack virtual network environ-
ment.
Because they operate as local networks, when VNFs be-

longing to the same Guest network communicate with each
other, the network’s VR acts as a virtual switch (i.e., a layer-
2 device). In other words, any such communications do not
involve the VR’s tables (i.e., layer-3 routes are not employed
in this case).
Each VNIC (Virtual Network Interface Card) of a VNF

instance has a private IP address in the respective Guest net-
work to which is connected. To enable intra-network com-

Figure 7. VNFs connected in a typical CloudStack virtual network environ-
ment.

Guest Traffic

VNF 1

VNF 2

VNF n

Virtual
Router

Link-Local Network

Public Traffic

Internet

munication between VNFs, an IP address from the Cloud-
Stack public network is associated in the VR with the pri-
vate IP address of each VNF. This association is made inter-
nally to the VR, regardless of the VNF’s VNIC configuration.
In this way, the VR allows a VNF to access other networks
via SNAT (Source Network Address Translation). Such a net-
work can be another Guest network or a network that is out-
side the cloud (e.g., in the Internet).
Since CloudStack’s native virtual networks are not based

on SDN (Software Defined Network) technology, there is
no SDN controller, and no compatibility with protocols such
as OpenFlow 2. Therefore, the main challenge in enabling
the composition and management of virtualized network ser-
vices on top of CloudStack’s native networks is to devise an
approach to properly orchestrate the network elements (i.e.,
operate the control plane).
Vines adopts a strategy that allows greater centralization of

the control plane of CloudStack’s virtual networks. Accord-
ing to that strategy, the NFVO leverages the full management
capabilities of the VNFM. The key point of this strategy is
to treat each CloudStack VR as a VNF internal to the system
– as opposed to a user VNF. Thus, CloudStack’s system VM
template is treated as a VNF-ExP by Vines. In this way, in
addition to making orchestration easier, CloudStack’s own
network resources are treated in the same way as any VNF,
also having an EMS responsible for their management. Fig-
ure 6 demonstrates that each EMS can be responsible for one
or more VNFs and also for one or more VRs. Thus the Vines
NFVO inherits all the characteristics of the Vines VNFs man-
agement architecture to support network orchestration. This
approach gives the NFVO sufficient management capabili-
ties to perform the necessary configurations of the network
elements when composing virtualized network services.
Vines creates a network service through the composition

of multiple VNFs chained together in an SFC through which
network traffic flows in a specific order. Given the features
of CloudStack native virtual networks (mentioned earlier),
the Vines NFVO composes SFCs configuring both the VNFs
themselves and the VR that acts as a gateway in the Guest
network to which the VNFs of the SFC are connected.
Vines forwards traffic to an SFC by routing the packets to

an IP address of the CloudStack public cloud network. Each
SFCmust have an IP address of the CloudStack public traffic
network. That address may even be a public Internet address,
which is used by the SFC clients to access the network ser-

2There are CloudStack plugins thatmake it possible to build SDN-based
networks by interacting with external controllers, but that control plane is
no longer CloudStack’s.

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

vice. Consider that each SFC consists of n VNFs (in Figure
8, n = 3). VNF 1 is the first VNF of the chain, while VNF 3
is the last. Specifically, when composing an SFC, the Vines
NFVO assigns a public IP address to the last VNF and asso-
ciates this address with the SFC. It then configures the VR
so that traffic headed to the SFC’s public IP (i.e., directed to
the last VNF) is routed to the first VNF in the SFC.

Figure 8. Traffic flows across a Vines SFC.

VNF1 VNF2 VNF3

VR

Public Traffic

Furthermore, the NFVO also configures the first n − 1
VNFs of the SFC so that traffic passes through all the VNFs
before reaching the last one. Since it is the “real” destination,
when traffic arrives at the last VNF of the SFC, that VNF pro-
cesses each packet and returns it to the corresponding VR.
Depending on the functionalities performed by the VNFs

that comprise an SFC, there are cases where the flow does
not reach the last VNF. For example, at a certain point in
an SFC, there may be a firewall VNF that rejects or blocks
passing traffic, preventing the flow frommoving forward and
reaching the last VNF. Situations like this are completely nor-
mal and, although they create behavior that diverges from
what was expected at first (i.e., that traffic would reach the
last VNF), they do not affect the operation of SFCs in Cloud-
Stack/Vines.

4 System Implementation
This section presents the CloudStack/Vines implementation.
All the elements required to provide VNF lifecycle manage-
ment were implemented, including the support for the com-
position and management of SFC-based network services.
CloudStack/Vines is publicly available as an open source
software3. The core of Vines (VNFM and NFVO) was devel-
opedwithin CloudStack’s source code. The generic EMS and
the Leaf VNF-ExP were also been implemented and are key
elements of the holistic management architecture of Vines
(presented in Section 3.2). Both are available as VM tem-
plates on the platform. All Vines functionalities are accessed
through the CloudStack API.
CloudStack is composed of a core, which provides the

basic functionalities for cloud orchestration, while other
functionalities are provided through pluggable services, also
called plugins, which are made available in a unified way.
It is important to note that CloudStack plugins are natively
part of the platform and can be activated or deactivated on

3The Vines project page is available at:
http://www.inf.ufpr.br/jwvflauzino/vines

demand, thus they cannot be added or removed in each de-
ployment. Each new CloudStack release may bring enhance-
ments to existing plugins or make new plugins available.
We implemented the Vines VNFM and NFVO as a single

CloudStack NFV plugin that follows the CloudStack plat-
form’s pluggable services architecture. Thus, all the opera-
tions provided by the VNFM and NFVO of Vines are acces-
sible by the users (network operators) through CloudStack’s
API, which is a REST (Representational State Transfer) in-
terface (Fielding, 2000). As a result, all the functionalities
included in the platform through the implementation of the
NFV environment provided by Vines can be seen as new
functionalities of CloudStack itself. We argue that Cloud-
Stack/Vines is significantly easier to use when compared to
other NFV platforms, in particular because it is not necessary
to handle multiple interdependent projects in a non-trivial
way.
The following subsections describe the implementations

of several key Vines functionalities. The first subsection is
on the implementation of the NFV repository, next, the VNF
lifecycle management, and finally virtualized network ser-
vice orchestration.

4.1 Implementation of the NFV Repository
The NFV-MANO specification defines several NFV reposi-
tories, such as the NFV Instances Repository, the VNF Cat-
alog, and the NS Catalog. Vines provides several functions
that allow the management of these repositories. Following
the NFV-MANO specification, the NFVO of Vines is primar-
ily responsible for the NFV repositories, but the VNFM also
interacts with the NFVO to gain access or modify their con-
tents.
InVines, eachVNF is represented by aVNFP (to recall, ‘P’

stands for Package) that holds all the VNF artifacts (as pre-
sented in Subsection 3.2). The set of all VNFPs of a Vines de-
ployment comprises its VNF Catalog. It is critical to enable
VNFPs to be easily uploaded to the platform and managed
properly. In this regard, Vines provides a set of operations
for managing the VNF Catalog. Table 2 presents these op-
erations. Note that they cover the complete CRUD (Create,
Read, Update, and Delete) functionality.

Table 2. VNF Catalog management operations.
Operation Description

createVnfp Retrieves a VNFP from a URL and adds it
to the VNF Catalog

listVnfps Lists information from one or all VNFPs
in the VNF Catalog

updateVnfp Updates the metadata or files of a VNFP
contained in the VNF Catalog

deleteVnfp Removes a given VNFP from the VNF
Catalog

Each VNFP contained in the VNF Catalog of Vines can be
used as a template for the creation of VNF instances through
requests to the VNFM (functionalities that are described later
in Subsection 4.2). Another relevant point is that the imple-
mented solution supports the inclusion of VNFPs consisting
of a compressed file in zip format or obtained from a Git

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

repository. In any case, a VNFPmust comply with the CSAR
specification. These Vines features aim at facilitating VNFP
onboarding.
A critical element for the composition and orchestration

of virtualized network services is the NS Catalog. Table 3
lists the operations provided by Vines that are related to the
management of the NS Catalog. Through these operations,
it is possible to create, list, update, and remove descriptors
related to network services (i.e., VNFFGD and NSD).

Table 3. NS Catalog management operations.
Operation Description

createVnffgd Retrieves a VNFFGD from a URL and
adds it to the NS Catalog

listVnffgds Lists information from one or all
VNFFGDs in the NS Catalog

updateVnffgd Updates information a given VNFFGD
in the NS Catalog

deleteVnffgd Removes a given VNFFGD from the
NS Catalog

createNsd Retrieves an NSD from a URL and adds
it to the NS Catalog

listNsds Lists the details of one or all NSDs in
the NS Catalog

updateNsd Updates a given NSD in the NS Catalog

deleteNsd Removes a given NSD from the NS
Catalog

The NS Catalog descriptors are also standardized accord-
ing to the TOSCA specifications and the NFV-MANO refer-
ence architecture. Thus, each NSD of the NS Catalog uses
an existing VNFFGD to define the sequence in which VNFs
will be chained together when composing a service, among
other tasks. In Vines, an NSD is treated as a template that
can be used to create instances of SFCs (i.e., the executions
of the network services themselves).
Vines also maintains an NFV Instances Repository. This

repository stores information about VNF instances and SFC
instances. That information is automatically updated as the
respective instances are executed and management opera-
tions are executed on them. This is described in more detail
below in Subsections 4.2 and 4.3.

4.2 VNF Lifecycle Management Implementa-
tion

The Vines VNFM is designed to provide complete lifecy-
cle management of heterogeneous VNFs. Therefore, Vines
provides all the traditional VNF management operations, as
shown in Table 4.
Vines provides these high-level functionalities by abstract-

ing the various operations that constitute them, bringing
transparency to user execution. Most of the basic VNF lifecy-
cle management operations involve the communication be-
tween the VNFM and the VIM, which executes the corre-
sponding lower-level operations. However, some operations
require an interaction between the VNFM and the EMS re-
sponsible for each managed VNF. Examples include opera-
tions such as deployVnf, scaleVnf, and recoverVnf, which in-

Table 4. VNF lifecycle management operations.
Operation Description
deployVnf Instantiates a VNF

listVnfs Lists information about one or all instan-
tiated VNFs

scaleVnf Scales vertically a VNF instance
recoverVnf Recovers a crashed VNF instance
updateVnf Updates a VNF instance
destroyVnf Removes a VNF instance

volve lower-level tasks such as initializing the NF within the
VNF-ExP. In the case of the deployVnf operation, low-level
tasks such as retrieving the VNFP from the VNF Catalog,
installing the artifacts, and configuring the NF are also re-
quired. Note that those operations are directly related to the
VNF instances, and they are used to handle the VNFs in the
VNF Instance Repository.
In order to provide the full management of VNF instances,

Vines also provides direct access to NF management opera-
tions. This means that through the Vines interfaces, the net-
work operator is able to control the network function running
on the VNF-ExP, whether it is a legacy NF or a newly devel-
oped NF. Table 5 describes the operations related to this type
of management. The execution of all those operations also in-
volves the communication between the VNFM and the EMS
of each VNF.

Table 5. NF management operations.
Operation Description

startNf Initializes the network function within the
VNF instance

stopNf Stops the network function within the
VNF instance

getNfStatus Gets the current status of the network
function

The Vines EMS, presented in detail in Subsection 3.2, is
implemented separately from the platform core. All EMS
modules were developed using the Python programming lan-
guage. The communication with the VNFM is based on
HTTP. The Access Interfacemodule which is responsible for
that communication, was implemented based on the Flask4
framework. The EMS VIB consists of a set of files that are
handled by other EMS modules. The Extended Drivers are
Python files that implement operations related to the Em-
Vnf reference point, which provides a standardized interface.
Each Extended Driver is imported by the EMS as a Python
module (a library) and is responsible for adapting the inter-
face to the particular VNF-ExP being used.
Currently, Vines EMS instantiation is manually done by

the network operator responsible for preparing and/or man-
aging the NFV platform. Each new EMS instance created
needs to be recognized by the Vines VNFM. For this pur-
pose, the VNFM provides a simplified operation to register
an EMS instance on the platform, which enables the VNFM-
EMS communications. As described in Subsection 3.2, the
VNFMof Vines can subscribe to each known EMS to receive
monitoring notifications from VNFs. Sending those notifica-
tions is done by each EMS to the VNFM via an operation

4https://flask.palletsprojects.com

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

that is also provided by Vines. Thus, when sending a notifi-
cation to the VNFM, each EMS must authenticate itself and
inform the unique identifier of the VNFM subscription (this
identifier is generated during the subscription process). The
EMS-related operations are shown in Table 6.

Table 6. EMS-related operations.
Operation Description
registerEms Registers a new EMS instance

notifyVnfm Notifies the VNFM of a VNF monitoring
event

The VNF-ExP framework (presented in Subsection 3.2)
defines a high-level architecture, which was implemented as
the Cloudstack/Vines VNF-ExP: Vines-Leaf. Similar to the
EMS Access Interface module, the Vines-Leaf Management
Agent was implemented in Python and Flask. To execute and
manage an NF, Vines-Leaf uses VNFP artifacts, such as man-
agement scripts (prepared by the NF developer) and the NF
code (e.g., binary files), among others. This allows the Man-
agementAgent to perform activities such as source code com-
pilation, software installation, application launch, among oth-
ers.
Finally, Extended Drivers are provided for the following

VNF-ExPs: Vines-Leaf, Click-On-OSv, and COVEN.

4.3 Implementation of Network Service Or-
chestration

The Vines NFVO communicates with the VIM (i.e., Cloud-
Stack) and the VNFM through their respective Java inter-
faces. In addition, an Extended Driver has been prepared to
extend EMS functionalities to support VR-related operations.
The communication between the EMS and the VR is per-
formed through SSH commands, avoiding the need to add
other components to mediate VR communication. This ap-
proach is feasible due to the strict set of commands required
(route configurations and firewall rules) and the fact that each
CloudStack Management Server already has by default an
SSH key that allows administrative access to the VRs.
The set of all service orchestration functionalities that can

be performed by the NFVO is made available through the op-
erations described in Table 7. As with the VNFM, these op-
erations are accessed by users via CloudStack’s native API.

Table 7. Orchestration operations for virtualized network services.
Operation Description

createSfc Triggers all actions required to compose
an SFC

startSfc Initializes the NF of all VNFs belonging
to an SFC

stopSfc Stops the NF of all VNFs belonging to an
SFC

listSfcs Lists the information of one or all SFC in-
stances

updateSfc Changes the operational and data parame-
ters of a SFC instance

destroySfc Deletes an SFC and releases the computa-
tional and network resources

The implementation of operation listSfcs is relatively triv-
ial, basically involving read operations on the CloudStack
database. However, all the other operations referring to SFCs
include more complex procedures that effectively require
the NFVO capabilities. The createSfc operation can be con-
sidered the most important of those provided by the Vines
NFVO, as it chains together individual instances of VNFs in
a predefined order to compose a given SFC. This operation
implements the SFC composition strategy described in Sub-
section 3.3, performing route deviation configuration in the
VR and adjusting each VNF to forward traffic to the next hop
along the chain. Such settings are made based on the order
of VNFs and traffic classification rules defined in the VNF-
FGD that is pointed to by the NSD used at the time of SFC
composition.
The VNFFGD can contain one or more traffic classifica-

tion rules. Each rule defines a protocol and its respective port.
Thus, it is possible, for example, to specify that only TCP traf-
fic on port 80 should flow through a specific SFC (which, in
this case, corresponds to typical HTTP traffic). The execu-
tion of the createSfc operation causes the NFVO to allow the
flow of all packets that match the traffic classification rules
specified in the VNFFGD. The NFVO also configures the
VR to apply the appropriate traffic redirection to the public
IP reserved for that specific SFC. Finally, the NFVO config-
ures each VNF of the SFC to forward traffic as required and
registers the new SFC instance in the NFV Instance Reposi-
tory.
Each SFC is composed based on the definitions of the cor-

responding NSD (including its respective VNFFGD), which
can be seen as a template for the composition of the SFC.
However, after the SFC has been instantiated, the Vines
NFVO allows network operators to apply modifications.
This functionality is provided by the updateSfc operation.
Through this operation it is possible, for example, to mod-
ify traffic classification rules, change VNF ordering, change
the number of VNFs (i.e., add or remove VNFs) in the SFC,
and edit the metadata of the SFC registry in the NFV Instance
Repository.
In the same way that the VNFM enables the initialization

and shutdown of the NF of each VNF instance, the NFVO
also enables the execution of these operations at the service
level. These operations are performed by startSfc and stopSfc
operations, which perform the initialization and shutdown of
the NF of each VNF belonging to a given SFC, respectively.
Note that when the stopSfc operation is executed, the SFC
remains instantiated, but none of the VNFs belonging to it
process any packets, since all NFs are stopped. Thus, when
startSfc operation is executed, all VNF instances will resume
processing network traffic.
Finally, the destroySfc operation can behave in two differ-

ent ways, defined by its parameters. In the first mode, only
the chaining is cleared when destroying an SFC. In this case,
all the VNFs that constitute the SFC remain instantiated, but
the traffic classification rules are cleared and the SFC in-
stance records are removed from the NFV Instance Reposi-
tory. In the second mode of operation, in addition to clearing
the traffic classification rules and deleting the SFC records,
the destroySfc operation also removes each VNF that is part
of the SFC, freeing up all allocated compute and network re-

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

sources.

5 Evaluation
A set of experiments was conducted to evaluate Cloud-
Stack/Vines, including comparisons (when possible) with
the widely adopted Openstack/Tacker solution. Experiments
were executed on two different environments. One environ-
ment consisted of three machines, one for running the con-
troller, and two of them dedicated for running SFC’s. Each
of those twomachines was based on an Intel(R) Core(TM) i7-
12700 processor @ 2.5GHz with 8 physical cores, and 16GB
RAM running Linux Ubuntu 24.04 LTS, and connected on a
10 Gbps Ethernet LAN. The other environment consisted of
a single machine based on an Intel(R) Core(TM) i7-6700 @
3.40GHz processor with 4 cores, and 8 GB RAM, running
Ubuntu 18.04 LTS connected on a 1 Gbps Ethernet LAN.
That host was responsible for running the NFV platform as
well as the SFC’s. In both cases, a client generates the work-
load through Shell and Python scripts. The workload con-
sisted of network traffic or management operation requests,
depending on the experiment.

5.1 Performance Evaluation of Virtualized
Network Services

In this subsection, we present results for the performance
evaluation of network services instantiated on top of both
CloudStack/Vines andOpenstack/Tacker. First, we assess the
throughput of the SFCs in scenarios in which the number of
chained VNFs varied from 2 to 5 running locally on a sin-
gle machine (the second environment specified above). All
SFCs processed TCP traffic. Figure 9 shows the results ob-
tained for the different scenarios.

Figure 9. SFC Throughput: CloudStack/Vines vs. Openstack/Tacker.

2 3 4 5
Number of VNFs in the SFC

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 [M

bp
s]

CloudStack/Vines
OpenStack/Tacker

Across all scenarios and both platforms, the average
throughput was consistently around 930 Mbps. Specifically,
for CloudStack/Vines, the average throughput was of 933
Mbps, 930 Mbps, 932 Mbps, and 932 Mbps for SFCs with
2, 3, 4, and 5 VNFs, respectively. In comparison, Open-
stack/Tacker showed average values of 934Mbps, 930Mbps,
926 Mbps, and 931 Mbps. These results indicate that the
throughput of SFCs is very similar on both platforms. How-
ever, in many scenarios, Openstack/Tacker SFCs presented
greater throughput variation, suggesting less stability of its
network services when handling the workload generated dur-
ing the experiment.
In the next experiment, we evaluated the latency of SFCs

in the same scenarios: SFC sizes changing from 2 to 5. The

type of traffic generated was ICMP (Internet Control Mes-
sage Protocol). The procedure adopted to compute the la-
tency was as follows. We measured the time it took for an
ICMP Echo Request (Type 8) to move through the whole
SFC (all VNFs) and the ICMP Echo Reply (Type 0) to arrive
from the last VNF directly to the monitor client. The results
were very similar for the two NFV platforms. For this reason,
Figure 10 presents the latency distribution for all scenarios in
microseconds (µs), instead of milliseconds (ms), as usual.

Figure 10. SFC latency distribution in microseconds.
(a) Latency of CloudStack/Vines.

0 1000 2000 3000 4000 5000 6000
Latency (s)

0

100

200

300

400

Nu
m

be
r o

f p
ac

ke
ts

2 VNFs
3 VNFs
4 VNFs
5 VNFs

(b) Latency of Openstack/Tacker.

0 1000 2000 3000 4000 5000 6000
Latency (s)

0

100

200

300

400

Nu
m

be
r o

f p
ac

ke
ts

2 VNFs
3 VNFs
4 VNFs
5 VNFs

Figure 11. CDF of the latency of the SFCs.
(a) CDF of latency in CloudStack/Vines.

0 1000 2000 3000 4000 5000
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2 VNFs
3 VNFs
4 VNFs
5 VNFs

(b) CDF of latency in Openstack/Tacker.

0 1000 2000 3000 4000 5000
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2 VNFs
3 VNFs
4 VNFs
5 VNFs

As shown in Figure 10(a), the latency distribution for
network services on CloudStack/Vines was approximately
1600µs, 2100µs, 2600µs, and 3000µs for SFCs with 2, 3,
4, and 5 VNFs, respectively. In contrast, Figure 10(b) shows
that Openstack/Tacker showed lower latencies for SFCs with
2 and 3 VNFs, of around 1000µs and 1250µs, respectively.
However, for SFCs with 4 and 5 VNFs, Openstack/Tacker
showed a significant latency dispersion.
Figure 11 presents the Cumulative Distribution Function

(CDF) for the latency results that were presented in Figure
10(a). This function complements the analysis by showing
the probability of network traffic latency reaching certain lev-
els in each scenario. As shown in Figure 11(a), there is a 95%
probability that the latency of CloudStack/Vines SFCs will
be less than or equal to 1890µs, 2430µs, 2990µs, and 3430µs
for SFCs with 2, 3, 4, and 5 VNFs, respectively. In contrast,
Figure 11(b) shows that for Openstack/Tacker SFCs with the
same configurations, there is a 95% probability that the la-
tency will not exceed 1150µs, 1500µs, 1860µs, and 2190µs,
respectively. Note that the time unit is microseconds, thus
the difference can be considered very small.
Overall, CloudStack/Vines and Openstack/Tacker net-

work services showed similar performance in all experi-
ments. The difference of the peak latency between the SFCs
of the two platforms was about 0.0009 seconds in the worst
case (scenario with 5 VNFs, Figure 10), while the largest
difference in average throughput was about 5 Mbps (with 4
VNFs). These results confirm that Vines meets the expected
performance levels.

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

We also investigated the influence of running SFCs on top
of multiple dedicated nodes instead of on a single-machine-
based deployment. Figure 12 presents a comparison of the
throughput observed for a single-node and a multi-node de-
ployment, considering scenarios in which SFCs consist of 2,
4, 6, 8, and 10 chained VNFs.

Figure 12.CloudStack/Vines SFCThroughput: Single-node vs.Multi-node.

2 4 6 8 10
Number of VNFs in the SFC

0

2

4

6

8

10

Th
ro

ug
hp

ut
 [G

bp
s]

Vines Single-Node
Vines Multi-Node

Figure 12 shows that the throughput remains consistently
high in both deployments across different SFC lengths.
For the single-node deployment, the throughput is nearly
constant, staying close to the maximum achievable value
(around 9.40 Gbps, see the blue dashed line) regardless of
the number of VNFs in the chain. In contrast, the multi-node
deployment exhibits a slight performance degradation as the
chain length increases. For shorter chains, consisting of 2
and 4 VNFs, the throughput is comparable to the single-node
case, reaching an average of 9.33 Gbps and 9.28 Gbps, re-
spectively. However, as the number of VNFs increases (e.g.,
for the chains with 8 or 10 VNFs), the throughput reduces
in average by approximately 3.94% and 4.34%, respectively.
This reduction reflects the additional overhead introduced by
inter-node communication plus the larger number of VNFs
that packets have to traverse. However, despite the decrease
in average throughput in scenarios with longer SFCs, the con-
fidence intervals indicate that there is no statistically signif-
icant reduction. It also suggests that CloudStack/Vines can
scale across multiple nodes with only a slight impact on
throughput.
Next, we describe results obtained for the latency in the

same scenarios, also using SFCs with 2, 4, 6, 8, and 10 VNFs.
The latency distribution observed for both the single-node
and multi-node environments is presented in Figure 13.

Figure 13. SFC latency distribution of Cloudstack/Vines in microseconds.
(a) Single-node deployment.

0 1000 2000 3000 4000 5000 6000
Latency (s)

0

100

200

300

400

Nu
m

be
r o

f p
ac

ke
ts

2 VNFs
4 VNFs
6 VNFs
8 VNFs
10 VNFs

(b)Multi-node deployment.

0 1000 2000 3000 4000 5000
Latency (s)

0

100

200

300

400

Nu
m

be
r o

f p
ac

ke
ts

2 VNFs
4 VNFs
6 VNFs
8 VNFs
10 VNFs

These results are not intuitive as one might expect that by
instantiating VNFs across multiple nodes, rather than on a
single one, the inter-node communication would introduce
additional overhead and thus increase latency. However, Fig-
ure 13 shows that results were the opposite. This observation
is confirmed by Figure 14 – note that the curves are further

Figure 14. CDF of the latency of SFCs in Cloudstack/Vines.
(a) Single-node deployment.

0 1000 2000 3000 4000 5000 6000
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2 VNFs
4 VNFs
6 VNFs
8 VNFs
10 VNFs

(b)Multi-node deployment.

0 1000 2000 3000 4000 5000 6000
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2 VNFs
4 VNFs
6 VNFs
8 VNFs
10 VNFs

to the left in Figure 14(b). A discussion of why the multi-
node deployment presented a lower latency (approximately
0.001 seconds in the worst case for 10 VNFs) must be based
on the fact that there is an overhead for instantiating, schedul-
ing, andmanagingmultiple VirtualMachines (VMs) on a sin-
gle physical machine. In particular, in the experiments each
VNF runs on a different VM. Thus if there are for example
10 VNFs in a given chain, this involves sending packets lo-
cally across the 10 VMs, which requires a substantial amount
of context switching. On the other hand, in case the packet
is transmitted to another host, it is simply forwarded to the
local network interface.

5.2 Performance Evaluation of VNF Manage-
ment Operations

The last experiment was executed to evaluate Vines’ VNF
management capabilities. This subsection presents results for
the management of multiple VNF-ExPs. As mentioned in
Section 2, Openstack/Tacker does not provide native facili-
ties to support the specific characteristics of different VNF-
ExPs. Therefore, only results of CloudStack/Vines are pre-
sented. In each scenario, a VNF running a packet forwarder
was instantiated using a different VNF-ExP. The following
three VNF-ExPs were employed: Vines-Leaf, Click-on-OSv,
and COVEN. For each VNF-ExP, four operations – deploy,
recover, scale, and remove – were performed 30 times each.
The results, presented in Figure 15, show the average execu-
tion time for each operation, with a 95% confidence interval.

Figure 15. Average execution time of management operations.

Deploy Recovery Scale Destroy
Lifecycle Operations

10

20

30

40

50

60

Ex
ec

ut
io

n
Ti

m
e

[s
ec

on
ds

]

Vines-Leaf
Click-on-OSv
COVEN

CloudStack/Vines successfully completed all operations
in under 60 seconds, with most runs averaging less than 40
seconds. However, the execution times varied depending on
the VNF-ExP used. Among the three VNF-ExPs considered,
Click-On-OSv consistently presented the lowest execution
times for all operations. This result was expected, as Click-
On-OSv is based on a unikernel operating system (OSv),
which uses a minimal set of libraries and operates within a

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

single address space for both user and kernel applications.
COVEN and Vines-Leaf, on the other hand, were instanti-
ated on Ubuntu Cloud. COVEN benefits from the parallel ex-
ecution of many internal sub-operations, resulting in a faster
performance compared to Vines-Leaf – in particular for the
deployment, recovery, and scaling operations, as shown in
Figure 15. Conversely, Vines-Leaf, while slightly slower, of-
fers more flexibility by being able to run any NF, regardless
of its implementation, at a similar cost as that of Coven.

5.3 A Comparison of Vines VNF Lifecycle
with OpenStack-Based NFV Solutions

In this subsection we describe the main contributions of
Vines, in comparison with Openstack-based NFV systems
we are aware of. The goal is to show in which aspects Vines
facilitates SFC/VNF lifecycle management compared to al-
ternatives.

1. Vines features a native VNF-ExP, and moreover can run
any other VNF-ExP. To the best of our knowledge, none
of the Openstack-based NFV platforms offer that sup-
port. They do not even have a native VNF-ExP, nor a
comprehensive EMS. Open Baton does have a simple
EMS that is executed within each VNF instance. More-
over, that EMS simply mediates the communication be-
tween the VNF and the VNFM. And this approach has
several other drawbacks: (i) either the VNF source code
or the corresponding VNF-ExP code has to be changed
to include the EMS. In the case of VNF-ExPs that are
based on a unikernel/minimalist OS (like OSv or Click
OS, for example) it is necessary to change the kernel
itself.

2. Vines supports different protocols for VNF communi-
cation along the lifecycle management. Frequently, in
other NFV platforms, the communication between the
VNFMand each specific VNF requires a particular com-
munication protocol. For example, Open Baton requires
AMQP (Advance Message Queuing Protocol) and Rab-
bitMQ.

3. Vines facilitates VNF/SFC lifecycle management, in-
cluding deployment (instantiation), scaling, recovery,
among others. For example, Tacker has a generic com-
ponent called “Management Drivers”, basically featur-
ing the cloud-init tool which only supports initial VNF
configurations, but depends on an external EMS for ad-
ditional operations. Furthermore, the initial VNF con-
figuration is not performed directly by the VNF Man-
ager, as this task is delegated to the VIM via cloud-init.
The VnfLcmController component 5 only considers the
basic create/update/delete lifecycle operations and del-
egates other operations for the VIM to execute. Fre-
quently, the operations are very basic. For instance, the
Tacker update operation just updates the VM that runs
the VNF, instead of updating the VNF itself. Vines, on
the other hand, is capable of updating the VNF by mod-
ifying the network function code (which can be used to
update it to a new version, for example).

5https://docs.openstack.org/tacker/latest/user/architecture.html

4. Vines presents a crucial advantage as it simplifies NF
(besides VNF) management. This issue is often over-
looked in the literature. The very essence of NFV is to
enable the implementation of Network Functions (NFs)
in software with virtualization technology. However,
each NF could also be implemented in hardware or us-
ing other software strategies. The NF is the “soul” of
the NFV. The EMS is the component that allows NF
management Fulber-Garcia et al. (2023). As mentioned
above, Tacker neither has an EMS nor supports third-
party EMSes. As a result, only some primitive NF man-
agement tasks that can be executed through the cloud-
init (Canonical, 2025a) application, which allows net-
work operators to run shell scripts to configure an NF
during its deployment.

5. An advantage that Vines inherits from CloudStack: ev-
erything is a CloudStack plugin. On the other hand, to
execute Openstack Tacker, one needs to execute mul-
tiple independent systems (or projects) that evolve in-
dependently. Very often, a new version of one of those
systems will prevent the NFV system to execute.

6 Conclusion
This work proposed Vines, which is, to the best of our knowl-
edge, the first Apache CloudStack NFV platform. Although
the importance of the NFV paradigm cannot be overesti-
mated, and Apache CloudStack is one of the most adopted
open source cloud platforms worldwide, it is surprising that
CloudStack has barely been explored in the context of NFV
technology. Vines is compliant with the ETSI NFV-MANO
specifications, and supports the composition and manage-
ment of virtualized network services (implemented as SFCs)
on top of CloudStack’s native virtual networks.
The main contributions of Vines in comparison with the

Openstack-based NFV platforms are as follows. Vines relies
on a native full-fledged EMS, which is the basis for holis-
tic and fine-grained management of heterogeneous VNFs,
also simplifying management of the NF itself. Vines features
a native VNF-ExP and supports other VNF-ExPs, further-
more, it also supports different protocols for VNF commu-
nication along the lifecycle management. Finally, Vines is a
CloudStack plugin, which facilitates system use in compari-
son to the Openstack platforms, which often require a com-
plex combination of multiple independent systems. An em-
pirical evaluation shows that Vines achieves SFC throughput
and latency that closely align with the performance observed
in OpenStack/Tacker. The results also confirm the effective-
ness of Vines in managing the lifecycle of VNFs instantiated
on different VNF-ExPs.
One of our main targets as future work is to integrate Vines

to the Apache CloudStack standard distribution. In order to
do that, it is necessary to add unit tests to each and every
module, which although not being a hard task is labor- and
time-intensive. RunningVines on large-scale deployments as
well as geographically distributed multi-site scenarios is also
one of our main targets. We believe several challenges will
emerge from the experience of running large scale SFC’s on
those kinds of scenarios. Issues such as setting up andmanag-

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

ing SFCs across multiple domains, clouds, and orchestrators
are among those, and intelligent approaches (Fulber-Garcia
et al., 2024) should be integrated as native Vines features.
Future work also includes adding new features to Cloud-
Stack/Vines, such as support for dynamic traffic reclassifi-
cation and also for VNF chaining based on NSH (Network
Service Header).
From a more general perspective, we highlight that al-

though CloudStack Vines is designed with interoperability
in mind, enabling holistic communication between the NFV-
MANO components (VNFM and NFVO) and the VNFs
through their execution platforms, several interoperability
challenges remain open within the broader NFV reference ar-
chitecture. For example, the literature provides few insights
into how to enable communication between the NFV-MANO
and the Element Management Systems through the VNFM
(Ve-Vnfm-em interface). Although recent works have pre-
sented a comprehensive description of the EMS architec-
ture Fulber-Garcia et al. (2023); ETSI (2021) defining its
primary operations and attributes, there are still no con-
crete specifications, neither from standardization organiza-
tions (ETSI/IETF) nor from recent research papers, on how
to actually implement the Ve-Vnfm-em interface within
VNFM platforms. Furthermore, the interoperability chal-
lenge extends to the heterogeneity of OSS/BSS solutions
when implementing the Os-Ma-nfvo interface. Even though
the ETSI provides interface definitions, data models, and
technical guidelines for this interface ETSI (2023, 2022),
many OSS/BSS solutions are not yet fully prepared to oper-
ate with the NFV paradigm, requiring additional efforts from
NFV-MANO developers to intermediate and translate legacy
protocols into the NFV context in order to fulfill system re-
quests. These aspects indicate important NFV research direc-
tions and highlight critical points of attention that will enable
the NFV-MANO model and the CloudStack Vines platform
to better adapt to real-world needs and support deployment
in production networks.

Acknowledgements

This work has been partially supported by the Coordination for
the Improvement of Higher Education Personnel (CAPES) - Pro-
gram of Academic Excellence (PROEX), Funding Code 001; and
the Brazilian National Council for Scientific and Technological De-
velopment (CNPq) - grant 305108/2024-5.

References
Anuket (2025). Anuket. https://anuket.io/. Accessed
Oct., 2025.

ASF (2025a). Apache CloudStack. http://cloudstack.
apache.org. Accessed Oct., 2025.

ASF (2025b). Apache CloudStack Users. http:
//cloudstack.apache.org/users.html. Accessed
Oct., 2025.

ASF (2025c). VNF Appliance Integration. https:
//cwiki.apache.org/confluence/display/

CLOUDSTACK/VNF+Appliance+Integration. Ac-
cessed Oct., 2025.

Bondan, L., Franco, M. F., Marcuzzo, L., Venancio, G.,
Santos, R. L., Pfitscher, R. J., Scheid, E. J., Stiller, B.,
De Turck, F., Duarte, E. P., et al. (2019). FENDE:
Marketplace-based distribution, execution, and life cy-
cle management of VNFs. Communications Magazine,
57(1):13–19.

Canonical (2025a). Cloud-init: The standard for customising
cloud instances. https://cloud-init.io/. Accessed
Oct., 2025.

Canonical (2025b). Deploy Osm using Charmhub - The
Open Operator Collection. https://charmhub.io/osm.
Accessed Oct., 2025.

Chiosi, M., Clarke, D., Willis, P., Reid, A., Feger, J., Bu-
genhagen, M., Khan, W., Fargano, M., Cui, C., Deng,
H., et al. (2012). Network Functions Virtualisation: An
Introduction, Benefits, Enablers, Challenges & Call for
Action. Technical report, European Telecommunications
Standards Institute.

Cloudify (2025). Cloudify DevOps Automation & Orches-
tration Platform, Multi Cloud. https://cloudify.co/.
Accessed Oct., 2025.

da Cruz Marcuzzo, L., Garcia, V. F., Cunha, V., Corujo,
D., Barraca, J. P., Aguiar, R. L., Schaeffer-Filho, A. E.,
Granville, L. Z., and dos Santos, C. R. (2017). Click-
on-osv: A platform for running click-based middleboxes.
In The 15th IFIP/IEEE Symposium on Integrated Net-
work and Service Management (IM), pages 885–886.
IFIP/IEEE.

ETSI (2014). Network Functions Virtualisation (NFV):Man-
agement and Orchestration. Technical report, European
Telecommunications Standards Institute.

ETSI (2018). Network Functions Virtualisation (NFV) Re-
lease 2; Protocols and Data Models; VNF Package speci-
fication. Technical report, European Telecommunications
Standards Institute.

ETSI (2020). Network Functions Virtualisation (NFV) Re-
lease 3; Management and Orchestration; Ve-Vnfm refer-
ence point - Interface and Information Model Specifica-
tionn. Technical report, European Telecommunications
Standards Institute.

ETSI (2021). Network Functions Virtualisation (NFV) Re-
lease 3; Management and Orchestration; Ve-Vnfm refer-
ence point - Interface and Information Model Specifica-
tion. Technical report, European Telecommunications
Standards Institute.

ETSI (2022). Network Functions Virtualisation (NFV) Re-
lease 4; Protocols and Data Models; RESTful protocols
specification for the Os-Ma-nfvo Reference Point. Tech-
nical report, European Telecommunications Standards In-
stitute.

ETSI (2023). Network Functions Virtualisation (NFV) Re-
lease 4; Management and Orchestration; Os-Ma-nfvo ref-
erence point - Interface and Information Model Specifi-
cation. Technical report, European Telecommunications
Standards Institute.

ETSI (2025). Open Source MANO. https://osm.etsi.
org. Accessed Oct., 2025.

https://anuket.io/
http://cloudstack.apache.org
http://cloudstack.apache.org
http://cloudstack.apache.org/users.html
http://cloudstack.apache.org/users.html
https://cwiki.apache.org/confluence/display/CLOUDSTACK/VNF+Appliance+Integration
https://cwiki.apache.org/confluence/display/CLOUDSTACK/VNF+Appliance+Integration
https://cwiki.apache.org/confluence/display/CLOUDSTACK/VNF+Appliance+Integration
https://cloud-init.io/
https://charmhub.io/osm
https://cloudify.co/
https://osm.etsi.org
https://osm.etsi.org

Vines: A CloudStack Platform for the Orchestration and Holistic Management of Virtualized Network Functions and Services Flauzino et al. 2025

Fielding, R. (2000). Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, Uni-
versity of California, Irvine - EUA. 162 pgs.

Flexera (2022). State of the Cloud Report from Flexera.
Technical report, Flexera: IT Management Software, Opti-
mization & Solutions.

Fulber-Garcia, V., Duarte Jr, E. P., Huff, A., and dos Santos,
C. R. (2020). Network service topology: Formalization,
taxonomy and the custom specification model. Computer
Networks, 178:107337.

Fulber-Garcia, V., Flauzino, J., Dos Santos, C. R., and
Duarte, E. P. (2023). An etsi-compliant architecture for the
elementmanagement system: The key for holistic nfvman-
agement. In The 19th International Conference on Net-
work and Service Management (CNSM), pages 1–9. IEEE.

Fulber-Garcia, V., Flauzino, J., Venâncio, G., Huff, A., and
Junior, E. P. D. (2024). Breaking the limits: Bio-inspired
sfc deployment across multiple domains, clouds and or-
chestrators. In 2024 IEEE Conference on Network Func-
tion Virtualization and Software Defined Networks (NFV-
SDN), pages 1–6. IEEE.

Garcia, V. F., Marcuzzo, L. C., Souza, G. V., Bondan, L.,
Nobre, J. C., Schaeffer-Filho, A. E., Santos, C. R. P. d.,
Granville, L. Z., and Duarte, E. P. (2019a). An NSH-
enabled architecture for Virtualized Network Function
platforms. In The 33rd International Conference on Ad-
vanced Information Networking and Applications (AINA),
pages 376–387. Springer.

Garcia, V. F., Marcuzzo, L. d. C., Huff, A., Bondan, L., No-
bre, J. C., Schaeffer-Filho, A., dos Santos, C. R., Granville,
L. Z., and Duarte, E. P. (2019b). On the design of a flexi-
ble architecture for virtualized network function platforms.
In The 62th IEEE Global Communications Conference
(GLOBECOM), pages 1–6. IEEE.

Huff, A., Venâncio, G., Garcia, V. F., and Duarte, E. P. (2020).
Building multi-domain service function chains based on
multiple nfv orchestrators. In The 6th IEEE Conference
on Network Function Virtualization and Software Defined
Networks (NFV-SDN), pages 19–24. IEEE.

Kourtis, M.-A., McGrath, M. J., Gardikis, et al. (2017). T-
nova: An open-source mano stack for nfv infrastructures.
IEEE Transactions on Network and Service Management,
14(3):586–602.

Krishnan, P., Duttagupta, S., and Achuthan, K. (2020).
Sdn/nfv security framework for fog-to-things comput-
ing infrastructure. Software: Practice and Experience,
50(5):757–800.

Martins, J. et al. (2014). ClickOS and the art of network func-
tion virtualization. In The 11th Symposium on Networked
Systems Design and Implementation (NSDI), pages 459–
473. USENIX.

Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., De Turck,
F., and Boutaba, R. (2015). Network Function Virtualiza-
tion: State-of-the-art and research challenges. IEEE Com-
munications Surveys & Tutorials, 18(1):236–262.

Mijumbi, R., Serrat, J., Gorricho, J.-L., Latré, S., Charalam-
bides, M., and Lopez, D. (2016). Management and or-
chestration challenges in network functions virtualization.
IEEE Communications Magazine, 54(1):98–105.

ONAP (2024). ONAP Documentation - VF-C Ar-
chitecture. https://docs.onap.org/projects/
onap-vfc-nfvo-lcm/en/kohn/platform/
architecture.html#vf-c-internal-component.
Accessed Oct., 2025.

ONAP (2025). Open Network Automation Platform. https:
//www.onap.org/. Accessed Oct., 2025.

OpenBaton (2025). Open Baton: an open source refer-
ence implementation of the ETSI Network Function Vir-
tualization MANO specification. https://openbaton.
github.io. Accessed Oct., 2025.

OpenStack (2025). OpenStack - Main Page. https:
//wiki.openstack.org/wiki/Main_Page. Accessed
Oct., 2025.

Son, J., He, T., and Buyya, R. (2019). Cloudsimsdn-
nfv: Modeling and simulation of network function virtu-
alization and service function chaining in edge comput-
ing environments. Software: Practice and Experience,
49(12):1748–1764.

St-Onge, C., Kara, N., and Edstrom, C. (2023). Nfvlearn: A
multi-resource, long short-term memory-based virtual net-
work function resource usage prediction architecture. Soft-
ware: Practice and Experience, 53(3):555–578.

Tacker (2025). Tacker - OpenStack NFV Orchestration.
https://wiki.openstack.org/wiki/Tacker. Ac-
cessed Oct., 2025.

Tavares, T. N., da CruzMarcuzzo, L., Garcia, V. F., de Souza,
G. V., Franco, M. F., Bondan, L., De Turck, F., Granville,
L. Z., Junior, E. P. D., dos Santos, C. R. P., et al. (2018).
Niep: Nfv infrastructure emulation platform. In The 32nd
International Conference on Advanced Information Net-
working and Applications (AINA), pages 173–180. IEEE.

Turchetti, R. C. and Duarte, E. P. (2015). Implementation of
failure detector based on network function virtualization.
In 2015 IEEE International Conference on Dependable
Systems and Networks Workshops, pages 19–25. IEEE.

Turchetti, R. C. and Duarte Jr, E. P. (2017). Nfv-fd: Imple-
mentation of a failure detector using network virtualiza-
tion technology. International Journal of Network Man-
agement, 27(6):e1988.

Venâncio, G., Garcia, V. F., da Cruz Marcuzzo, L., Tavares,
T. N., Franco, M. F., Bondan, L., Schaeffer-Filho, A. E.,
Paula dos Santos, C. R., Granville, L. Z., and P. Duarte Jr,
E. (2021). Beyond vnfm: Filling the gaps of the etsi vnf
manager to fully support vnf life cycle operations. Inter-
national Journal of Network Management, 31(5):e2068.

Venâncio, G., Turchetti, R. C., and Duarte, E. P. (2019). Nfv-
rbcast: Enabling the network to offer reliable and ordered
broadcast services. In 2019 9th Latin-American Sym-
posium on Dependable Computing (LADC), pages 1–10.
IEEE.

Venâncio, G., Turchetti, R. C., and Duarte Jr, E. P. (2022).
Nfv-coin: unleashing the power of in-network computing
with virtualization technologies. Journal of Internet Ser-
vices and Applications, 13(1):46–53.

Yousaf, F. Z., Bredel, M., Schaller, S., and Schneider, F.
(2017). NFV and SDN—Key technology enablers for 5G
networks. IEEE Journal on Selected Areas in Communi-
cations, 35(11):2468–2478.

https://docs.onap.org/projects/onap-vfc-nfvo-lcm/en/kohn/platform/architecture.html#vf-c-internal-component
https://docs.onap.org/projects/onap-vfc-nfvo-lcm/en/kohn/platform/architecture.html#vf-c-internal-component
https://docs.onap.org/projects/onap-vfc-nfvo-lcm/en/kohn/platform/architecture.html#vf-c-internal-component
https://www.onap.org/
https://www.onap.org/
https://openbaton.github.io
https://openbaton.github.io
https://wiki.openstack.org/wiki/Main_Page
https://wiki.openstack.org/wiki/Main_Page
https://wiki.openstack.org/wiki/Tacker

	Introduction
	Related Work
	The CloudStack/Vines NFV Platform
	Vines and the NFV-MANO Reference Architecture
	Vines: VNF Lifecycle Management
	Vines: SFC Orchestration

	System Implementation
	Implementation of the NFV Repository
	VNF Lifecycle Management Implementation
	Implementation of Network Service Orchestration

	Evaluation
	Performance Evaluation of Virtualized Network Services
	Performance Evaluation of VNF Management Operations
	A Comparison of Vines VNF Lifecycle with OpenStack-Based NFV Solutions

	Conclusion

