
Vol.:(0123456789)

Journal of Network and Systems Management (2021) 29:36
https://doi.org/10.1007/s10922-021-09604-w

1 3

Customizable Deployment of NFV Services

Vinicius Fulber‑Garcia1   · Alexandre Huff2 · Leonardo da C. Marcuzzo3 · 
Marcelo C. Luizelli4 · Alberto E. Schaeffer‑Filho5 · Lisandro Z. Granville5 · 
Carlos R. P. dos Santos3 · Elias P. Duarte Junior1

Received: 14 October 2020 / Revised: 25 January 2021 / Accepted: 9 April 2021 / Published online: 3 May 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2021

Abstract
Network Functions Virtualization (NFV) promotes a paradigm shift in the core net-
work, by enabling the execution of network functions on a virtualized software plane 
instead of on dedicated hardware. Despite its benefits, NFV introduces new chal-
lenges, of which we highlight those related to the deployment of virtualized network 
services. Current NFV deployment solutions (i.e., those for composition, embed-
ding, and scheduling) are usually limited to optimize hard-coded criteria, and cannot 
be customized to address specific demands defined by both network operators and 
NFV-as-a-Service customers. In this paper, we present a customizable NFV deploy-
ment framework that allows multiple criteria and multiple objectives to be applied to 
service composition, embedding, and scheduling. We evaluate the proposed frame-
work integrated to deployment solutions specified in the literature. A case study is 
presented for the customized deployment of a traffic control and security service, 
and demonstrates the flexibility and effectiveness of the proposed framework.

Keywords  Network functions virtualization · Network service · Service function 
chain · Framework · Deployment · Composition · Embedding · Scheduling

1  Introduction

Network Functions Virtualization (NFV) [1] is a networking paradigm that allows 
the execution of network functions in a software plane enabled by current virtualiza-
tion technologies (e.g., containers and virtual machines) instead of on physical and 
typically proprietary hardware. It is a consensus that the NFV paradigm reduces the 
capital and operational costs of the network infrastructure and improves the flex-
ibility of the life cycle of network functions [2, 3]. Standards have been published 
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for NFV by the European Telecommunications Standards Institute (ETSI) which has 
defined a reference architecture for network service orchestration and management 
[4]. The Internet Engineering Task Force (IETF) has published, among others, docu-
ments defining service function chains [5] and the network service header [6].

Nevertheless, effective techniques for creating, setting up, and managing virtual-
ized network functions and services must be developed so that NFV can fulfill its 
potential. In particular, there are multiple challenges related to virtualized network 
service deployment. The deployment of a network service includes every operation 
that is executed between service acquisition (or development) and service execution 
[7]. The NFV deployment process can be seen as a Resource Allocation (RA) prob-
lem [8] that consists of three tasks: composition, embedding, and scheduling. These 
tasks present a precedence order: first, the composition task is executed to cre-
ate a network service topology with the network functions that will be, afterwards, 
embedded in the underlying network and, finally, they are scheduled for execu-
tion on virtual machines or containers running on commercial off-the-shelf hard-
ware. In this work we claim it should be possible to tailor each of these tasks to spe-
cific needs and policies of both network operators and NFV-as-a-Service customers.

As the optimization problem that corresponds to NFV deployment is NP-hard 
[8], several solutions have been proposed for individual tasks of the deployment pro-
cess, to circumvent the complexity restrictions. These solutions are often based on 
heuristics that reach approximate solutions with polynomial complexity and rely on 
different metrics to drive the deployment of network functions (e.g., network func-
tion features, network infrastructure characteristics, and customer policies). How-
ever, to the best of our knowledge, all solutions in the literature employ hard-coded 
metrics. This static strategy is often not the best, given the variety of network ser-
vice types, the variety of virtualized environments (e.g., cloud, fog, edge), and spe-
cific customer demands. Heterogeneous deployment scenarios require customizable 
deployment solutions, given the multiple concurrent requirements that are relevant 
when the deployment is done. Current strategies force network operators to adapt to 
what is available, which can certainly lead to under-optimized deployment results.

NFV-as-a-Service (NFVaaS) providers—such as T-NOVA [9] and FENDE 
[10]—provide solutions for virtualized network service deployment. These solutions 
are often based on performance parameters, including server overhead, energy con-
sumption, and transmission delays. It is possible to say that NFVaaS providers are 
mostly concerned with network service embedding and scheduling tasks, given that 
their priority is the operation and management of their virtualization environments 
(i.e., not the network services). We argue that the development and adoption of cus-
tomizable deployment solutions can promote a priority shift—from provider to cus-
tomer. Of course, provider requirements must still be taken into consideration, but 
together with customer objectives.

Figure 1 depicts a scenario that exemplify the main differences between static 
and customizable NFV deployment strategies. The scenario consists of deploying 
a simple virtualized video service composed of three network functions (cache, 
firewall, and Network Address Translator) as presented in [11]. This service must 
be embedded in a multi-domain environment with three distinct domains sup-
ported by an NFVaaS provider. Also, the video service provider aims to minimize 
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the transmission delay between the network function that implements the cache 
and the customers. The NFVaaS provider offers two embedding solutions: 
(i) a static solution that minimizes the transmission delay among the available 
domains; and (ii) a customizable solution configured with multiple evaluation 
metrics chosen from a catalog or directly informed by the video service pro-
vider through a standard document, such as a Service Function Chaining Request 
(SFCR) [12]. Each domain is shown with the average transmission delays to the 
other domains (double lines), the amount of resources available ( � ), and the aver-
age transmission delays between the domains and customers of the video service 
( � ). Finally, each network function is shown along with the required computa-
tional resources for its instantiation ( �req).

If the video service provider opts for the static solution to embed the service, 
the transmission delay between the available domains is minimized by allocating 
the cache function to DOMAIN #1 and the other functions to DOMAIN #3 (sce-
nario i - dashed arrows). This alternative results in an internal transmission delay 
of 10 milliseconds. In contrast, consider that the video service provider chooses 
the customizable solution configured to minimize two metrics: the first of which 
the transmission delay among domains (from the NFVaaS provider catalog) and 

Fig. 1   An example of service function chain embedding
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the second the average transmission delay between customers and domains (video 
service provider proprietary information). In this case, a different service map-
ping is returned. The network function that implements the cache is mapped to 
DOMAIN #1 and other functions are allocated to DOMAIN #2 (scenario ii - 
dotted arrows). This second mapping results in an internal transmission delay of 
30 milliseconds, but an end-to-end transmission delay equal to 90 milliseconds 
(we consider that the delay within a domain is negligible). This simple example 
shows that the end-to-end delay of the customizable approach (90ms) is much 
lower than that of the static solution (150ms).

Of course, the deployment metrics must be carefully selected to maximize 
the results. In the previous example, the static solution did return an optimized 
result (according to the metrics it had available), but that was not enough to 
fulfill the video service provider requirements. By allowing evaluation metrics 
to be chosen, the video service provider dynamically indicates which features 
should be evaluated and optimized, thus achieving a service mapping that better 
fits the objectives (i.e., minimize the transmission delays between the network 
function that implements the cache and the service users). Different parts may 
have access to different metrics. However, as mentioned before, there are cur-
rently no customizable NFV deployment solutions, and worse, several challenges 
have to be addressed before such a solution is specified. The main challenge can 
be expressed in the following question: how to evaluate different sets of metrics 
for the particular optimization strategy (i.e., deployment solution) that is being 
used? Note that an arbitrary number of metrics can be used, and furthermore it is 
necessary to determine how to combine different metrics, for instance, by defin-
ing different weights to be applied in each case to the metrics. It is also important 
to define a way to evaluate the results quantitatively.

In this paper, we present a framework to allow the development of customizable 
deployment solutions. We introduce a model to process a variable set of metrics, as 
well as to define their weights and generate a single value as an evaluation of the 
result. We apply the proposed model to extend deployment solutions found in the 
literature. Thus, these solutions become customizable, and can be evaluated by com-
paring with the original results. The proposed framework has two objectives. First, 
the evaluation of arbitrary metrics is specified as a mono-objective maximization 
problem (Objective 1). In this way, we simplify and standardize the evaluation of 
the diverse deployment solutions. The second objective (Objective 2) is to decouple 
metric evaluation from other operations of the deployment solutions.

The main contributions of this work are summarized as follows:

–	 Customizable NFV Deployment We introduce an NFV deployment framework 
that allows multiple different metrics to be applied on-demand depending on spe-
cific objectives defined by customers and providers;

–	 A Metric Evaluation Method We propose a strategy to evaluate sets of metrics 
to use for a specific composition, embedding, or scheduling. A single quantita-
tive index is employed to allow the comparison of different solutions;
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–	 Extensions of Current Deployment Solutions We evaluate the proposed solu-
tion with a series of experiments using NFV deployment solutions of the litera-
ture.

The rest of this paper is organized as follows. Sect. 2 presents preliminary defini-
tions as well as relevant related work. Next, we describe and specify the metric eval-
uation method in Sect. 3. In Sect. 4, we present the implementation of the proposed 
method. In Sect.  5, we describe experiments executed to evaluate the proposed 
method and demonstrate how it can be used to extend deployment solutions of the 
literature. Conclusions follow in Sect. 6.

2 � Definitions & Related Work

This section presents an overview of paradigms and technologies, as well as the con-
cepts from statistics used in the work. Next, relevant related work is presented.

2.1 � An Overview of Network Functions Virtualization

Network Functions Virtualization (NFV) employs virtualization technologies, such 
as full virtualization, paravirtualization, and container virtualization, to execute net-
work functions (NF), instead of executing them on dedicated hardware. Despite the 
fact that there are benefits in using dedicated hardware (e.g., fast packet process-
ing), the NFV paradigm enhances network flexibility and reduces both CApital and 
OPerational EXpenditures (CAPEX and OPEX) [1]. NFV supports the creation of 
complex network services through the composition of multiple Virtualized Network 
Functions (VNF) in service topologies [13]. The creation and instantiation of net-
work services involve a series of tasks that collectively define the service deploy-
ment process. These tasks include different types of actions, from service acquisition 
(or development) to its execution and maintenance in the virtualized environment.

Overall, network service deployment consists of three main tasks of a typical 
Resource Allocation problem [8]: composition, embedding, and scheduling. These 
tasks prepare the execution of a network service taking into account its performance 
requirements, given a set of metrics and objectives (e.g., avoid service overhead, 
maximize throughput, minimize latency, and reduce memory consumption). In 
particular, the composition task is responsible for defining the service topol-
ogy; embedding allocates the service topology into the physical substrate; and 
scheduling determines on which processors network functions are to be exe-
cuted, as well as the corresponding deadlines, among other features.

The same network service can be provided and executed on different topologies, 
using different embedding and scheduling strategies. In this work, we refer these 
multiple possible solutions for a given deployment as candidates. Different 
deployment solutions evaluate the candidates using different metrics, such as 
throughput, delay, priorities, financial cost, resource usage, and CPU time consump-
tion. The evaluation of a metric generates partial results that represent a 
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value that summarizes how good a single metric is for a particular candidate. The 
idea is to enable the identification of the best candidates with an objective evalua-
tion. The objective indicates whether an optimization metric is to be maximized 
or minimized. Notice that different metrics can be evaluated according to multiple 
different objectives. Deployment solutions that employ multiple criteria must cor-
relate partial results obtained from the application of different metrics taking into 
account costs and benefits so that the best candidate can be identified.

In order to decide the best alternative to deploy a network service according to a 
set of evaluation metrics and objectives, it is possible not only to adopt a naive strat-
egy based on exhaustive search, but also heuristic alternatives. Running exhaustive 
search involves generating all possible candidates, that are subsequently evaluated 
to find the global optimal candidate. This process has exponential cost. Heuristic 
alternatives, on the other hand, are more efficient, often polynomial, but return can-
didates that are not guaranteed to be the best, but should be close enough. Exam-
ples of exhaustive search deployment solutions can be found in [14] and [12], while 
examples of heuristic search solutions are described in [15] and [16].

Overall, three stages summarize the execution of deployment solutions: (i) defi-
nition, (ii) evaluation, and (iii) classification of candidates. Typically, all the tasks 
of the network service deployment require the execution of these stages. The first 
stage (definition of candidates) explores and exploits the search space 
to define candidates that solve a deployment problem. At this point, candidates can 
be complete (e.g., non-iterative candidate definition, such as in solutions based on 
exhaustive methods and genetic heuristics) or partial (e.g., iterative candidate defini-
tion, such as in solutions based on greedy search and A* heuristics) according to the 
definition strategy adopted. The second stage (evaluation of candidates) 
consists of evaluating metrics and objectives for the previously defined set of candi-
dates, thus indicating suitability parameters that can be used for their classification. 
At last, in the third stage (classification of candidates), the suitability 
parameters are jointly inspected to determine the best candidates which are either 
used to update the algorithm for the next iteration or just sent as output to the end-
user. Note that the framework proposed in this work tackles the second and the third 
stages, thus enabling the adoption of any candidate definition strategy in the first 
stage.

2.2 � An Overview of Feature Scaling, Weighing, & Pearson Correlation

Recent work on virtualized network services employ statistical methods for anomaly 
detection [17], monitoring [18], and service scaling [19]. Statistical methods can be 
used to correlate metrics and can improve the accuracy of the decision-making pro-
cess during different phases of the NFV life cycle. Next, we give a brief overview of 
feature scaling, weight normalization, and Pearson correlation, all of them used in 
our proposed framework.

Feature scaling methods are used to transform the ranges of independent vari-
ables. Among these methods, the Proportion Of Maximum Scaling 
(POMS),Little-2013 allows the transformation of a set of samples S in a range [Smin, 
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Smax] to the range [0; 1]. This method is useful to translate samples obtained for dif-
ferent metrics, each defined on a particular range, to a common neutral range. POMS 
is executed to map samples to a range from zero to the maximum absolute distance 
between any pair of samples ( [0;Smax − Smin ). For each sample, the proportional dif-
ference to the maximum absolute distance is computed to define the mapped value. 
Equation 1 shows how the transformation occurs. Observe that POMS overlooks the 
data dispersion in the original sample set, so data stabilization techniques must be 
previously applied when outliers affect the solutions.

Weighing is a method used to adjust samples that differ in terms of the relative 
importance that they have on a computation. A weighing factor is used to increase 
or decrease the influence of a particular sample. If done carelessly, factors can lead 
to a violation of the range of values required for the results. To avoid that, a nor-
malization process must be employed. This process has two objectives: (i) map 
the weights w in set W from [Wmin;Wmax] to [0; 1]; and (ii) ensure that the sum of all 
weights w in W is 1 ( 

∑�W�
i=1

wi = 1 ). These objectives are reached by dividing each 
individual weight w by the sum of all weights in W, as shown in Eq. (2). The weight 
normalization guarantees that if the distinct samples are in a common range, the 
results will be also in this range regardless the original weight scale.

The Pearson correlation coefficients (also called r or � ) represent the 
degree of positive or negative linear correlation between two quantitative variables 
[21]. The Pearson coefficient of variables x and y is in the range [−1;1] , where -1 and 
1 indicate, respectively, a negative and a positive perfect match correlations between 
x and y. Furthermore, for a zeroed coefficient there is no linear correlation between 
x and y. Usual interpretations of Pearson coefficients are: 0.0 to +-0.3 (negligible 
correlation); +-0.3 to +-0.5 (weak correlation); +-0.5 to +-0.7 (moderate correla-
tion); +-0.7 to +-0.9 (strong correlation); +-0.9 to +-1.0 (very strong correlation). 
Equation 3 shows how the Pearson coefficient is computed for two variables x and y, 
which defined by samples s in S. In summary, the Pearson coefficient is calculated 
by dividing the covariance of x and y (that provides information about the linear 
relation between the variables) by the square root of the product of the variance of 
the variables (that maps the coefficient to the range [−1, 1] , thus standardizing the 
interpretation of both the correlation strength and direction).

(1)∀s ∈ S ∶
s − Smin

Smax − Smin

(2)∀w ∈ W ∶
w

∑�W�
i=1

wi

(3)

∑S

s
(sx − Sx) ∗ (sy − Sy)

�∑S

s
(sx − Sx)

2 ∗
∑S

s
(sy − Sy)

2
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2.3 � Related Work

Currently, many network service deployment solutions are available to compose [12, 
15, 22–24], embed [14, 16, 25–31], and schedule [32–34] virtualized network ser-
vices. Furthermore, other deployment solutions tackle multiple deployment tasks at 
the same time, for example, the composition/embedding [35, 36] and the embed-
ding/scheduling [37] of network services. Several of the existing solutions, such as 
[12, 15, 16, 22, 24, 27, 28, 30–33], use optimization based on a single metric (e.g., 
traffic ratio, latency, throughput, monetary cost, and resource usage). Other solu-
tions, for example [14, 23, 29, 34], employ more complex objective functions with 
two or more evaluation metrics. In all these cases, the metrics are defined in advance 
and are static, i.e., cannot be modified when a new service is deployed. Recently, 
we presented a customizable deployment solution [38] that allows adaptive service 
composition based on exhaustive search.

Some solutions allow some limited configuration of the static metrics, so that 
they can be adapted on-demand. An example is the metric weighing of [25] and 
[26] that allows metrics to be weighed before the solution is computed. Other solu-
tions claim to allow ”customization” in different contexts. For example, the proposal 
in [35] aims to customize the network services deployment by taking into account 
the heterogeneous operational behavior of distinct implementations of the same net-
work function. Furthermore, the solution proposed in [25], besides providing a met-
ric weighing mechanism, enables the operators to tune several pre-defined param-
eters of the algorithm. It is important to notice that although the UNIFY [39] and 
SONATA [40] projects allow pluggable deployment solutions, as they give a choice 
of predefined solutions, they do not allow the evaluation metrics to be customized. 
Additionally, some TELCOS enable end-users to customize features of the network 
service deployment. However, these solutions are proprietary and thus are not avail-
able in the literature. Arguably, different types of infrastructures, customer demands, 
and network services require more flexible deployment processes. The present work 
attempts to fill this gap by customizing the deployment evaluation metrics in the 
context of NFVaaS.

3 � The Proposed Framework for Customizable NFV Deployment

In this section, we describe the proposed framework for network service deploy-
ment. The purpose of this framework is to allow the definition of a customizable set 
of metrics to optimize the composition, embedding, or scheduling of network ser-
vices. The framework also defines an index, called Suitability Index (SI), that allows 
different candidates to be compared. Recall that a candidate is a possible solution for 
a deployment task. The Suitability Index shows how good each candidate is in terms 
of a single value in the [0;1] range. Considering the three stages of the network ser-
vice deployment process described in the previous section, the proposed framework 
tackles the evaluation and classification of candidates, thereby adapting to any can-
didate definition strategy.
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Let A be the set of metrics employed. Each metric � in A consists of a tuple 
(objective,  weight), where objective can be maximization or minimization, and 
weight is a real number. Besides the set of metrics A, this function receives as input 
a set B of candidates. Each candidate � ∈ B has an associated set G that contains 
the partial results obtained by computing metrics � for candidate � . A partial result 
� ∈ G is described as tuple (�, value) , where value is a real number corresponding to 
the partial result for metric � . The notation is summarized in Table 1.

In order to smooth normalized weights and reduce the bias among positively cor-
related metrics, function prep(A, S, r) is defined. This is an optional function that 
preprocesses the positively correlated metrics (with the minimum value of the Pear-
son coefficient equal to r) in A taking into account a sample of partial results or 
benchmarks (S). To do that, let C a set of � metrics clusters, so that positively lin-
early correlated metrics are in a common cluster ( |𝜍| > 1 ), and other metrics (non-
positive correlated and non-correlated metrics) are in a dedicated cluster ( |�| = 1 ). 
Finally, eval(A, B) is the main function of the proposed framework that triggers the 
execution of the customizable evaluation/classification method.

Three constraints must be satisfied to ensure the correctness of the execution of 
the proposed framework. First, there must be at least one metric to be evaluated 
(Eq.  4). Thus, it is possible to compare the deployment candidates. Second, the 
weight of each metric must be greater than zero (Eq. 5). The weights are normalized 
before they are processed, thus zero- and negative-weighed metrics are not allowed. 
Finally, exactly one partial result for each metric and each candidate should be 

Table 1   Notations of proposed framework model

Notation Description

A Set of metrics
� A metric in A
B Set of candidates for deployment
� A candidate in B
G Set of partial results for all � in A
� A partial result in G
C Set of clusters of metrics � in A
� A cluster in C
S Set of samples of partial results or benchmarks for all � in A
r Reference Pearson coefficient
SI� Service index for candidate �
min(X) Function that returns the minimum value in set (X)
max(X) Function that returns the maximum value in set (X)
sum(X) Function that returns the sum of values in set (X)

comb(
(
X

2

)
) Function that returns all the 2-element combinations of set X

X; Y Function that returns the set operation of X ∪ {Y}

prep(A, S, r) Function that executes the proposed method to smooth metric bias
eval(A, B) Function that executes the proposed evaluation/classification method
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available (Eq. 6). In the end, the framework returns a comparable SI for all deploy-
ment candidates.

Function prep(A,  S,  r) processes samples of partial results or metric evaluation 
benchmarks (S) to find positive correlations that have a minimum Pearson coeffi-
cient of r, creating clusters of correlated metrics (a cluster represents a single piece 
of information). The weight of a cluster is the sum of weights of all the metrics in 
the same cluster (C.weight), which creates an information bias. To solve the prob-
lem that the bias can represent (i.e., overvalued information), the cluster weight is 
reduced to the maximum weight of any of its metrics, and this new weight is propor-
tionally divided to each of the cluster’s metrics, taking into account their normalized 
original weights. Equation  7 employs function max(�) that returns the maximum 
weight of some metric � in �.

Next, the surplus weight that result of this process (i.e., the cluster’s weight before 
the reduction minus the weight of the cluster after the reduction—Csurplus ) is added 
to the weights of all metrics in a proportional way (regardless of the metric being 
in the cluster or not), as presented in Eq. (8). It is important to note that the option 
for a weight smoothing process instead of straightforward metric exclusion is due 
to the fact that any r < 1 does not imply in a perfect match correlation. In this way, 
correlated metrics with a Pearson coefficient less than 1 (but greater than r) still pro-
vide some information, even if tiny bit of it, that may be relevant to the deployment 
process.

Function eval(A, B) consists of three steps: POMS, smoothing, and indexing. Con-
sider functions max(�) and min(�) that return respectively the maximum and mini-
mum value of some partial result � of a metric � in the candidate set B. Every par-
tial result obtained for that metric is contained in the range [min(�);max(�)] . The 
first step (POMS) is responsible for mapping the metric results from that range 
[min(�);max(�)] to the maximum absolute distance range [0;max(�) − min(�)] 
and then to a common range [0; 1]. Equation 9 is used in the first step of function 

(4)A ≠ ∅

(5)∀𝛼 ∈ A ∶ 𝛼.weight > 0

(6)∀� ∈ A ∶ (∀� ∈ B ∶ ∃� ∈ �.G | � .� = �)

(7)

∀� ∈ C ∶ (∀� ∈ � ∶ �.weight ←

max(�) ∗ �.weight
∑�

�
�.weight

(8)
∀� ∈ A ∶ �.weight ← �.weight

+
�.weight ∗ C.surplus

1 − C.surplus
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eval(A, B). Observe that, because of the resulting POMS standard range, this step 
enables the adoption of different metrics defined on different ranges.

Next, in the smoothing step, the metrics with minimization objectives are submitted 
to a complement function. This function transforms the POMS so that a minimi-
zation problem becomes a maximization problem. Thus the complement function 
maps the highest result from 1 to 0 and the lowest result from 0 to 1. Thus, the com-
plement function enables a uniform interpretation of the results, as the entire evalu-
ation consists only of maximization problems. Equation 10 shows the complement 
functions.

The last step (indexing) performs the weighing of the results and computes the SI 
for each candidate. In the weighing phase, all metric weights are normalized in the 
range [0; 1] as presented in Eq. (11). This operation updates the set of metrics, so 
that the normalized weights indicate how representative the metrics are for the SI 
creation. Finally, the service indexes are computed for each candidate � ( SI� ) as the 
sum of the corresponding weighed results (Eq. 12).

A candidate with the maximum SI (i.e., 1) has achieved the best possible results 
for all metrics in comparison to the other candidates. In contrast, a candidate with 
the minimum SI (i.e., 0) has got the worst results for every requested metric. Note 
that a specific evaluation may not result in maximum and minimum SIs, but still all 
indexes are in the range [0; 1]. The index conciliates multiple heterogeneous met-
rics, so that a set of deployment candidates can be compared and ranked. Finally, a 
candidate with the highest SI may not represent the global best result for a deploy-
ment instance (i.e., in case the candidate definition is based on heuristics that do not 
guarantee global best is always achieved), but it does represent the local best result 
taking into account the available candidates and metrics.

(9)
∀� ∈ B ∶ (∀� ∈ �.G ∶ � .value ←

� .value − min(� .�)

max(� .�) − min(� .�)
)

(10)
∀� ∈ B ∶ (∀� ∈ �.G | � .�.objective

= minimization ∶ � .value ← 1 − � .value)

(11)∀� ∈ A ∶ �.weight ←
�.weight

(
∑A

�
�.weight)

(12)SI� ←

�.G∑

�

� .value ∗ � .�.weight | � ∈ Bstd
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4 � Implementation Settings

The implementation of the proposed framework, called Classification and Holistic 
Evaluation Framework (CHEF), consists of three main functions: (i) Weight Nor-
malization, (ii) Prep, and (iii) Eval. WeightNormalization is presented 
in Algorithm  1. It receives as input the set of metrics A and normalizes metric 
weights. This function consists of two phases: first, the sum of all weight values is 
computed and stored in variable sum (lines 2 to 5); next, the metric weights are iter-
atively normalized by the quotient of the weight and sum (lines 6 to 8); finally, the 
raw weights are replaced by their normalized counterparts in A. The Eval function, 
in turn, consists of the three steps of the proposed evaluation/classification method 
and is described next.

The preprocessing function that smooths linear biases is described in Algo-
rithm  2. Function Prep(A,  S,  r) receives as input the set of metrics A, a sample 
set S of partial results or metric benchmarks, and a minimum Pearson coefficient 
r to conclude that a combination of metrics is correlated. A secondary function 
Clustering(�, checked,matches) creates clusters of correlated metrics implemented 
as a recursive routine based on depth-first search. Clustering receives a metric 
� , a set of already checked metrics (checked), and a set of tuples (�x, �y) producing 
as output pairs of correlated metrics (matches). First, the Clustering function 
includes the current metric � in the checked set (line 2) as well as in the result set 
� (line 3). Next, for each combination of correlated metrics that includes � as the 
first element (line 4), the current result set is recursively updated by joining with 
the set returned from Clustering(�y, checked,matches) in line 5 (consider X; Y as the 
set operation of X ∪ Y  ). Note that due to the conditional “not �y in checked” in line 
3, this function is called exactly once for each correlated metric. At last, the cluster 
with positively correlated metrics is returned in line 7.
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Function Prep(A,  S,  r), which is the main function executed to smooth metric 
biases, consists of three steps: correlation (lines 11–14), clustering (lines 15–17), 
and smoothing (lines 18–30). First, a preprocessing cluster object is created in vari-
able PC (line 11). This object is initialized with three empty sets and a zeroed inte-
ger: .matches ← ∅ , .clusters ← ∅ , .check ← ∅ , and .surplus ← 0 . In the correlation 
phase, combinations of 2-metrics ( comb

(
A

2

)
 ) are processed taking into account the 

samples S to find their respective Pearson coefficient ( Pearson((�x, �y), S) ) in line 
12. Observe that line 13, which includes a 2-metric correlation in PC.matches, is 
executed if some condition from line 12 is satisfied: a positive Pearson coefficient 
greater than r and metrics with the same objectives, or a negative Pearson correla-
tion less than −r and metrics with different objectives. Lines 15 and 16 summarize 
the clusterization step. Note that, as PC.checked is updated after the Clustering 
function is executed, the recursion is called at most once for a particular metric. Line 
18 normalizes the metrics’ weight enabling the execution of the smoothing step. For 
each cluster with multiple metrics (line 19), the maximum and the sum of metric 
weights are defined (respectively, lines 20 and 21—consider that sum(�) returns 
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the sum of weights of metrics � in � ). Also, the difference between these weights 
(line 22) is summed up to the surplus variable. The maximum weight is proportion-
ally distributed to all the metrics (lines 23 and 24), replacing their original weights. 
Finally, lines 27 and 28 show the proportional redistribution of the surplus weight to 
all the metrics in A.

The evaluation function is described in Algorithm 3. It receives as input the set of 
metrics A and the set of candidates B. Note that every candidate � in B has informa-
tion on the set of partial results G so that a metric � in A has a corresponding value 
� in G. The Eval function consists of the three steps described in the previous sec-
tion: POMS, smoothing, and indexing. To improve performance, the execution of 
these steps can overlap in the algorithm. The evaluation function can be described 
as follows. First, the metric weight normalization is done (line 2) and results are 
kept to be used later. Then, in lines 3 to 6, the result set SI is initialized and later it 
is returned as the output with the suitability indexes for each candidate. The par-
tial result evaluation starts in line 7; the suitability indexes are iteratively computed 
by processing a single metric at a time for all candidates (line 10). The maximum 
and minimum partial results for each metric are then obtained as required by POMS 
(lines 8 and 9). Then, the partial results are processed by POMS (line 11), followed 
by the computation of the complement in case there are metrics with minimization 
objective functions (lines 16 to 18). This is followed by weighing and SI update (line 
19). Finally, the candidate suitability indexes are returned in line 22.

Consider that n is the total number of metrics and m is the total number of 
samples (S) or candidates (B), the complexity of presented functions can be 
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computed as follows. Imported functions max(X), min(X), and sum(X) have lin-
ear complexity (O(n) or O(m)), function comb

(
X

2

)
 is n quadratic ( O(n2) ), and 

function Pearson((�x, �y), S) is quadratic on m. The Weight normalization func-
tion (Algorithm  1) is linear with complexity f (n) = 4n + 1 (O(n)). The clustering 
function (Algorithm  3) is quadratic with complexity f (n) = n2 + n + 3 ( O(n2) ). 
The prepossessing function to smooth of weight biases (Algorithm  3) is quar-
tic with complexity f (n,m) = (m2 ∗ n2) + n3 + 5n2 + 6n + 1 ( O(m2 ∗ n2) ). The 
evaluation/classification function (Algorithm  3) is quadratic with complexity 
f (n,m) = 10(n ∗ m) + 2n + 2m + 2 ( O(n ∗ m)).

5 � Experimental Evaluation

In order to evaluate the proposed framework, CHEF was implemented using the 
Python3 programming language1. Experiments were run to evaluate the execution 
time and also to observe how easy it is to integrate CHEF to existing deployment 
solutions2. A case study of the evaluation of multiple custom metrics is also pre-
sented. Results were obtained by running the proposed framework and deployment 
solutions on an Intel Core i5-3330@3.00Ghz server with 8GB RAM DDR3 running 
Debian 8. Experiments were executed 30 times with a confidence level of 95%.

5.1 � Execution Time

The objective of this experiment is to evaluate CHEF in terms of the impact it has 
on the execution time of the deployment solution. We refer the reader to [15, 16, 28] 
for reference results regarding the typical execution times of deployment solutions. 
As a result, we show that the proposed framework presents predictable behavior 
when increasing the number of candidates and evaluation metrics. In the first experi-
ment, we evaluated the total execution time for different combinations of metrics 
and candidates. We used random sets A of n metrics and B of m candidates as inputs 
to the Eval function and measured its execution time.

Figure 2 shows the results obtained for the execution time of the proposed frame-
work. In the experiment, we gradually increased the number of candidates evaluated 
by CHEF, varying from 5 to 78,125 candidates. These candidates were evaluated 
considering partial results coming from 6 different sets of metrics. Each metric set 
”i” is composed of 2i metrics, where ”i” varies from one to six. As the number of 
candidates (m, X-axis) increases, we show how the execution time performs accord-
ing to the number of evaluation metrics (n). Also, as the number of evaluation met-
rics (n) increases, we show how the execution time performs for a set of candidates 
(m).

1  Available at https://​github.​com/​ViniG​arcia/​NFV-​FLERAS
2  Available in branch ”ChefExperiments” at https://​github.​com/​ViniG​arcia/​NFV-​FLERAS

https://github.com/ViniGarcia/NFV-FLERAS
https://github.com/ViniGarcia/NFV-FLERAS
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As can be seen in Fig.  2, the execution time increases roughly linearly as the 
number of metrics and the number of candidates increase. As the number of metrics 
doubles, the execution time increases by 80%. Increasing the number of candidates 
five times causes the execution time to increase in average 280%. Note that results 
for small numbers of candidates ( m = 5 and m = 25 ) do not follow the expected lin-
ear increase of the execution times. This occurs because, operations that are inde-
pendent of the number of candidates, such as metric validations, dominate the over-
all processing time. After removing outliers, the execution time increases 76% as the 
number of metrics doubles, and 393% as the number of candidates is multiplied by 
5. These results confirm the previously presented algorithm complexity of O(n ∗ m).

5.2 � Integrating CHEF to NFV Deployment Solutions

In this experiment, we show that the proposed framework can be integrated to 
existing deployment solutions with few code changes, so that their functionality 
is extended to encompass the evaluation of multiple metrics with heterogeneous 
objectives. Furthermore, their native metrics can also be used with the same results. 
Two different deployment solutions were used: (i) the Mehraghdam, Keller, 
and Karl (MKK) composer,Mehraghdam-2014 and (ii) the Mijumbi, 
Serrat, Gorricho, Bouten, Turck, and Davy (MSGBTD) 
mapping,Mijumbi-2015. The first deployment solution uses both exhaustive and 

Fig. 2   CHEF execution time
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greedy heuristic searches to execute the definition stage in the composition of ser-
vice topologies that minimize the traffic (actually, the ratio between incoming and 
outgoing traffic) going through the network functions. The second deployment solu-
tion, in turn, maps a service topology to a datacenter network by defining the server 
on which each network function must be placed. The definition stage of this service 
mapping solution is computed using a greedy heuristic that minimizes the service 
processing time and the monetary cost. These deployment solutions were selected 
so that we could evaluate the performance of the proposed framework applied to 
both the composition and the embedding tasks of the NFV deployment process. Fur-
thermore, the evaluation also included both exhaustive and heuristic searches in the 
definition stage.

We implemented both the MKK composer and MSGBTD mapping in Python3. 
Next, we integrated the proposed framework in two ways that we call ”index-
ing” and ”multi-criteria”. The indexing approach corresponds to the two 
solutions using our evaluation/classification method. In this way, the solutions com-
pute the proposed suitability index for each candidate with their original hard-coded 
evaluation metrics and objectives (i.e., minimization of traffic ratio in MKK, and 
minimization of processing time and monetary cost in MSGBTD). In the multi-
criteria approach, besides integrating the proposed evaluation/classification method, 
the solutions were also modified to allow the selection of on-demand metrics and 
evaluation objectives.

Experiments were performed to quantify the similarity of the codes before and 
after the integration of the proposed framework, in order to evaluate how much 
effort it takes to integrate the framework to the existing deployment solutions. In 
order to validate the extended versions, their results were compared to those of the 
original strategies, changing only the evaluation/classification method but using the 
same set of metrics. We executed experiments for 28 composition requests and 8 
mapping requests. To check code similarity, the cosine technique was employed, 
which has been used for general data comparison, including both source code [41] 
and binary code [42]. The cosine technique converts general sets of data to vectors, 
which allows the estimation of the similarity level by the computation of the cosine 
of the angle between pairs of vectors. In this way, a result equal to 1 indicates that 
the compared sets of data are equal, while when the result is 0 the compared sets are 
totally different.

Table 2   CHEF Integration (Similarity)

 Deployment solution Code similarity Results similarity

Indexing Multi-criteria Indexing Multi-criteria

Exhaustive
MKK

0.996 0.982 1.000 1.000

Greedy
MKK

0.993 0.986 1.000 1.000

Greedy
MSGBTD

0.996 0.952 1.000 1.000
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First, the original code of the deployment solutions is compared with the cor-
responding extended versions. As shown in Table 2, the amount of code that differs 
between the original version of the deployment solutions and the indexing ones cor-
responds to less than 0.5%. There is a small difference which is related to adding 
calls to CHEF in the evaluation and classification stages. The multi-criteria exten-
sion is also similar to the original version, but requires a few extra functions so that 
the differing code portions vary from 1.4% to 4.8%. Furthermore, both the indexing 
and multi-criteria versions reached the same deployment results as the original ver-
sion for all submitted requests (100% of similarity). In other words, the new versions 
reach the same results as the original versions for the same metric set, which vali-
dates our strategy and the implementation.

The previous experiments evaluate the similarity of the different versions of the 
deployment solutions and their respective results. Now, we evaluate the time over-
head of using the proposed framework integrated to the existing solutions. The over-
head is caused because partial results are indexed and the solutions are adapted to 
the multi-criteria evaluation. To quantify this overhead, we conducted an experiment 
with four different service topologies, presented in Fig. 3. In the composer experi-
ment, the size of the service topology is the number of network functions requested, 
all of them in a linear segment that can be ordered in different ways (i.e., functions 
can be allocated to any position of the chain). In the mapping test, the service topol-
ogy size is the number of functions that must be mapped to a datacenter network 
with 20 servers. To keep the experiment fair, the multi-criteria version was config-
ured to evaluate only metrics of the original solutions.

The solutions based on heuristic search presented a small increase of the execu-
tion time, as shown in Fig. 3b and c. This occurs because of the small number of 
candidates to be evaluated at each algorithm iteration (i.e., the decision of a position 
or server for a network function)—7 candidates for composition, and 20 for map-
ping. On the other hand, the solutions based on exhaustive search show higher exe-
cution times in Fig. 3a. This is due to the exponential growth of the number of can-
didates once all possible topologies are evaluated. This high number of candidates 
created by the exhaustive search solution also presents an overhead for the proposed 
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framework, as it requires more time and thus resources to compute all the suitabil-
ity indexes. According to these results, it is possible to conclude that CHEF can be 
applied to the solutions based on heuristic search, causing a small and predictable 
overhead.

5.3 � Case Study: Customized Multi‑criteria Composition

To evaluate the proposed framework in a customizable deployment, for different sets 
of metrics and objectives, we present a case study of the composition task. This case 
study considers the composition of a network service for security and traffic con-
trol. This service consists of five functions that are frequently deployed on datacent-
ers [43]: Firewall (FW), Intrusion Prevention System (IPS), Deep Packet Inspector 
(DPI), Traffic Shaping (TS), and Application Delivery Controller (ADC). The ser-
vice topology is shown in Fig. 4 and allows three network functions to be ordered in 
different ways (i.e., IPS, DPI, and TS); this is exactly the optimization target for the 
composition. The experiments were executed with the multi-criteria version of the 
exhaustive MKK composer.

In the case study, an NFVaaS customer requests the provider to deploy the net-
work service. The customer gives as input the profile of network functions with 
three evaluation metrics: Average Traffic Ratio (ATR), Average Energy Consump-
tion (AEC), and Average Processing Delay (APD). The profiles are presented in 
Table 3. The NFVaaS provider employs the multi-criteria version of MKK solution 
to compose the customer’s service topology. In this way, the customer is actually 
requesting the analysis of four different composition scenarios, using minimization 
as objective function, and the same weight applied to all metrics: (i) ATR, (ii) ATR 
+ AEC, (iii) ATR + APD, and (iv) ATR + AEC + APD. Table 4 shows the results 
returned for the customized scenarios.

Observe that the four customized scenarios resulted in three different service 
topologies. The first scenario aims to minimize the overall traffic ratio and returns 

Fig. 4   Traffic control and security service

Table 3   Network Function Profiles

FW IPS DPI TS ADC

Avg. Traffic Ratio - ATR​
(Gbps Input/Gbps Output)

0.75 0.9 0.85 0.95 1.0

Avg. energy consumption - AEC (Watts/Gbps) 15 30 60 35 10
Avg. processing delay - APD (ms/pkt) 0.2 0.8 0.8 0.2 0.05
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the optimal result for this single metric (suitability index of 1.000). However, when 
the minimization of energy consumption and processing delay were also included by 
the framework in the second and third scenarios, two distinct chains are returned: in 
the first, the IPS function was allocated in the first position of the segment because 
of its low energy consumption when compared to DPI; in the second alternative, the 
TS was assigned to the second position of the optional ordering segment due to the 
fact that its traffic ratio reduction is close to that of the IPS, but it presents a much 
smaller processing delay. Finally, when all the evaluation metrics are processed 
together, the same service topology of the first scenario (i.e., which just evaluates 
the traffic ratio metric) was returned. Note that, in the last three scenarios, none of 
the returned chains obtained suitability index equal to one. This is an indication that 
some metrics were better evaluated in other chains, but the final result represents the 
best cost-benefit taking into consideration the complete metric set.

It is important to note that, in addition to the modification of the used set of 
metrics, it is possible to get different results by modifying the weights defined 
for each evaluation metric. Table 5 shows the result of increasing/decreasing dif-
ferent metric weights, and in different combinations, in the evaluation of new 
cases from the previously described scenarios ii, iii, and iv. This experiment 
consists of defining a dominant metric among the available ones. The dominance 
imposes a reduction of the dominated metric (dM) weights to half of the domi-
nant metric (DM) weight—i.e., dM.weight =

DM.weight

2
 . Observe that, in this way, 

Table 4   Results of customized multi-criteria compositions

Evaluation scenarios Optimal service topology (MKK exhaustive) Suitability index

(i) ATR​ FW → DPI → IPS → TS → ADC 1.000
(ii) ATR + AEC FW → IPS → DPI → TS → ADC 0.868
(iii) ATR + APD FW → DPI → TS → IPS → ADC 0.814
(iv) ATR + AEC + APD FW → DPI → IPS → TS → ADC 0.774

Table 5   Results of Different Weighing of Customized Multi-criteria Compositions

Evaluation scenarios (Metric [Weight]) Optimal service topology
(MKK Exhaustive)

Suitability Index

(ii) ATR [1.0] + AEC [1.0] FW → IPS → DPI → TS → ADC 0.868
(ii.1) ATR [0.5] + AEC [1.0] FW → IPS → DPI → TS → ADC 0.912
(ii.2) ATR [1.0] + AEC [0.5] FW → DPI → IPS → TS → ADC 0.908
(iii) ATR [1.0] + APD [1.0] FW → DPI → TS → IPS → ADC 0.814
(iii.1) ATR [0.5] + APD [1.0] FW → DPI → TS → IPS → ADC 0.826
(iii.2) ATR [1.0] + APD [0.5] FW → DPI → IPS → TS → ADC 0.866
(iv) ATR [1.0] + AEC [1.0] + APD [1.0] FW → DPI → IPS → TS → ADC 0.774
(iv.1) ATR [0.5] + AEC [0.5]+ APD [1.0] FW → DPI → IPS → TS → ADC 0.730
(iv.2) ATR [0.5]+ AEC [1.0] + APD [0.5] FW → DPI → IPS → TS → ADC 0.762
(iv.3) ATR [1.0] + AEC [0.5]+ APD [0.5] FW → DPI → IPS → TS → ADC 0.830
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the dominant metric will always have a higher normalized weight in relation to 
the dominated metrics. However, the impact of the dominant metric depends on 
the total number of metrics considered in the evaluation (i.e., the impact reduces 
as the number of metrics increases). The original customized scenarios (ii, iii, 
and iv) were adapted to different test cases where a single particular metric is 
dominant, and all others are dominated.

For scenarios ii and iii presented in Table 5, the dominance of metrics AEC 
(ii.1) and APD (iii.1)—in comparison to ATR—resulted in the same service 
topologies observed when no dominance was applied to their metric weights 
(respectively, ii and iii). But, in the cases of ii.1 and iii.1, the suitability indexes 
did achieve a higher value than the corresponding cases ii and iii. When the 
dominance is applied to the ATR metric (ii.2, iii.2, as well as iv.3), in turn, 
resulted in a common service topology for all the tested scenarios. This exam-
ple reflects the importance of this particular positioning of network functions 
to optimize the ATR metric (note that the positions are different of what was 
observed in both ii.1 and iii.1).

Another relevant result is the fact that the evaluation and classification of 
cases 1, 2, and 3 from scenario iv results in the same service topology, regard-
less of the chosen dominant metric. In this scenario, the dominance imposes 
a lower impact on the final result than it imposes on scenarios ii and iii. This 
occurs due to the evaluation of the three metrics (one dominant and two domi-
nated) instead of two metrics (one dominant and one dominated). In this way, 
CHEF favors the positioning of network functions that can optimize multiple 
metrics for increasing the suitability index—for example, placing DPI in the 
second position of the topology improves both ATR and APD. In the same way, 
placing TS in the fourth position of the topology improves both ATR and AEC. 
Thus, this joint metric optimization establishes for scenario iv the worst mean 
(0.774) and the highest dispersion (percentage variation of 13.7%) of the suit-
ability indexes among all tested scenarios. In comparison, scenario ii presents 
a suitability index mean of 0.896 and a dispersion of 5.1%, and scenario iii pre-
sents a suitability index mean of 0.835 and a dispersion of 6.4%.

With these results, the NFVaaS customer can choose the service topology 
composition that is best suited to his/her particular demands. For example, if 
green computing is a primary concern, the service topology from the second 
scenario is certainly the best (ii or ii.1). Otherwise, if the customer aims to opti-
mize the quality of service regarding the delay metric, the third scenario should 
be chosen (iii or iii.1). Finally, if all the evaluation metrics should be taken into 
account, the last scenario is presented as the best option (iv).

With the popularization of the NFV paradigm, NFVaaS providers will have 
to deal with complex deployment requests of diverse types complying with cus-
tomer policies. In this way, the evolution of current NFV deployment solutions 
and the development of new ones must consider adopting mechanisms to deal 
with requirements defined on-demand. As shown in this section, CHEF is a fea-
sible approach to accomplish this task.
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6 � Conclusion

Network Functions Virtualization has been proposed as a novel paradigm that allows 
the execution of network functions and services on a software plane by using virtu-
alization technologies (e.g., full virtualization, paravirtualization, container virtualiza-
tion). However, despite the multiple potential benefits of this paradigm, such as higher 
flexibility for set up and management and lower capital and operational costs, many 
gaps have to be addressed before the potential of NFV is fulfilled. Some of these chal-
lenges are related to the NFV deployment process. The deployment process is executed 
to compose, embed, and schedule a virtualized network service according to optimiza-
tion criteria, based on evaluation metrics. Current deployment solutions only allow a 
static hard-coded set of evaluation metrics to be used. Ideally, multiple metrics and par-
ticular demands from network operators and NFVaaS customers should be taken into 
consideration to deploy a complex service.

In this paper, we introduced a framework (called CHEF) for NFV deployment that 
uses a customizable evaluation/classification according to multiple heterogeneous met-
rics. This new multi-criteria framework can be integrated to existing solutions that 
execute any task related to NFV deployment (i.e., composing, embedding, and schedul-
ing). Considering that deployment solutions often consist of three stages (definition, 
evaluation, and classification of candidates), the proposed framework accomplishes 
both the evaluation and classification stages, given any definition stage. A deployment 
solution that adopts CHEF enables its users to customize the evaluation metrics as a 
particular service to be deployed. Furthermore, the evaluation objectives and relative 
weights are also customizable. We demonstrated and evaluated the integration of the 
proposed framework to two currently available deployment solutions (one for service 
composition, and another for service embedding). The results show that the deploy-
ment solutions present less than 5% of code dissimilarity between their original ver-
sions and the respective extended versions. Also, we show that an acceptable overhead 
is imposed to the execution time of the extended versions of the deployment solutions, 
even when exhaustive strategies are employed. Finally, we presented a case study that 
shows the differences in the deployment results as distinct metric sets are used, which 
illustrates that custom and multi-criteria evaluation can be indeed very effective.

Future work includes the integration of CHEF to other deployment solutions, thus 
further demonstrating its flexibility. Another future work is the investigation of a holis-
tic deployment platform that enables, besides the customized evaluation of metrics, 
the customization of the entire deployment process. In such a platform, the sequence 
of stages of each deployment task would be defined on-demand. Thus, multiple tasks 
could be defined cooperatively so that the best cost-benefit is achieved for the complete 
deployment result. In conclusion, we aim to natively provide customizable deployment 
solutions in the context of FENDE [10], and NIEP [44].
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