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Abstract. Recently proposed consensus protocols make use of the net-
work layer to ensure agreement, while the application layer is still used
for termination. Those protocols employ the network layer as a sequencer
that delivers ordered messages facilitating agreement. However, tolerat-
ing a malicious sequencer is a challenging task. For instance, a malicious
sequencer can assign the same sequence number to different messages and
send them to different replicas. To avoid this problem, the NeoBFT con-
sensus protocol adds an additional communication step at the replicas.
Although this approach mitigates the problem, it negatively impacts sys-
tem performance by requiring an additional synchronization step among
replicas before executing requests. This work proposes NsoBFT (Net-
work Secure Ordered BFT), a consensus protocol that uses a secure
message ordering service implemented with USIG (Unique Sequential
Identifier Generator), a secure component in the network layer. Thus,
no additional synchronization step is necessary for the replicas to ex-
ecute requests. Experimental results comparing NsoBFT with related
work show the advantage of this strategy, in particular confirming that
NsoBFT outperforms NeoBFT.
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1 Introduction

Distributed consensus and agreement algorithms are the basis for solving several
distributed systems problems, they have been successfully used in many different
applications and contexts (e.g., [4, 13, 14]). In particular, consensus is basis of
state machine replication [21], a comprehensive and widely used approach to
build fault-tolerant systems. It has recently also received significant attention
in the context of blockchains [30, 18, 11], and several other problems [32, 16, 25].
Consensus is required whenever the processes of a distributed system have to
agree on a value, given an initial set of proposed values. Consensus properties can
be classified into two categories: those that aim to guarantee agreement (safety),
and those that ensure termination (liveness).
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Classic consensus algorithms that assume crash faults include Paxos [15] and
Raft [19], among others. Those algorithms cannot deal with arbitrary faulty
behavior, often related to intrusion incidents. Intrusion-tolerant consensus algo-
rithms are also called Byzantine Fault-Tolerant (BFT). PBFT (Practical BFT)
[5, 6] was the first intrusion tolerant consensus algorithm that was shown to
provide feasible implementations. Since then, several variations as well as other
BFT consensus algorithms have been proposed [22].

Consensus is frequently implemented in the application layer considering a
message-passing distributed system composed of reliable channels. Such a chan-
nel can be implemented with a reliable transport protocol on top of a fair-loss
network layer. However, the NOPaxos (Network Ordered Paxos) algorithm [17]
was the first consensus solution to employ a message sequencer module imple-
mented in the network layer to assign unique sequence numbers to messages.
Thus the safety properties are guaranteed at this layer while the application
layer is responsible only for termination. The main advantage of that approach
is high performance. This is very relevant, as consensus algorithms are well
known for being expensive. An empirical evaluation of NOPaxos shows that the
algorithm presents a latency that is close to the bare network latency.

NeoBFT[23] is another consensus algorithm that employs the network layer,
but it tolerates Byzantine faults and requires secure sequence numbers. The
network layer in this case provides an authenticated ordering service. However,
this algorithm uses an additional communication step between the replicas before
executing a request. That is necessary in order to deal with the fact that a
malicious sequencer can assign different sequence numbers to the same message.
This extra communication step increases the overhead for running consensus, in
particular due to the requirement that all messages be digitally signed, as well
as the need for additional coordination between replicas at the application layer.
Note that in NeoBFT both the network and application layers need to work
together for ensuring the safety properties.

In the present work we propose NsoBFT (Network secure ordered BFT),
a consensus algorithm that tolerates Byzantine faults while preventing a mali-
cious sequencer from assigning different sequence numbers to the same message.
NsoBFT implements a secure sequencer by using a USIG (Unique Sequential
Identifier Generator) [29] which constrains the malicious actions that the se-
quencer can execute. Thus NsoBFT does not require additional coordination in
the replicas, i.e., it requires one less communication step in comparison with
NeoBFT. The USIG module can be implemented in the network layer by using
a co-processor coupled to a switch to perform more complex operations.

NsoBFT and other BFT consensus algorithms, such as PBFT and NeoBFT,
require 3f + 1 replicas to tolerate up to f malicious replicas, in addition to
the sequencer. However we also present two variants of NsoBFT that require
only 2f + 1 replicas. The first variant is called MinNsoBFT and requires an
additional communication step, while the second variant, called MinZyzNsoBFT,
does not require any additional steps. In the second variant the client completes
an operation when it receives the same response from all replicas. However, if this
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Paxos PBFT NOPaxos NeoBFT NsoBFT MinNsoBFT MinZyzNsoBFT
Failure crash Byzantine crash Byzantine Byzantine Byzantine Byzantine

# of replicas1 2f+1 3f+1 2f+1 3f+1 3f+1 2f+1 2f+1
Comm. steps 4 5 2 3 2 3 2

Comm. Comp.2 O(n²) O(n²) O(n) O(n²) O(n) O(n²) O(n)
Secure service - - - - USIG USIG USIG

Table 1. Comparison of consensus algorithms. The sequencer of the algorithms that
employ the network layer to order messages (NoPaxos, NeoBFT, NsoBFT, and their
variants) “intercepts” requests and includes the sequence numbers, thus requiring one
less communication step.
Notes:
1f represents the number of tolerated faults.
2n represents the number of replicas in the system.

is not the case the client needs to execute additional actions to synchronize the
replicas. Table 1 shows how different consensus algorithms can be compared in
terms of the type of faults assumptions, number of replicas required, number of
communication steps required, communication complexity, and the requirement
of secure components.

In addition to describing and specifying NsoBFT and variants, the algo-
rithms were implemented and compared (NOPaxos, NeoBFT, and NsoBFT).
Results show that NOPaxos presents superior performance but tolerates only
crash faults, while NsoBFT outperforms NeoBFT by requiring one less commu-
nication step.

The remainder of this paper is organized as follows. Section 2 presents back-
ground and related work. Section 3 presents the NsoBFT algorithm and its vari-
ants. The experimental evaluation is presented in Section 4. Finally, Section 5
concludes the paper and discusses future work.

2 Background & Related Work: Consensus, from Paxos
to NeoBFT

Consider a distributed system composed of a set of independent processes Π =
p1, p2, .., pn, process pi is also refereed to as process i. The processes of Π run a
consensus algorithm to agree on a value of a predefined set of possible values.
Initially processes propose values, and eventually all correct processes decide
on a single one of the values proposed. Thus, in order to execute a consensus
instance, processes execute two primitives [12]:

– propose(v): a process executes this primitive to propose value v to the set
of processes in Π.

– decide(v): a process executes this primitive to notify the interested party
(i.e., an application) that v is the decided value.

In order to ensure safety and liveness, and assuming the crash fault model,
consensus must satisfy the following properties:
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– Agreement: if a correct process decides v, then all correct processes even-
tually decide v.

– Validity: a correct process decides v only if v was previously proposed by
some process.

– Termination: all correct processes eventually decide.

The agreement property ensures that all correct processes decide on the same
value. Validity relates the decided value to the proposed values. Note that the
fault model has a direct impact on validity, and changes in validity can lead to dif-
ferent types of consensus. The agreement and validity properties define the safety
requirements of the consensus, and the termination property defines its liveness.
It has been proved [10] that it is impossible to solve the consensus problem de-
terministically in a completely asynchronous distributed system where at least
one process can fail by crashing. Therefore, most consensus solutions make some
stronger synchrony assumption, e.g. the GST (Global Stabilization Time) [9] in
which a system is initially asynchronous but after some unknown but finite time
instant becomes synchronous respecting time limits both for process execution
and message transmission.

Although several consensus algorithms have been proposed, given the nature
of the algorithm introduced in the present work, we start our overview of related
work with Paxos [15], which is one of the most important consensus algorithms.
Paxos assumes that processes can fail by crashing. Processes assume three differ-
ent roles: proposer, acceptor or learner. The algorithm consists of two phases: a
preparation phase and a decision phase. Each phase requires two communication
steps. As the name implies, proposers make proposals with the aim of having a
majority of acceptors (n/2+1) accepting a value. When that happens, a decision
is taken and is never changed, this guarantees safety. In the first phase proposers
send a prepare message with a proposal number (frequently called ballot) to a
majority of acceptors, which can include itself. Proposer i uses increasingly larger
proposal numbers, starting with i and each time incrementing with n, thus its
proposal numbers are: i, i + n, i + 2n, i + 3n, .... In this way proposal numbers
from different proposers are comparable.

A Paxos acceptor only sends a positive reply to the proposer in Phase 1
if the proposal number is the largest it has received. If the proposer does not
get a majority of positive replies, it sends another prepare message with a
larger proposal number. After getting n/2+1 positive responses to the prepare
message, the proposer proceeds to Phase 2 of the algorithm. In Phase 2 the
proposer sends an accept message to the majority of acceptors, now with the
value it wants to get them to accept, plus the proposal number that succeeded
in the first phase. Now, an acceptor only sends a positive reply – an accepts
a value – if meanwhile it has not received another message (either prepare
or accept) with an even larger proposal number. In that case it returns that
number to the proposer, which will try it all again with an even higher proposal
number. But there is a final catch: if an acceptor has accepted a value, it must
return that value to the proposer with the corresponding proposal number. The
proposer now must adopt the value with the highest number as the one it will
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try acceptors to accept. The idea is that after a majority of acceptors accept a
value, that instance of consensus has decided, nothing will change that value,
and thus safety is guaranteed.
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Fig. 1. Normal case execution for NOPaxos and NeoBFT.

Closely related to the algorithm we propose in this paper, NOPaxos (Network
Ordered Paxos) [17] was the first consensus protocol to make use of the network
layer to improve the performance of consensus. NOPaxos uses a sequencer at
the network layer (e.g., implemented in a switch) that assigns sequence numbers
to requests, which are then forwarded to the replicas. The replicas deliver and
execute requests in the order defined by the sequence numbers and attempt to
recover any requests with missing order numbers from the other replicas. During
normal execution, requests are executed in only a single round-trip time (Fig-
ure 1(a)): a client broadcasts a request r to the replicas through the sequencer;
the replicas add r to a log, and a leader replica also executes the operation; all
replicas respond to the client with the position p at which r was added in the log,



6 Gabriel et al.

while the leader also sends the response; the client waits for f+1 responses with
the same p, including the leader’s response, and then gets the final response.
The replicas also monitor and replace the sequencer and/or the leader replica in
case of failures. As in other algorithms that tolerate only crashes, at least 2f +1
replicas are needed to tolerate up to f faulty replicas. Finally, since only the
leader replica executes the requests, it is unnecessary to roll back the replicas
state. However, if a non-faulty leader replica is replaced due to false suspicions,
its requests may not reflect the state of the new leader replica. In this case, the
old leader replica updates its state from the new leader instead of performing a
rollback.

NeoBFT [23] follows a similar approach to that of NOPaxos, but assumes
Byzantine faults, i.e., it is intrusion-tolerant. Among the Byzantine fault-tolerant
consensus protocols, PBFT (Practical Byzantine Fault Tolerance) is the first to
consider practical aspects [5, 6]. PBFT is executed in three phases. PBFT clas-
sifies the replicas as primary (which can be seen as a leader) and backups. The
primary assigns sequence numbers to proposals, and the backups use these num-
bers to ensure consistency. A major part of the algorithm is related to tolerating
failures of the primary. The backups also monitor the primary replica to detect
crashes or malicious behavior.

In order to tolerate malicious failures, in NeoBFT [23] the sequencer signs
each request with its assigned sequence number, resulting in an authenticated
ordering service at the network layer. This approach allows a replica to recover
lost requests from other replicas by simply checking whether the corresponding
signature is valid. Since a malicious sequencer can assign the same sequence
number to different requests, this algorithm requires an additional communica-
tion step (as shown in Figure 1(b)) to guarantee that at least 2f + 1 replicas
have received the same information. When this occurs, the replicas execute the
request, and the response is sent to the client, which waits for 2f + 1 identical
responses to complete its operation.

Thus, NeoBFT requires 3f +1 replicas to tolerate up to f malicious failures.
Furthermore, in certain cases, it is necessary to insert a gap “request” to ensure
system progress. When this occurs, or due to a sequencer change, some replicas
may need to roll back their state. Finally, some alternatives for authentication at
the network layer have been proposed [23], such as coupling a co-processor capa-
ble of generating signatures to the switch or using an HMAC vector implemented
directly in the switch.

In terms of not very closely related works, there have been several algorithms
to improve aspects of Paxos and PBFT from different perspectives. For instance,
MinBFT [29] uses secure components to reduce both the number of replicas and
the number of communication steps. Other algorithms have been proposed to
address the coexistence of multiple replicas [20] or to consider systems in which
the number of replicas is initially unknown [1]. All of these algorithms order
requests by exchanging messages at the application layer.
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3 The NsoBFT Consensus Protocol

This section presents the NsoBFT (Network secure ordered BFT) consensus pro-
tocol. NsoBFT is a consensus algorithm that, similar to NOPaxos and NeoBFT,
employs both the network and application layers in order to provide an ef-
ficient implementation of distributed fault-tolerant consensus. Different from
the other alternatives, NsoBFT uses the USIG (Unique Sequential Identifier
Generator) component [29] to securely generate sequence numbers, i.e., a mali-
cious sequencer cannot assign the same sequence number to different messages.
Unique sequence numbers ensure that requests are safely ordered. Consequently,
NsoBFT eliminates the additional communication step required by NeoBFT and
presents message exchange complexity equivalent to that of NOPaxos, which only
tolerates crash failures.

3.1 System Model

NsoBFT assumes a distributed system that consists of an unbounded set of
client processes and a set of n server processes, which are also called replicas.
The Byzantine fault model is assumed, i.e., processes can behave maliciously
and not follow protocol specifications. A process is considered correct if it does
not fail; otherwise, it is considered faulty. There are at most f faulty replicas
out of n = 3f +1 replicas. Processes have unique identifiers, and it is impossible
to obtain additional identifiers to launch a Sybil attack [8].

The system is partially synchronous and we assume the GST model [9, 3].
Thus, after an initial period of instability and from a time instant which is also
called the Global Stabilization Time (GST) the system becomes and remains
synchronous forever. We note that most works that solve consensus determinis-
tically require a partially synchronous model to ensure termination.

Processes communicate by sending and receiving messages. Clients multicast
their requests to replicas, which send responses back to the client over a point-
to-point channel, and communicate with each other as needed. Communication
channels are secure, in the sense that messages are authenticated and cannot
be corrupted. Furthermore, channels are fair-loss, i.e., if a message is repeatedly
sent from a correct source process to a correct destination process, it will be
eventually delivered. However, the network layer can lose, duplicate, or reorder
messages. At least one correct sequencer is placed in the network layer (e.g., in
a switch) that uses the USIG to assign sequence numbers to client requests.

3.2 USIG: Unique Sequential Identifier Generator

USIG is a secure service that assigns a unique identifier and signs each message.
The identifiers are: (i) unique (the same identifier is never assigned to two or
more messages); (ii) monotonic (the identifier assigned to a message is never
smaller than the previous one); and (iii) sequential (the identifier assigned to a
message is always the successor of the previous one). A USIG module must be
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present in the switch which processes and forwards messages with the identifiers.
The interface defined to access the USIG service is as follows [29]:

– createUI(m): receives as parameter a message m and returns a UI certificate
containing the unique identifier (UI.id) and the proof (UI.proof) that the
identifier was created by this component and assigned to m. As mentioned
above, the identifier is a monotonically increasing counter that increments
with each call to this function. The proof is a digital signature that con-
sists of the message hash that is encrypted with asymmetric cryptography.
The private key used to generate this signature is securely stored within
this component. The proof only requires the corresponding public key to be
verified.

– verifyUI(PK,UI,m): verifies whether the unique identifier UI is valid for
message m. This function receives as a parameter the public key PK, associated
with the respective USIG instance, to verify whether the signature contained
in UI.proof is valid for UI.id and m.

Using the USIG component, a sequencer cannot send two different messages
with the same identifier to different processes. Thus, each process only needs to
store the identifier of the last message received from the sequencer in order to
anticipate the expected identifier for the next message. Therefore, the actions of
a malicious sequencer are limited to either sending the same message (containing
any value) to all processes or sending nothing.

3.3 NsoBFT Consensus

NsoBFT is presented in two parts: the normal execution and the view changing
protocol.

Normal Execution. A normal execution of BsoBFT follows the message pat-
tern shown in Figure 2. Note that the USIG service at the network layer is
instantiated only within the sequencer. The sequencer itself could be placed at
a programmable switch or as a virtual network function [28] that connects all
replicas. We note that both technologies have been used to implement consensus
algorithms [7, 27, 26].

– Initially, the client multicasts request r to the set of replicas. However, the
request must pass through the sequencer before it reaches the replicas.

– The sequencer uses the USIG to add an identifier (i.e., the sequence number)
to r, executing createUI(r) to add the sequence number to the message.

– The replicas receive request r already with the sequence number UI and ver-
ify whether it (UI) is valid using function verifyUI(PK,UI,r), where PK is
the public key of the service, which should be widely availalbe and authen-
ticated through a reliable and well-known CA (Certification Authority). If
the sequence number passes the authentication, the replicas check if UI.id
is the next number in the sequence to be delivered. Upon both conditions
being met, the replicas execute r, update the log log, and send the response
back to the client.
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– The client waits for 2f + 1 identical responses to complete the operation.
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Fig. 2. NsoBFT normal case execution.

In the normal operation, if a replica does not receive a specific request, the
sequence number stored in UI.id results in a gap in the delivery order. Thus,
the replica must retrieve the missing request(s) from other replicas in order to
continue its execution. Note that the replicas store the requests in a log. Since
the UI is unique for each request, no malicious action can be performed during
this procedure.

View change. If the sequencer is suspected of being faulty, a new sequencer must
be chosen. To this end, it is necessary to determine up to which position in the log
the requests should be maintained. The proposed view change protocol keeps in
the log all requests for which at least 2f+1 responses from the replicas have been
sent to the clients (i.e., those requests may have been completed successfully at
the clients). On the other hand, requests removed from the log are guaranteed
not to have completed at the clients.

– When a replica suspects that the sequencer is faulty, that replica sends a
VIEW-CHANGE message to the other replicas.

– Upon receiving a VIEW-CHANGE message, a replica retransmits this message
to the other replicas.

– When a replica receives f+1 VIEW-CHANGE messages, it also sends a VIEW-CHANGE
message (if it has not yet been sent). Since all correct replicas will receive
those messages, the replica starts the following consensus execution to deter-
mine up to which point the log should be kept. Consequently, it also decides
which log entries should be discarded:

• A leader replica proposes its log.
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• The other replicas only accept a proposal if their own logs are not ahead
of the proposed log. For this, the consensus protocol must define a predi-
cate which is used to check whether proposals can be accepted or not [24].
This ensures that requests executed and replied from at least 2f+1 repli-
cas remain in the decided log.

• If the proposal is not accepted by at least 2f+1 replicas, another replica
is chosen to become the leader, and the whole process is repeated.

– At the end of the consensus execution, all replicas decide on the same log
ld. After that, each replica checks its own log to executes the requests in ld
that it had missed, or rolls back the requests ahead of ld.

Additional considerations. A malicious sequencer may choose to discard requests
from specific clients. As in other implementations (e.g., BFT-SMaRt [2]), to avoid
such a problem, clients must also send requests to the replicas, which will wait
to receive its sequence number from the sequencer. A timeout is employed as a
bound to the waiting interval. If the timeout expires at some replica, that replica
itself must send the request as if it were the client. A new timeout interval is
triggered, and if it also expires, the replica suspects the sequencer and proposes
a view change.

3.4 NsoBFT Variations: MinNsoBFT and MinZyzNsoBFT

Now we discuss two variations of NsoBFT both of which reduce the required
number of replicas from 3f + 1 to only 2f + 1 (Table 1). Before the variations
are described, it is important to recall that requests that have already completed
should not be removed from the log during a view change. The variations must
guarantee that this happens with f fewer replicas. The first variation is called
MinNsoBFT and the second MinZyzNsoBFT:

– MinNsoBFT: This variant works similarly to MinBFT [29], requiring an ad-
ditional communication step before executing a request. Quorums are formed
with only f +1 replicas. However, the additional step ensures that messages
answered by at least f + 1 replicas will remain in the log during a view
change.

– MinZyzNsoBFT: This variant works similarly to MinZyzzyva [29]. In this
case, clients must wait for all 2f + 1 responses to complete an operation.
In executions where the network is slow (and responses do not arrive), or
there are malicious replicas, an additional step is necessary: the client sends
a message to all replicas and waits for the responses. These messages aim to
ensure that at least f + 1 replicas execute all requests in order.

Note that, for both variants, the consensus protocol used for view change
must tolerate Byzantine faults in a system with only 2f+1 replicas. An example
of a protocol that can be used is MinBFT [29].
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4 Experimental Evaluation

This section reports the experimental evaluation of NsoBFT, with the main goal
of showing the performance improvement when compared to NeoBFT. Further-
more, these protocols are also compared to NOPaxos to study the impact of
Byzantine fault tolerance.

4.1 Implementation, Environment and Methodology

All three consensus algorithms that employ the network layer as a sequencer
(NOPaxos, NeoBFT, and NsoBFT) were implemented in Java. Experiments were
executed on the Emulab [31] testbed. We employed 6 d430 machines (2.4 GHz
E5-2630v3, with 8 cores and 2 threads per core, 64 GB of RAM) connected to a
1 Gbps switch. The NOPaxos was configured with three servers, while NeoBFT
and NsoBFT were configured with four servers to tolerate up to one failure.
Each server executed on a dedicated machine, while a varying number of clients
were deployed on another machine. The sequencer also executed on a dedicated
machine.

The software environment comprised the 64-bit Ubuntu 20 operating system
and the 64-bit Java Virtual Machine (JVM) version 1.8_431. The Bouncy Castle
cryptography library was also used to generate and verify 256-bit signatures.
To verify the performance of the different approaches, an “empty” service was
implemented, i.e., nothing was processed on the replicas. The number of clients
varied, and the throughput was measured on one of the replicas, while the latency
was measured on one of the clients. Furthermore, the payload size varied between
0B, 100B, 1kB, and 4kB.

4.2 Experimental Results

In addition to the payload, the messages contained other information, such as
the client identifiers and the sequence number. The sizes of messages without
signature was the payload size plus 190 bytes. At the same time, the sizes of
messages with signatures was equal to the payload size plus 536 bytes. Java
serialization (Serializable interface) also contributed to those sizes. The average
time for the sequencer to sign a packet was approximately 1.81 ms, and for the
server replica to check its validity was approximately 0.22 ms, resulting in a total
of 2.03 ms of processing overhead in the Byzantine fault-tolerant solutions.

Figure 3 presents the latency and throughput for the three algorithms. As
expected, NOPaxos presents the highest throughput and lowest latency. This
was expected, as the algorithm only tolerates crash faults and requires fewer
replicas. In addition, this protocol does not employ expensive cryptographic
primitives. NOPaxos reached a throughput of more than 25 kops/sec (a thousand
operations per second) for payload sizes of 0B and 100B. For payloads of size
1kB, the throughput reached approximately 24 kops/sec. Finally, for payloads
larger than 4kB, the throughput reached approximately 9 kops/sec. In all cases,
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Fig. 3. Latency (95 percentile) vs. throughput.

the latency starts relatively low and gradually increases as the system saturates
and reaches its peak throughput. From this point on, only the latency increases.

Among the protocols that tolerate Byzantine faults, NsoBFT outperformed
NeoBFT because it requires one less communication step. Note that both proto-
cols require the sequencer to sign all messages. NsoBFT presented a throughput
that exceeded 7 kops/sec for payloads with 0B and 100B, while NeoBFT pre-
sented for the same payload sizes a throughput of slightly more than 5 kops/sec.
For 4kB payloads, NsoBFT achieved a throughput of over 5 kops/sec, while the
throughput of NeoBFT was roughly 3 kops/sec. As was the case for NOPaxos,
the latency remained low up to the system saturation point. However, it is impor-
tant to note that, in NeoBFT, the system saturated earlier, since this protocol
requires one more communication step than NsoBFT.

NOPaxos NeoBFT NsoBFT
# of clients 0B 100B 1kB 4kB 0B 100B 1kB 4kB 0B 100B 1kB 4kB

1 6.22 5.30 5.60 5.93 0.49 0.51 0.37 0.51 0.51 0.43 0.46 0.48
5 16.85 15.43 16.43 8.08 2.22 2.38 2.41 2.00 2.09 1.99 1.84 1.84
10 19.96 21.25 18.11 8.95 3.77 3.98 3.30 2.72 4.69 4.70 4.49 4.07
25 25.18 23.13 20.25 8.97 4.50 4.76 4.15 3.03 7.29 7.01 6.46 4.57
50 25.63 25.52 21.90 9.12 4.93 5.00 4.32 3.28 7.35 7.20 6.51 5.18
100 26.76 26.81 22.39 9.10 5.62 5.96 4.61 3.23 7.40 7.56 6.46 5.35

Table 2. Throughput (kops/sec) for a varying the number of clients and payload sizes.
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Table 2 shows that the throughput varies considerably between the algo-
rithms, especially as the number of clients increases. This confirms that the load
does impact the overall system efficiency. In general, the NOPaxos algorithm
tends to present higher throughputs with most combinations of clients and pay-
loads. This is due to NOPaxos not requiring cryptography and its smaller number
of replicas. Likewise, NsoBFT outperforms NeoBFT because it requires one less
communication step.

NOPaxos NeoBFT NsoBFT
# of clients 0B 100B 1kB 4kB 0B 100B 1kB 4kB 0B 100B 1kB 4kB

1 0.29 0.30 0.23 0.42 9.39 9.99 11.14 13.13 8.85 8.30 8.68 12.29
5 0.73 0.90 0.94 1.05 15.35 14.44 12.83 15.38 12.79 10.81 10.99 13.03
10 1.42 2.66 2.07 2.60 15.09 17.11 20.43 19.20 15.63 13.95 11.87 16.03
25 3.79 3.43 4.04 6.14 17.04 18.46 25.85 33.50 14.45 15.60 16.94 28.39
50 6.27 6.59 5.20 8.70 32.78 45.34 37.10 48.45 37.19 40.18 40.01 42.96
100 12.26 14.21 16.30 17.58 47.92 47.27 55.23 99,40 47.37 46.08 52.96 84.08

Table 3. 95th percentile of the latency (ms) for a varying number of clients and payload
sizes.

Table 3 shows the latency varies according to the number of clients and
the payload size. For the NOPaxos algorithm, latency remains relatively low
compared to the other algorithms, even with an increase in the number of clients
or payload size, since the system has not yet reached its saturation point. For
NeoBFT, however, latency increases considerably, especially when the number
of clients is high, and the payload is larger. NsoBFT also presents high latencies
under similar loads, but generally remains lower than NeoBFT.

The evaluation results confirm both that tolerating crash faults is cheaper
than tolerating Byzantine faults, and make it clear that NsoBFT outperforms
NeoBFT when intrusion tolerance is required since it requires one less commu-
nication step.

5 Conclusion

Consensus is a central abstraction for building reliable distributed systems, espe-
cially in environments prone to intrusions and failures. In this work we introduced
the NsoBFT algorithm that employs the network layer with an USIG module to
improve the performance of Byzantine consensus. Secure and unique sequence
identifiers are used to mitigate the impact of malicious sequencers. The exper-
imental evaluation provided insights into the trade-offs between performance
and resilience, as crash- and intrusion-tolerant algorithms were compared. Re-
sults also confirm that NsoBFT, on the other hand, proved to be an efficient
algorithm, making it an attractive option for critical applications that require
high availability and data integrity.
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Future work involves the implementation and evaluation of the proposed
sequencer in programmable switches. Another alternative is its implementation
as virtual network function. A comparison of the cost versus performance of those
strategies should reveal insights not only on how efficient Byzantine consensus
can be, but also on how those two different technologies (i.e., programmable
switches vs. network functions virtualization) compare when applied to a critical
application. Other future work includes the implementation and evaluation of
MinNsoBFT and MinZyzNsoBFT, the two variants of NsoBFT presented in the
paper.
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