
Dependable Virtual Network Services: An

Architecture for Fault- and Intrusion-tolerant SFCs

Giovanni Venâncio∗, Vinicius Fulber-Garcia∗, José Flauzino∗, Eduardo A. P. Alchieri†, Elias P. Duarte Jr.∗

∗Federal University of Paraná, UFPR, Curitiba, Brazil

E-mail: {jwvflauzino, giovanni, vinicius, elias}@inf.ufpr.br
†University of Brası́lia, UnB, Brası́lia, Brazil

E-mail: alchieri@unb.br

Abstract—A virtual network service can be implemented as
a Service Function Chain (SFC) which is a composition of
multiple Virtualized Network Functions (VNFs) forming the
service topology. The IETF defines a standard architecture for
SFCs, that includes traffic classification and forwarding elements.
Considering that several network services implement functional-
ities that are critical for the correct operation of the network,
the failure of an SFC can compromise the entire infrastructure,
causing monetary losses or security issues. This work proposes
the Fault-& Intrusion Tolerant SFC (FIT-SFC): an architecture to
support secure and highly available virtual services. While most
of previous related work only assumes crash faults, FIT-SFC uses
replication strategies to also tolerate intrusions on any component
of the SFC architecture, while still being fully compliant with
the IETF reference model. A prototype was implemented and
experimental results show that FIT-SFC presents acceptable
overhead and fast failover, tolerating faults/intrusions on both
stateless and stateful services.

I. INTRODUCTION

The Network Functions Virtualization (NFV) paradigm has

been changing the way networks are designed and oper-

ated [1], [2]. NFV provides an attractive alternative to re-

placing network functions that were traditionally implemented

in specialized hardware (i.e., middleboxes) with virtual soft-

ware instances running on commodity hardware [1], called

a Virtualized Network Function (VNF). VNFs can rely on a

variety of virtualization technologies. By replacing hardware

for software, the NFV paradigm has a significant impact on

the way networks are managed, simplifying and improving

the flexibility of the design, operation, and provisioning of

network functions [3].

A virtual network service can be built through the compo-

sition of multiple VNFs, and is known as a Service Function

Chain (SFC) [4]. In an SFC, VNFs are interconnected in a

predefined order forming the service topology through which

traffic is steered. An SFC can be composed of multiple

functions [5] and deployed either within a single domain or

across multiple domains [6]. The Internet Engineering Task

Force (IETF) has proposed a reference architecture for SFCs

[7] that enables the execution of virtualized services in the

network, while supporting multiple types of topologies [8].

The SFC architecture proposed by the IETF consists primarily

of traffic classification and forwarding elements that facili-

tate the creation and execution of arbitrary virtual network

services. The main components of that architecture are: (i)

Service Classifier (SC), responsible for receiving, classifying,

and forwarding traffic to the appropriate SFC and; (ii) Service

Function Forwarder (SFF), responsible for actually forwarding

the packets between VNFs according to the order defined in

the Service Function Path (SFP) – the order of VNFs through

which the traffic must traverse.

Although NFV technology offers several advantages over

hardware alternatives, it is undeniable that network services

based on virtualization are more susceptible to failures, in

particular as it relies on multiple layers of heterogeneous

software [9], [10], [11]. Considering that several network

services implement functionalities that are critical for the

correct operation of the network, the failure of an SFC

can compromise the entire infrastructure, leading to system

downtime and monetary losses [12], [13]. In addition, failures

of security services can lead to multiple security issues [14],

affecting not only the underlying infrastructure (i.e., the NFV

network), but also the user services and applications. The

unavoidable conclusion is that ensuring high availability and

the security of NFV-based network services is essential to

enable their adoption in large-scale production networks.

Despite the fact that virtualized network services have been

extensively explored in the literature, several aspects of fault-

tolerance have still been marginally addressed. Among the

strategies for building fault-tolerant virtual services, some

focus on detecting, tolerating, and eventually recovering from

VNF crash faults [15], [16], [17], [18]. A crash fault specifies

that the system element stops completely and looses all

internal state – a crashed element does not perform any local

computations nor send messages to other processes.

However, none of the existing solutions address failures

of the components of the SFC architecture itself. Note that

those failures can compromise the operation of the entire set

of network services in execution. For instance, a failure of the

forwarding component may prevent a packet flow from being

forwarded between the VNFs within the SFC. This behavior

could be exploited, for instance, to bypass a security function

in the SFC or even deny access to the service itself. Therefore,

it is critical to tolerate faults not only of VNFs but also of

the the SFC architecture components. Furthermore, it is also

essential to tolerate other types of faults besides crashes, in

particular omission and Byzantine faults, described next. An

component that suffers an omission fault only sends and/or

979-8-3503-8053-8/24/1.00 ©2024 IEEE 50

receives a subset of the messages it should. A component

that suffers a Byzantine fault, behaves arbitrarily and thus can

produce messages that differ from those it should according to

its specification. This type of fault is typically used to represent

a malicious behavior, e.g. due to an intrusion.

In this context, this work proposes Fault-& Intrusion Tol-

erant SFC (FIT-SFC): an architecture designed to support

secure and highly available virtual services. FIT-SFC employs

replication strategies to tolerate crash, omission, and Byzantine

faults, while being fully compatible with the IETF reference

architecture, enabling platform interoperability with different

types of virtualized services. FIT-SFC addresses the failures

of SFCs that process either stateless or stateful flows. For

stateful flows, two types of consistency are employed. In the

first type, the FIT-SFC ensures message consistency for each

flow it processes. In the second type, multiple replicas must

maintain the consistency across the different flows.

A prototype of the FIT-SFC architecture was implemented.

The evaluation was performed with three virtualized services,

each with different characteristics and requiring the support

of different FIT-SFC features: (i) a Domain Name System

(DNS) service; (ii) an authenticated DNS service; and (iii)

a Load Balancer (LB) service. Experimental results evaluate

the overhead of the proposed architecture and its fault- and

intrusion tolerance capabilities.

The rest of this paper is organized as follows. Related

work is described in Section II. Section III presents the FIT-

SFC architecture. Section IV includes the implementation and

experimental results. Finally, the conclusion follows in Section

V.

II. RELATED WORK

Fault Tolerant Chaining (FTC) [16] is a system that tolerats

SFC crash faults. Based on the packet flow itself, FTC extracts

information about the VNF state of each VNF. However, FTC

does not create replicas of the VNFs – each VNF instance

acts as a replica for its successor VNF along the SFC. Due

to this strategy FTC is incompatible with the IETF SFC

architecture, as it requires direct communication between VNF

instances. Also, it is up to the network operator to specify

which operations cause state changes, making it an error-prone

approach.

Wang and others [15] employ standby VNF instances to

provide crash-tolerant virtual services. For stateful VNFs, a

mechanism is proposed to capture the state of an active VNF

instance and replicate it to its standby replicas. The strategy

can be considered computationally intensive, furthermore it is

not compatible with the IETF SFC architecture.

Correct, High performance Chains (CHC) [17] is a frame-

work to tolerate SFC faults that decouples VNF processing

from its internal state, which is stored in a distributed database.

CHC specifies a VNF architecture, and only tolerates crash

faults of VNFs compliant with that architecture. In case of

failures, a new VNF must be instantiated, and the correspond-

ing state is retrieved from the database. This strategy has a

significant impact on throughput and downtime.

Traffic
Source

Traffic
Destination

3f+1

SC

2
1

3f+1

SFF

2
1

3f+1

VNF1

2
1

3f+1

VNF2

2
1

3f+1

VNFN

2
1

1 2 3

3

3

4 ...

Fig. 1. FIT-SFC execution flow.

REINFORCE [19] is a fault-tolerant NFV framework that

tolerates crash faults of VNFs and SFCs. REINFORCE main-

tains a dedicated replica for each VNF and replicates the in-

ternal state using checkpoints, applying techniques to improve

service throughput. However, REINFORCE is not compatible

with the IETF SFC architecture, making the integration with

other systems a challenging task.

NHAM [20] is a high availability architecture for SFCs.

The solution employs a checkpoint-based strategy for VNFs

together with buffer management to tolerate crash faults of

multiple stateless and stateful VNFs of an SFC. Although fully

compliant with the ETSI and IETF architecture, NHAM does

not tolerate faults of the components of the SFC itself.

Necklace [21] is an architecture for instantiating robust

SFCs. Necklace uses distributed consensus to tolerate crash

faults of both processes and communication links. The system

is designed with performance concerns. Kong [18] also pro-

poses a solution for ensuring the high availability of SFCs.

In this case, the authors use backups for both links and VNF

instances of an SFC.

The list of related work confirms that all the existing

solutions for building fault-tolerant SFCs assume crash faults.

Therefore, to the best of our knowledge, the present work can

be considered as the first one to address (i) not only VNF faults

but also faults of all components of the IETF SFC architecture

and (ii) to tolerate not only crash failures but also omission

and Byzantine failures.

III. FAULT- AND INTRUSION-TOLERANT SFCS

This section introduces the FIT-SFC architecture for secure

and highly available virtual services. FIT-SFC was designed

to extend the IETF SFC reference architecture to tolerate

crash, omission, and Byzantine faults under the GST (Global

Stabilization Time) partially synchronous timing model. Recall

that a component that suffers a Byzantine fault presents

arbitrary behavior, thus it usually represents an intrusion. Such

a malicious component can make unauthorized modifications

on packets traversing the SFC, inject spurious packets into

the network, or attempt to leave replicated functions in an

inconsistent state.

In order to tolerate faults and intrusions, the FIT-SFC

strategy is based on replicating the key components of the

51

IETF SFC architecture: SC, SFF, and VNFs. It has been

proved [22] that 3f +1 replicas are required to tolerate up to

f Byzantine faults. The FIT-SFC execution flow is shown in

Figure 1. Despite the replicas, the packets follow the standard

flow defined by the IETF SFC architecture. Network traffic is

received by the Service Classifier (SC) from the client, which

is the traffic source. An SFC also consists of a sequence of

VNFs, with an SFF preceding and succeeding each VNF along

the chain. Note that, even in a non-replicated SFC, there can

be either a single SFF instance or multiple SFF instances.

The next subsections present Byzantine fault-tolerance, the

operation of the architecture, and packet flow consistency.

A. Byzantine Fault-Tolerance

As mentioned above, considering that n is the total number

of replicas of a given system, and f is the maximum number

of replicas that may suffer a Byzantine fault, it is necessary

to guarantee that n ≥ 3f + 1. To understand why, consider

an element that receives packets from a replicated component.

That element must decide which of the packets received from

the replicas is correct. As omission faults are also tolerated, it

is necessary to guarantee the correct decision after only n−f

packets are received, since f packets can be omitted. On the

other hand, it is possible that no omission occurred, and among

the n−f packets received by the replicas, f were produced by

malicious components. Therefore, among the n−f packets, a

majority of packets from correct replicas is required to ensure

the correct decision. This is only possible if (n− f)− f > f ,

hence n > 3f or n ≥ 3f + 1.

Furthermore, as shown in Figure 2, as packets traverse

sequential sets of components, each component can only

decide after receiving identical 2f + 1 copies of a packet.

The figure actually shows a counter-example, demonstrating

that f + 1 identical copies of a packet are insufficient to

guarantee Byzantine fault tolerance. The client is malicious

and sends packet #1 to two correct replica and packet #2 to

the other two correct replicas. The replicas of the second set of

components decide after receiving 2f+1 copies of the packet,

of which a simple majority f + 1 are identical. The result is

that two replicas decide for #1 and two replicas decide for #2.

In conclusion, a decision can only be made on a quorum of

at least 2f + 1 identical packets.

B. FIT-SFC: Operation

Traffic enters a FIT-SFC from a client. Each client must

be modified to incorporate a wrapper to forward packets. The

wrapper serves two purposes: (i) it sends a copy of each packet

to each of the 3f +1 SC replicas, and (ii) it tags each packet

sent with a local timestamp that serves as a unique packet

identifier. The timestamp is implemented as a local counter

for subsequent packets of a given SFC.

The traffic is then received by each of the service classifier

replicas (called FIT-Classifier), each of which processes and

forwards packets only once to each of the 3f+1 SFF replicas.

As shown in Figure 3, before the SFF forwards packets to the

VNFs of the corresponding SFP, it must take into account that

Set of
Components I

Replica 1
(Non-Malicious)

Replica 2
(Non-malicious)

Replica 3
(Non-malicious)

Malicious
Client

Set of
Components II

Replica 1
(Non-malicious)

Replica 2
(Non-malicious)

Replica 3
(Non-malicious)

#1
Quorum #1

#2

Quorum #1

Quorum #2

#1

Replica 4
(Non-malicious)

Replica 4
(Non-malicious) Quorum #2

#2

#1

#1

#1
#2

#1
#2

#1
#2
#2

#2
#2
#1

Fig. 2. Scenario with a malicious client.

there may be up to f faulty SC instances, or that the traffic

source (client) is malicious. Recall that different versions of

packets may be received due to Byzantine faults. Therefore,

each SFF replica must perform a vote to select the correct

packet to forward to the replicated VNF.

To enable this functionality, FIT-SFC adds a voter to each

of the SFF replicas. Once the Voter receives 2f + 1 identical

copies of a given packet, the SFF is able to process that

packet and forward it to the next destination (i.e., the VNFs).

However, if there are no 2f + 1 matching packets, traffic

forwarding and processing must be interrupted. In case a

decision is reached, each SFF replica sends its copy of the

packet to each of the VNF replicas. Similar to the SFFs, each

VNF replica also has a Voter element that waits for 2f + 1
identical copies of a given packet before actually processing

the packet. Similarly, if the VNF’s Voter receives less than this

number of identical copies, the flow must be interrupted.

After each VNF replica completes its execution, the For-

warder subcomponent sends a copy of each packet back to

each SFF replica. At this point, each SFF replica performs

a new vote to obtain a quorum of 2f + 1 packets before

forwarding the correct version of the packet to the next set of

VNF replicas according to the SFP. This process is repeated

until the traffic has been processed by the last replicated VNF

of the SFC. Finally, each SFF replica sends a copy of the

packet to the final destination. Again, the packet is only sent

to the final destination, if the voter confirms that there are

2f + 1 identical packets.

Fault- & Intrusion Tolerant SFC (FIT-SFC)

SFF
(replica 1)

Voter

SFF
(replica 2)

Voter

SFF
(replica 3f+1)

Voter

...

SFC Chain
FIT-

Classifier

(replica 1)

FIT-
Classifier

(replica 2)

FIT-
Classifier

(replica 3f+1)

...

Robust
VNF 1

2
3f+1

1

Robust
VNF 2

2
3f+1

1

Robust
VNF N

2
3f+1

1

...

Robust VNF
Voter

Forwarder

Network Function

Fig. 3. FIT-SFC architecture.

52

C. Ensuring the Consistency of Replicated VNFs

The consistency of replicated VNFs must be guaranteed

across the multiple replicas. There are different types of

network functions, and the traffic they process may or may

not modify their internal state. If the internal state of a VNF

is decoupled from its processing, the VNF is stateless. On the

other hand, if the internal state of the network function changes

based on the packets it processes, we refer to it as stateful.

In order to ensure service consistency, each replicated VNF

executes a different protocol based on the expected type of

consistency. In particular, this work classifies network services

into three different types: (i) stateless, (ii) per-flow stateful, and

(iii) globally stateful. Each service type is described below.

For stateless services, since they do not maintain internal

state, it is sufficient to process incoming packets in the order

they are received. Since the VNFs do not maintain state, the

consistency of the service is not compromised if only some of

the VNF replicas execute a particular packet.

On the other hand, per-flow stateful services maintain a

state for each flow that passes through the service, which

requires packets to be partially ordered. Therefore, packets of

the same flow must be processed in the same order by all VNF

replicas. In the FIT-SFC architecture, packets of a given flow

are ordered by a local timestamp added by the client wrapper,

which is used to define the processing order for the flow.

Finally, globally stateful network functions receive multiple

flows from different sources, and their state is defined based

on the processing of all packets of all flows received. A

classic example of a globally stateful service is a load balancer.

This type of service receives flows from multiple sources and

distributes the load across multiple servers. When replicating

this type of service, it is critical to ensure that all replicas

process and send all packets in the same order to the same set

of servers. In this case, each replica must process every packet

from all flows in the same order, i.e. it requires total ordering

of the packets of these flows. In this case, it is necessary to

execute consensus to ensure consistency.

The FIT-SFC architecture implements the Practical Byzan-

tine Fault Tolerance (PBFT) consensus algorithm [23]. Con-

sensus is executed only for globally stateful services, ensuring

total order among flows and guaranteeing that all VNF replicas

execute the same sequence of packets. PBFT is implemented

alongside the VNF Voter component, and the consensus ex-

ecution occurs prior to the voting step, ensuring that packets

are delivered to each Voter in the same order.

IV. IMPLEMENTATION AND EXPERIMENTS

A prototype of the FIT-SFC architecture was implemented

in Python 31. The implementation includes all the operational

components of the IETF SFC architecture, and tolerates up to

f faults of any component.

The SCs of the FIT-SFC architecture keep information about

the SFF replicas, in addition to the traditional route and flow

1Source code and artifacts to reproduce the experiments are available at
https://github.com/joseflauzino/FIT-SFC NFV-SDN-2024

configuration information. Similarly, the SFFs also keeps the

identifier of each SC and VNF replica of the instantiated ser-

vices. This is necessary because the SFF communicates with

the SC replica and VNF replicas of the instantiated services.

Finally, the VNFs also communicate with SFF replicas, and

keep information on how to reach them.

To verify the correct operation of the FIT-SFC architecture

and to evaluate the cost for tolerating crashes and intrusions,

three virtualized network services were implemented: a regular

DNS service, an authenticated DNS service, and a Load

Balancing (LB) service. These services are briefly described

below.

The DNS SFC service consists of a single DNS VNF. Since

the traffic processed by this VNF does not change its internal

state, this service is classified as stateless. The authenticated

DNS service has the same functionality as the previous service,

but there is an additional authentication step. In this case, the

SFC consists of one VNF that only performs authentication

and another that performs the traditional DNS functionality.

This service is classified as per-flow stateful because it must

store user authentication information while the flow is active.

Finally, the LB service implements a round-robin policy to

distribute traffic. The SFC consists of a single VNF, and the

service is globally stateful between flows, since each packet

increments the packet counter at each instance of the load

balancer. Consensus must be executed to ensure consistency

across multiple replicas of this service.

The experiments were conducted on a virtual infrastructure

created using the NIEP emulator [24] and executed on a

machine based on an Intel Core I7 processor @ 2.5GHz, 16GB

DDR4 RAM, and Ubuntu 16.04. The next subsections present

an evaluation of the FIT-SFC architecture in terms of fault-

tolerance (including crashes and intrusions) and performance

(including overhead).

A. FIT-SFC: Fault-Tolerance

The purpose of first experiment is to demonstrate the ability

of FIT-SFC to tolerate both crash and Byzantine faults. In this

sense, we evaluate the latency of a virtualized network service

employing the proposed architecture to tolerate one fault of

each type of component (i.e., f = 1). Thus, four replicas

of each component of the FIT-SFC (SC, SFF, and VNF) are

required – since 3f + 1 = 3 · 1 + 1 = 4 replicas, in this case.

We consider two cases. In the first case, components crash,

thus stop responding. The second case employs man-in-the-

middle attacks to modify the contents of packets exchanged

between components, representing intrusions. For each case,

four scenarios were considered: (A) all components are cor-

rect; (B) a replica of the SC component suffers a crash or an

intrusion; (C) both a replica of the SC component and a replica

of the SFF component crash or is attacked; and (D) one replica

each of the SC, SFF, and VNF components suffers a crash or

an intrusion. The network service employed in all scenarios

of this subsection is the simplest one, consisting of a Domain

Name System (DNS), so that each VNF replica corresponds to

a replica of the same DNS server. Intrusion scenarios consist

53

of a DNS spoofing attack, that modifies the response to the

DNS query redirecting the client to a different IP than the one

that actually corresponds to the requested domain name.

Figure 4 shows the average RTT (Round Trip Time) mea-

sured from the execution of 10K DNS queries, each carrying

512 bytes between a client and the DNS service. The con-

fidence interval is of 95%. The results indicate that, as the

number of crashed components increases (darker bars), the

RTT decreases. The RTT includes the time for all FIT-SFC

components to process packets. The RTT decreases from 17.9

ms in scenario A to 15.9 ms in scenario D – a reduction of

11.17%. This occurs because when a replica stops responding

(i.e., crashes), the network overhead decreases and fewer

packets are received by each of the other replicas (i.e., fewer

messages are exchanged among the components).

A B C D
0

5

10

15

20

25

17.9
17.3

16.1 15.9

17.9 17.8 17.6 17.7

Scenarios

R
T

T
(m

s)

Crash

Intrusion

Fig. 4. RTT measured in scenarios with crash faults and intrusions.

On the other hand, in the case of intrusions, the RTT remains

at about 17 ms, as the flow of packets from these replicas is

not altered. Finally, it is important to stress that all faults were

properly tolerated as expected in every scenario.

B. FIT-SFC: Performance

In this subsection, we evaluate the cost of using the FIT-SFC

architecture in terms of the overhead it imposes in comparison

with an SFC that does not tolerate faults. In particular, we

examine the latency, i.e. the time required by the different

components of the architecture to process packets of the

different types of services. Furthermore, in every experiment

we measured the proportion of time spent in each step of the

execution flow: (i) SC: time spent between the client and the

SCs; (ii) SFF: time spent between the SCs and the SFFs; (iii)

VNF: time spent between the SFFs and the VNFs.

The experiment consists of two scenarios. In the first sce-

nario we executed each service with an SFC in which no com-

ponent is replicated, i.e. it does not tolerate crashes/intrusions

(f = 0) and there is only one instance of each component. In

the second scenario FIT-SFC was executed with four replicas

of each component, i.e. tolerates one crash/intrusion for each

component of the architecture (f = 1).

The first experiment evaluates the processing time for the

DNS service (same of Subsection IV-A). The size of each

request is 512 bytes. As shown in Figure 5, in the non-

replicated scenario, a DNS request takes on average 79.08%

less time to complete than in the scenario with four replicas. Of

the total time, approximately 65% was spent on the SC, since

it classifies the traffic and encapsulates each packet with the

NSH (Network Service Header). The SFF and VNF each take

about 17.5% of the total processing time. Those components

take less time, because the SFF simply forwards packets and

the VNF only handles local requests.

Non-replicated SFC (f = 0) FIT-SFC (f = 1)
0

20

40

60

80

100

La
te

nc
y

(%
)

SC SFF VNF

Fig. 5. DNS service latency: SFC vs. FIT-SFC.

Now consider the FIT-SFC scenario, which tolerates f = 1
fault/intrusion. In addition to taking about 4.7 times longer

than the non-replicated SFC, in this scenario, most of the

time was spent by the SC (44.61%), followed by the SFF

and the VNF (33.94% and 21.45%, respectively). This is due

to the additional message exchanges and comparisons that the

Voter elements perform to ensure that at least 2f+1 matching

packets have been received.

Non-replicated SFC (f = 0) FIT-SFC (f = 1)
0

20

40

60

80

100

La
te

nc
y

(%
)

SC SFF VNF 1 VNF 2

Fig. 6. Authenticated DNS service latency: SFC vs. FIT-SFC.

The second experiment in this subsection measures the

latency for the authenticated DNS service. The size of each

request is 512 bytes plus the authentication information. The

difference from the service in the previous experiment is that

the authenticated DNS consists of an SFC with two VNFs,

instead of one. First of all, the results show that the total time

for a DNS request in the non-replicated scenario increases by

69.41% when compared to the same scenario in the previous

experiment. This is caused by the required additional steps for

54

the authentication process, including the extra communication

between the two VNFs.

However, for the non-replicated scenario, Figure 6 indicates

that a DNS request with authentication takes about 72.37%

less time than in the FIT-SFC scenario with four replicas –

a reduction of 6.71% compared to the regular DNS service

(Figure 5). Figure 6 also shows that most of the time in the

authenticated DNS service with four replicas was spent by

the SFF (37.19%). The SC component consumed 29.67% of

the time, while VNF 1 (the authenticator) and VNF 2 (DNS

server) spent 18.13% and 15.01%, respectively.

Non-replicated SFC (f = 0) FIT-SFC (f = 1)
0

20

40

60

80

100

La
te

nc
y

(%
)

SC SFF VNF

Fig. 7. Load balancing service latency: SFC vs. FIT-SFC.

Finally, the third experiment evaluates the latency of the

LB service, as shown in Figure 7. For this experiment, the

size of each request is 1024 bytes. As shown in Figure 7 the

difference between the total time spent by the SFC without

replicas and FIT-SFC with four replicas is of 87.1% - the

highest among the experiments. The time spent by the VNF

reached 54.40%, also the highest. Both can be explained by

the overhead imposed by the consensus mechanism that is

executed in order to ensure consistency across the multiple

flows across the multiple replicas of the LB.

V. CONCLUSION

This work proposed FIT-SFC, a replication-based architec-

ture that provides fault and intrusion tolerance for virtualized

network services. FIT-SFC allows the internal components of

the IETF SFC architecture to fail due to crashes, omissions,

and intrusions. To tolerate up to f faults, each component is

configured with 3f + 1 replicas. Naturally, to make a virtual

service fault and intrusion tolerant with the FIT-SFC approach

comes at cost. Components are replicated, which also increases

of the number of redundant packets traversing the network

and that must be received and processed by all functions and

components. A prototype was implemented, and experimental

results confirm that, despite the increased cost imposed by

the solution, services do become secure and highly available

without requiring extensive modifications to their source code.

Future work includes defining strategies to optimize overall

processing time, such as batch processing of traffic, as well

as conducting large-scale experiments, including multi-domain

environments and tolerating more than one fault.

REFERENCES

[1] R. Mijumbi et al., “Network function virtualization: State-of-the-art and
research challenges,” IEEE Communications surveys & tutorials, vol. 18,
no. 1, pp. 236–262, 2015.

[2] M. Chiosi et al., “Network functions virtualisation: An introduction,
benefits, enablers, challenges and call for action,” in SDN and OpenFlow

World Congress, 2012, pp. 22–24.
[3] B. Han et al., “Network function virtualization: Challenges and opportu-

nities for innovations,” IEEE Communications Magazine, vol. 53, no. 2,
pp. 90–97, 2015.

[4] P. Quinn et al., “Problem Statement for Service Function Chaining -
RFC 7498,” Internet Engineering Task Force, Tech. Rep., 2015.

[5] V. Fulber-Garcia et al., “Cusco: a customizable solution for nfv composi-
tion,” in International Conference on Advanced Information Networking

and Applications, 2020.
[6] A. Huff et al., “Building multi-domain service function chains based on

multiple nfv orchestrators,” in IEEE Conference on Network Function

Virtualization and Software Defined Networks, 2020.
[7] J. Halpern et al., “Service Function Chaining (SFC) Architecture,” IETF,

RFC 7665, 2015.
[8] V. Fulber-Garcia et al., “Network service topology: Formalization,

taxonomy and the custom specification model,” Computer Networks,
vol. 178, p. 107337, 2020.

[9] S. Sharma et al., “Vnf availability and sfc sizing model for service
provider networks,” IEEE Access, vol. 8, pp. 119 768–119 784, 2020.

[10] D. Cotroneo et al., “How bad can a bug get? an empirical analysis
of software failures in the openstack cloud computing platform,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering, 2019, pp. 200–211.
[11] B. Han et al., “On the resiliency of virtual network functions,” IEEE

Communications Magazine, vol. 55, no. 7, pp. 152–157, 2017.
[12] H. S. Gunawi et al., “Why does the cloud stop computing? lessons

from hundreds of service outages,” in Proceedings of the Seventh ACM

Symposium on Cloud Computing, 2016, pp. 1–16.
[13] P. Gill et al., “Understanding network failures in data centers: mea-

surement, analysis, and implications,” in Proceedings of the ACM

SIGCOMM 2011 Conference, 2011, pp. 350–361.
[14] M. Pattaranantakul et al., “Nfv security survey: From use case driven

threat analysis to state-of-the-art countermeasures,” IEEE Communica-

tions Surveys & Tutorials, vol. 20, no. 4, pp. 3330–3368, 2018.
[15] L. Wang et al., “Ddqp: A double deep q-learning approach to online

fault-tolerant sfc placement,” IEEE Transactions on Network and Service

Management, vol. 18, no. 1, pp. 118–132, 2021.
[16] M. Ghaznavi et al., “Fault tolerant service function chaining,” in ACM

Special Interest Group on Data Communication on the applications,

technologies, architectures, and protocols for computer communication,
2020, pp. 198–210.

[17] J. Khalid and A. Akella, “Correctness and performance for stateful
chained network functions,” in The 16th NSDI. Boston: USENIX
Association, 2019, pp. 501–516.

[18] J. Kong et al., “Guaranteed-availability network function virtualization
with network protection and vnf replication,” in Global Communications

Conference, 2017, pp. 1–6.
[19] S. G. Kulkarni et al., “Reinforce: Achieving efficient failure resiliency

for network function virtualization based services,” in Proceedings of

the 14th International Conference on emerging Networking EXperiments

and Technologies. Heraklion: ACM, 2018, pp. 41–53.
[20] G. Venâncio and E. P. Duarte Jr, “NHAM: An nfv high availability

architecture for building fault-tolerant stateful virtual functions and
services,” in 11th Latin-American Symposium on Dependable Computing

(LADC). IEEE, 2022.
[21] F. Esposito et al., “Necklace: An architecture for distributed and robust

service function chains with guarantees,” IEEE Transactions on Network

and Service Management, vol. 18, no. 1, pp. 152–166, 2020.
[22] L. Lamport et al., “The byzantine generals problem,” in Concurrency:

the works of leslie lamport. ACM, 2019, pp. 203–226.
[23] M. Castro and B. Liskov, “Practical byzantine fault tolerance and

proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398–461, 2002.

[24] T. N. Tavares et al., “Niep: Nfv infrastructure emulation platform,”
in International Conference on Advanced Information Networking and

Applications, 2018, pp. 173–180.

55

