
Breaking the Limits: Bio-Inspired SFC Deployment
across Multiple Domains, Clouds and Orchestrators

Vinicius Fulber-Garcia∗, José Flauzino∗, Giovanni Venâncio∗, Alexandre Huff†, Elias P. Duarte Junior∗
∗Federal University of Paraná, UFPR, Curitiba, Brazil

†Federal Technological University of Paraná, UTFPR, Toledo, Brazil
Email: {vinicius, jwvflauzino, gvsouza, elias}@inf.ufpr.br, alexandrehuff@utfpr.edu.br

Abstract—The Multi-SFC strategy enables the deployment of
virtual network services across multiple clouds, domains, and
NFV orchestrators. In this context, finding optimal solutions
to the NFV Resource Allocation (NFV-RA) problem, and in
particular the VNF Forwarding Graph Embedding (VNF-FGE)
problem, becomes a formidable challenge. This translates into a
multi-objective optimization problem that involves multiple het-
erogeneous resources, services and functions, each with particular
sets of features and restrictions. In this work, we propose a bio-
inspired strategy for mapping Multi-SFCs, which consists of a
multi-objective genetic algorithm that minimizes inter-domain
latency and resource usage costs, while maximizing inter-domain
bandwidth availability. Furthermore, the solution is dynamic in
the sense that service re-mapping can be invoked after network
conditions change. Simulation results show the effectiveness of
the proposal to create and adapt optimized solutions.

Index Terms—NFV; SFC; Deployment; Mapping; Genetic.

I. INTRODUCTION

Network Functions Virtualization (NFV) allows the im-
plementation of network functions, traditionally deployed
on specialized hardware, in software [1]. Each instance of
a Virtualized Network Function (VNF) is executed using
virtualization technologies such as full virtualization, par-
avirtualization, and containerization [2]. The NFV reference
architecture proposed by the European Telecommunications
Standards Institute (ETSI) has emerged as the main standard
for the execution of NFV functions and services and also the
management and orchestration of VNFs [3]. The reference
architecture also enables the composition of Service Function
Chains (SFCs) to build network services. An SFC consists of
multiple network functions connected in a predefined order to
process network traffic [4].

Typically, network functions of an SFC are instantiated
at the same Point of Presence (PoP), such as a cloud or a
domain. However, this approach is limited by several factors,
including the availability of resources in a cloud [5] or even
functions that operate natively in specific domains. In addi-
tion, existing NFV management and orchestration platforms
(e.g., OpenStack Tacker [6] and Open Source MANO [7])
provide homogeneous orchestration modules – although these
platforms support the coordination of multiple orchestrators
distributed across different points of presence, they do not
allow cooperation between different orchestration modules.
However, with the increasing complexity of virtualized ser-
vices and the variety of NFV execution, management, and or-

chestration solutions [8]–[10], the distribution of SFCs across
multiple domains and their orchestration and execution on
heterogeneous NFV platforms becomes a natural requirement.

In this context, the Multi-SFC [11] has emerged as a
solution that enables SFCs to be distributed, executed, and
managed across multiple clouds, domains, and NFV orchestra-
tors. The Multi-SFC considers that an SFC comprises multiple
segments that are instantiated at different PoPs. A segment
represents the fundamental building block of the Multi-SFC
and is composed of a sequence of VNFs. Each segment is
allocated to a specific domain and then connected to other
segments running on different clouds/domains to build com-
plex end-to-end services.

One of the main challenges of the Multi-SFC is the
solution of the VNF Forwarding Graph Embedding (VNF-
FGE) problem, which is part of the broader NFV Resource
Allocation (NFV-RA) problem [2], [12]. This optimization
problem consists of deploying SFCs in infrastructures with
heterogeneous resources. In particular, it requires optimization
that considers multiple objectives and constraints to allocate
services, segments, and functions.

In this work, we propose the Service Mapping Expedient
for Networked Traffic and Environments (SeMENTE): a bio-
inspired strategy for dynamic allocation of virtualized network
services in the context of Multi-SFC. The SeMENTE solu-
tion defines a multi-objective genetic algorithm that allows
specifying and mapping segments of a given SFC aiming to
optimize resource allocation across different clouds, domains,
and NFV orchestrators. The primary goals of SeMENTE
consists of minimizing inter-domain latency and financial costs
associated with computing resource usage while maximizing
inter-domain bandwidth availability. In addition, SeMENTE
considers a set of constraints imposed by both the service to
be mapped and the infrastructure in which it will be deployed.

Furthermore, in complex production environments such as
the ones enabled by the Multi-SFC, it becomes natural for
the network state, available resources, and their corresponding
costs to alter gradually over time [13]. Therefore, even if a
service is optimally deployed, its performance may degrade
over time, potentially resulting in higher costs than those that
have been expected in a previous mapping process. To over-
come that, SeMENTE includes an on-demand SFC remapping
feature that considers a scenario with multiple clouds, do-
mains, and NFV orchestrators. To accomplish this feature, our

979-8-3503-8053-8/24/1.00 ©2024 IEEE 56



solution employs historical data from the last service mapping
to introduce the best individuals found in a previous mapping
as the initial population for a new mapping process. This
technique aims to speed up the algorithm convergence while
achieving high-quality results. Given the incremental nature of
changes in the network, it is expected that the old mapping
may still have highly suitable segments for a given service.

Experiments were conducted to evaluate the capability of
SeMENTE to find optimized solutions for the mapping prob-
lem, considering the average execution time of the solution
under different configurations, including different mapping
constraints and dependencies. Results show the efficiency and
effectiveness of SeMENTE operating successfully in com-
plex mapping scenarios. It creates optimized solutions to the
dynamic mapping problem. Furthermore, the running times
grow linearly with the size of the problem. In particular,
we highlight the superior performance of the solution for
remapping the virtual services after significant changes of the
quality of service.

The rest of this paper is organized as follows. Section II
presents an overview of the Multi-SFC. The proposed solution
is described in Section III, including the design and imple-
mentation. Section IV presents the experimental evaluation.
Related work is in Section V. Finally, the conclusions are in
Section VI.

II. MULTI-SFC: SFCS ACROSS MULTIPLE DOMAINS,
CLOUDS, AND ORCHESTRATORS

The Multi-SFC is a strategy that enables the instantiation
and management of SFCs across multiple domains, clouds,
and NFV orchestrators [11]. In the context of Multi-SFC, an
SFC consists of multiple segments, each containing a subset of
the VNFs that compose the SFC. A given segment is allocated
to a specific domain and is connected to other segments from
different domains. Figure 1 illustrates multiple segments of
a single service implemented as a Multi-SFC. A segment is
allocated to a domain, and communication between segments
is tunneled, ensuring security even across the Internet.

Domain 1 Domain 2 Domain N

Segment 1

Multi-SFC
Orchestrator

Segment 2 Segment N

...

Multi-SFC Orchestration

SFC traffic flow

Fig. 1. Multi-SFC: multiple segments of a service.

Tunnels provide an abstraction for communication between
pairs of segments. In the Multi-SFC, all tunnels are executed
through VNFs implementing, for example, a Virtual Private
Network (VPN). Considering the IETF SFC architecture, a
VNF that implements a tunnel corresponds to the inter-domain
Service Function Forwarder (SFF). Any SFC can be converted

into a Multi-SFC by defining the sequence of VNFs from the
original SFC to run on different domains and creating a tunnel
between each segment. Thus, both the output and input points
between a pair of segments are tunneling VNFs. The tunneling
VNF-based strategy frees network operators from the myriad
of manual configurations required to interconnect different
Multi-SFC domains. Figure 2 illustrates a tunnel between two
domains.

Domain 1 Domain 2

Segment 1

Multi-SFC
Orchestrator

Segment 2

NFVO NFVO

Source Destination

Multi-SFC Orchestration

SFC traffic flow

Fig. 2. Multi-SFC interconnecting a pair of domains.

The main module of the Multi-SFC architecture is the Multi-
SFC Orchestrator, also shown in Figure 2. This module was
proposed according to the definitions of the ETSI NFV-MANO
framework to ensure interoperability between different NFV
solutions. The Multi-SFC Orchestrator implements a set of
functionalities that enable the composition and orchestration
of SFCs in each domain. These functionalities include VNF
and SFC descriptor management, instantiation, and deletion.
The module also translates generic Multi-SFC operations into
the corresponding operations of each NFV orchestrator and
configures SFCs between different NFV platforms, including
the automatic forwarding of inter-domain traffic. The Multi-
SFC Orchestrator includes one network agent for each domain.
An agent is responsible for automatically and transparently
configuring routing and VPN tunnels for each segment to
enable traffic forwarding between multiple domains.

The Multi-SFC also provides an Application Programming
Interface (API) to enable the integration of multiple client
applications. The functionalities abstracted by the Multi-SFC
API refer to the operations for instantiating, querying, and de-
stroying SFCs and their VNFs on the different NFV platforms.
The Multi-SFC also manages all configurations required to in-
terconnect the SFC segments distributed in different domains.

III. BIO-INSPIRED MULTI-DOMAIN MAPPING IN THE
CONTEXT OF MULTI-SFC

This work proposes SeMENTE, a solution to the NFV
Resource Allocation (NFV-RA) problem in the context of the
Multi-SFC. In particular, SeMENTE considers the allocation
and mapping of network functions for inter-domain tunneling,
whenever necessary. SeMENTE also includes a remapping
feature that can be invoked whenever the quality of service
deviates enough from that required by the original mapping.
Furthermore, the proposed mapping strategy verifies the occur-
rence of the following dependencies that can be defined for

57



each of the functions composing a service: (i) domain specific;
(ii) domain types (e.g., cloud, fog, edge) and; (iii) orchestrator
types (e.g., OpenStack Tacker and Open Source MANO).

The SeMENTE solution uses an optimization model based
on three main metrics: deployment cost, inter-domain latency,
and inter-domain bandwidth. The deployment cost refers to
the financial expenses for deploying and maintaining VNFs
in specific domains or PoPs. Inter-domain latency refers to
the round-trip time observed of specific communication links
between different domains or PoPs in the network. Finally,
inter-domain bandwidth refers to the data transmission capac-
ity on the links mentioned above. The optimization objective
is to minimize the sum of inter-domain cost and latency while
maximizing the sum of inter-domain bandwidth. We employed
the Pareto frontier analysis model [14].

The service request document model adopted by Se-
MENTE is an YAML (YAML Ain’t Markup Language [15])
document, organized into three main sections: DOMAINS,
REQUIREMENTS, and TOPOLOGY. The DOMAINS section
defines the PoPs available for a network function, speci-
fying characteristics such as cost, type, available orchestra-
tors, and possible transitions between domains, where avail-
able bandwidth and latency values are predetermined. The
REQUIREMENTS section specifies optional relational expres-
sions that determine the acceptance or rejection of a mapping
based on bounds defined for the optimization metrics. Finally,
the TOPOLOGY section uses a modification of the Service
ChAin Grammar (SCAG) [16] model to define the service
chains, incorporating markers to indicate dependencies of
domain types and orchestrators.

The proposed solution was implemented1 in Python 3
using a modified version of the Platypus multi-objective op-
timization library [17]. The genetic heuristic chosen was the
Non-dominated Sorting Genetic Algorithm II (NSGAII) [18],
due to its elitist properties (i.e., the persistence of the best
individuals), it is suitable for the mapping problem addressed
in this work. The main features of the solution in the context
of genetic algorithms are detailed below.

Individual. An individual defines a mapping option for a
network service in a particular environment. Each individual
has a genotype, represented by a vector, that reflects the
requested service chain. Each gene (i.e., position in the vector)
in the genotype represents a specific network function of the
service, and the allele (i.e., value at a position in the vector) of
a gene indicates the PoP at which the corresponding function
should be mapped.

Population. A population is the set of individuals at a
given time, called a generation. These individuals go through
reproductive processes to produce the next generation. Note
that the best individuals in the population are preserved in the
next generation by using an elitist algorithm – as determined
by the relative Pareto frontier.

Initialization. The initial population (first generation) is
generated using a generation operator. In the context of Se-

1Available at https://github.com/ViniGarcia/SeMENTE

MENTE, the chosen generator employs a random generation
strategy while ensuring all domain dependencies and the
presence of valid communication links between domains in
case of transitions. The generator can be reapplied during
the execution of the genetic algorithm, improving the genetic
variability of a generation and the ability of the algorithm to
explore the search space.

Selection. This stage selects the individuals to be submitted
to the crossover process. The proposed solution adopts a binary
tournament selection, where two individuals are randomly
selected from the population and the one with the best results
for the evaluated metrics is selected for the crossover.

Crossover. The crossover operator plays a central role in
generating individuals of the G generation from the G − 1
generation by merging genes. In SeMENTE, the Simulated
Binary Crossover (SBX) [19] crossover algorithm was used to
choose a mode of operation that does not produce side effects
in maintaining potential domain dependencies.

Mutation. The mutation operator changes alleles of specific
genes using the controlled bit swapping technique, where
random bits of the allele value – an index indicating a specific
PoP or domain – are modified to create a new valid index, thus
indicating a new PoP. It is relevant to note that the mutation
operator does not act on genes with domain dependencies.

The proposed solution allows the user to configure several
parameters to influence its execution and, consequently, the
generated results. The main parameters that enable fine-tuning
the algorithm are as follows: the criterion to stop the algorithm
which can be either a timeout or a maximum number of
generations; population size, and; crossover and mutation rate.
The execution model of SeMENTE is organized in a cycle of
seven (7) stages, as shown in Figure 3.

INDIVIDUAL

GENOTYPE

GENE

ALLELE ALLELE

GENE

Insertion

E.#1
E.#2

E.#3 E.#4

E.#5

E.#6E.#7

Initial
Population

Mutation

Evaluation

Crossover

Selection

Generation

DisambiguationStop

x

{

Fig. 3. SeMENTE execution model.

In the first stage (E.#1), the initial population is created
using either a previously introduced generation mechanism or
an insertion mechanism. Unlike the generation mechanism,
the insertion mechanism does not generate random individuals
to form the initial population; instead, it creates a list of
previously selected individuals. However, individuals that were
considered highly suitable for the requested mapping at the
time X may not fully represent the best solution at the time
X + Y due to network changes. On the other hand, it is
important to note that changes in the network are usually
gradual and not catastrophic. Therefore, certain genes from
the best individuals at time X may still be highly suitable at

58



time X + Y . Thus, using these genes in the initial population
tends to speed up the algorithm convergence and improve the
quality of the newly generated individuals.

The second stage (E.#2) evaluates the initial population
based on the objective function, which aims to minimize the
sum of the financial cost and the total inter-domain latency,
while maximizing the sum of the inter-domain bandwidth.
This evaluation quantifies the individual suitability to solve
the required mapping problem. The third stage (E.#3) in-
volves occasional adjustments to the population to improve its
variability, balancing processes of exploring and exploiting the
solution. At this stage, in every tenth generation, a cleaning
process takes place, in which N individuals on the current
Pareto frontier with the same fitness value (i.e., the same score
for all considered metrics) are reduced to 1. The total number
of individuals eliminated in the cleaning process is balanced by
the population with the generation of new random individuals,
which are evaluated immediately.

Steps E.#4, E.#5 and E.#6 are responsible for creating
the next generation of individuals by sequentially applying the
selection, crossover, and mutation operators to the current pop-
ulation. The seventh stage (E.#7) consists of the evaluation
of the newly formed generation and marks the beginning of a
new cycle that steps through stages three (3) to seven (7). This
execution cycle is repeated until the stop criteria is reached.
Finally, the solution outputs the current Pareto frontier.

IV. EXPERIMENTAL EVALUATION

The SeMENTE solution was evaluated through simulation
to determine the efficiency and effectiveness of the service
mapping strategy in distributed and heterogeneous environ-
ments. The tested services consist of SFCs with a linear topol-
ogy containing from 5 to 10 VNFs. A complete graph with
150 vertices represents the distributed environment. Vertices
are PoPs and edges are links between PoPs. A PoP can be
located in the cloud, the fog, or at the edge and can support 1
to 4 NFV-MANO platforms. The graph and the values for
the optimization metrics related to vertices (financial cost)
and edges (latency and bandwidth) were randomly generated
within a predefined range of values. Although the topology of
real networks are typically not complete graphs, this type of
graph actually increases the search space, thus resulting in a
more challenging optimization scenario.

The following genetic configurations were used: population
size of 100, crossover rate of 100%, and mutation rate of 30%.
These configurations have been chosen based on previous
runs, which indicated that the mapping problem benefits from
populations with high variability that prevented the algorithm
from stagnating at local optimal points. The experiments ran
on a server with an Intel Core i5-3330 @ 3.0 GHz CPU, 8 GB
of RAM, and Ubuntu 20.04. Each experiment was repeated 30
times.

Results have been analyzed considering the evaluation tech-
nique for multi-objective Pareto frontier optimizations [20], in
particular relative Pareto frontiers. In this technique, individ-
uals on the outermost frontier (frontier 0 or Pareto frontier)

are called non-dominated individuals, since they always have
better values in at least one of their optimization metrics
in comparison with those coexisting on the same frontier.
This also applies to the innermost frontiers, with the addition
that, there is at least one individual that is the best in all
evaluated aspects (dominant) on all outermost frontiers. For
example, for every individual on frontier 1, there is at least
one dominating individual on frontier 0. The absolute Pareto
frontier is determined by having access to all possible solutions
to a given problem. Conversely, the relative Pareto frontier is
computed by considering all possible solutions found during
the optimization process or step, regardless of whether they
represent the complete set.

0 20 40 60

0

2

4

6

8

Generation (x500)
Fr

on
tie

r

Average Worst Best

Fig. 4. Convergence (T.5)

0 20 40 60

0

2

4

6

8

Generation (x500)

Fr
on

tie
r

Average Worst Best

Fig. 5. Convergence (T.10)

The first experiment evaluates the convergence of the algo-
rithm to a relative Pareto frontier. The convergence verification
is executed after 500 generations (one execution step), and the
absence of changes in the Pareto frontier in an execution step
defines the stopping criteria. Figures 4 (5 functions) and 5
(10 functions) show the results obtained step by step from
a single execution until reaching the convergence criteria,
indicating the best, worst, and average of the frontiers where
individuals from the Pareto frontier are present at a given
time. Results show the ability of the algorithm to converge
to a relative Pareto frontier over time. However, the number
of generations required to achieve this convergence is directly
proportional to the search space size. Therefore, even if the
distributed environment is the same for both test cases, the
chain size directly affects the number of possible combinations
to generate valid mapping results. For example, 30 execution
steps were required to achieve convergence for an SFC with 5
functions, in contrast to the requirement of 71 steps to detect
convergence for an SFC with 10 functions.

The second experiment presents results regarding the execu-
tion time as the number of generations varies. Figures 6 and
7 show the average and standard deviation of the execution
time for an SFC containing 5 and 10 VNFs, respectively. It is
possible to observe a linear progression of the execution time,
indicating that when the number of generations to be executed
doubles, the execution time also approximately doubles. An-
other relevant point is that there is no significant change in
execution time for the same number of generations, regardless
of the size of the service chain. This phenomenon occurs

59



because chain evaluation consists of arithmetic processes with
low computational cost compared to genetic routines and
Pareto frontier analysis. Consequently, the chain size is not
a determinant factor for the execution time given a certain
number of generations. However, larger SFCs require higher
generation numbers to converge, typically resulting in longer
execution times to achieve globally optimal results.

250 500 1000 2000 4000 8000
0

1

2

3

4

6 · 10−2 0.15
0.31

0.64

1.31

2.61

Generations

Ti
m

e
(s

)

Fig. 6. Time (T.5)

250 500 1000 2000 4000 8000
0

1

2

3

4

8 · 10−2 0.19
0.35

0.67

1.32

2.62

Generations

Ti
m

e
(s

)

Fig. 7. Time (T.10)

The third experiment evaluates different service chain map-
pings. The results shown in Table I highlight the best can-
didates for the mapping (individuals on the relative Pareto
frontier), considering each optimization metric. For example,
the curve for Cost shows the candidate with the lowest cost
found on the relative Pareto frontier, and in brackets, the
(Cost, Latency, Bandwidth) for the candidate. In
this experiment, the stopping criteria adopted was a time limit
that allowed the genetic algorithm to run for 60 seconds. Three
different cases were considered: (i) Free, where no constraint
or dependency was defined for the mapping of the SFCs; (ii)
Orchestrator Defined, where all functions depend on
the availability of the OpenStack Tacker orchestrator at the
selected PoP; and (iii) Zero Latency, where a zero latency
constraint is applied to the mapping.

TABLE I
THE BEST RESULTS FOR EACH OPTIMIZATION METRIC.

Cost ($) Latency (ms) Bandwidth (Mbps)

T.5
Free 569

(569, 237, 46524)
30

(921, 30, 44601)
158094

(3714, 215, 158094)
Orchestrator

Defined
611

(611, 158, 9716)
17

(1127, 17, 17151)
152012

(4747, 330, 152012)

Zero Latency - - -

T.10
Free 1914

(1914, 883, 199424)
168

(14319, 168, 183098)
344252

(11820, 780, 344252)
Orchestrator

Defined
3607

(3607, 580, 224508)
221

(7032, 221, 141849)
340813

(8220, 962, 340813)

Zero Latency - - -

The Free case produced optimal results for all metrics.
This case represents a baseline, as it uses the largest search
space, since all PoPs are available in the search for candidate
mappings. The Orchestrator Defined case restricts the
search space, since only PoPs that support OpenStack Tacker
can be used for mapping. This dependency, which applies to all
functions, limits the choice of PoPs from 150 to 70. Satisfying
this domain dependency has two immediate effects: (i) the
elimination of good mapping candidates as they use domains
without the presence of the required orchestrator, and; (ii)

the best mapping alternatives are found faster, since only a
single search subspace for individuals is explored throughout
the execution of the solution, compared to the search space of
the Free case.

The Zero latency case represents a scenario in which
SeMENTE cannot find viable candidates to solve the opti-
mization problem. In this case, the network service functions
have no dependencies, but a restriction is imposed on the
optimization process: the inter-domain latency must be zero.
This restriction implies that all network functions of the
service must be mapped to the same PoP (domain), which
limits the number of possible valid solutions from 150n (where
n is the number of network functions in the SFC) to 150.
Thus, considering that the variability of the population is
improved by mixing and modifying its genetic characteristics,
coupled with an extremely limited search space, the process
of generating new individuals by crossover and mutation does
not allow for finding a valid solution for this case. However,
in cases that result in a very small search space, such as Zero
Latency, it is better to employ an exhaustive search method.

State #1 State #2 State #3
0

2

4

6

8

10

12

5.94 5.68
6.34

4.72
4.22Fr

on
tie

r
Mapping

Remapping

Fig. 8. Variation (T.5)

State #1 State #2 State #3
0

2

4

6

8

10

12

7.58 7.68
7.04

5.26

4.08

Fr
on

tie
r

Mapping
Remapping

Fig. 9. Variation (T.10)

Finally, the fourth experiment was executed to evaluate the
gains related to remapping services when significant gradual
changes occur in the network. In this case, the network state
was modified at two points on a continuous timeline, resulting
in the following states: State #1, initial network state where
a service is mapped; State #2, where 20% of connec-
tions (randomly selected) show a decrease in inter-domain
latency, triggering a mapping/remapping of the service, and;
State #3, where 20% of connections (randomly selected)
show an increase in inter-domain latency, triggering a new
mapping/remapping. Remapping uses the insertion mechanism
to insert the last Pareto frontier found as the initial population,
while mapping uses the generation mechanism to create new
individuals.

Figures 8 (5 functions) and 9 (10 functions) show the results
of candidate mappings, in which each bar indicates the average
relative Pareto frontier of the individuals returned as a result
after 8000 generations. It can be observed that the use of
individuals previously optimized for a specific network state
as the initial population (remapping) has a positive effect on
the quality of the results generated by the solution. In other
words, when faced with gradual changes in the network and/or
service, historical data can serve as a solid basis for defining
starting points for exploring and deepening the search space,

60



since a solution optimized for a previous state may remain
fully or partially viable. However, it is relevant to note that this
behavior is not expected in the event of catastrophic changes to
the network or service, in which case it would be preferable to
discard the historical data and perform a new mapping process.

The experiments presented in this section demonstrate the
feasibility of using the proposed solution for mapping network
services in environments supported by the Multi-SFC. The
scalability of the proposed solution is evidenced by the linear
progression of the execution times as the problem grows.
Finally, the ability to handle dependencies, especially those
related to the Multi-SFC (such as domain type and orchestrator
dependencies), along with the ability to perform remapping
processes are other highlights of the proposed solution.

V. RELATED WORK

Recent work has focused on the applicability of genetic
algorithms in solving the problem of mapping network ser-
vice chains in distributed environments [21]. Although highly
effective, few solutions based on genetic algorithms have
been proposed in this context. Two prominent alternatives are
GA+LCB [22] and GeSeMa [21], described next.

GeSeMa uses a genetic strategy with a customizable ob-
jective function based on SPEA2 to map virtualized ser-
vices in multi-datacenter environments. GA+LCB employs
its particular single-objective genetic strategy to optimize an
index created by maximizing link availability, inter-domain
bandwidth, domain availability, and minimizing inter-domain
delay. However, GeSeMa and GA+LCB applications are lim-
ited because of the lack of support for defining domain and
orchestrator dependencies, and the lack of allocation and cost
calculation of tunneling functions between domains.

In [23], a genetic algorithm was proposed to select and share
VNFs to reintegrate service chains in distributed virtualized
environments. The algorithm is used to optimize computa-
tional resources and the end-to-end latency of the service.
However, this solution is subject to the same limitations
discussed above. In addition, the genetic heuristic proposed by
the authors does not include a mechanism to take advantage of
historical data during the execution of service reincorporation,
unlike what is done by the SeMENTE solution.

In addition to mapping solutions based on genetic strategies,
it is important to highlight those dedicated to the redeployment
of virtualized services. NFV-PEAR [24] is a solution based on
an ILP modeling of the problem that focuses on the continued
recomposition of SFCs. The objective of this strategy is to
minimize the amount of resources consumed and modifications
of service mappings while maintaining the same performance
levels, dependencies, and constraints.

VI. CONCLUSION

The growing complexity of virtualized network services
associated with the constant evolution of NFV solutions makes
it inevitable that SFCs will be distributed across multiple
domains, clouds, and NFV orchestrators. Thus, it is criti-
cal to have a service mapping process that meets cost and

performance constraints. This paper presents SeMENTE, a
bio-inspired strategy for mapping virtual services in a Multi-
SFC scenario. The solution also provides dynamic SFC re-
mapping after network changes. Experimental results show
the effectiveness of SeMENTE and demonstrate its potential
to improve the process of deploying and managing distributed
Multi-SFCs under different scenarios. Future work includes
integrating a monitoring solution to SeMENTE so that Multi-
SFC remapping can be automatically triggered after pre-
specified conditions are met.

REFERENCES

[1] M. Chiosi et al., “Network functions virtualisation: An introduction,
benefits, enablers, challenges and call for action,” in SDN and OpenFlow
World Congress, 2012.

[2] J. Herrera et al., “Resource allocation in nfv: A comprehensive survey,”
Transactions on Network and Service Management, vol. 13, 2016.

[3] V. Fulber-Garcia et al., “Network service topology: Formalization,
taxonomy and the custom specification model,” Computer Networks,
vol. 178, 2020.

[4] J. Halpern and C. Pignataro, “Service Function Chaining (SFC) Archi-
tecture,” Internet Requests for Comments, IETF, Tech. Rep., 2015.

[5] M. Ghaznavi et al., “Distributed service function chaining,” Journal on
Selected Areas in Communications, vol. 35, 2017.

[6] OpenStack Foundation, “Tacker: Openstack nfv orchestration,” 2024.
[Online]. Available: https://wiki.openstack.org/wiki/Tacker

[7] E. T. S. Institute, “Osm: Open source mano,” 2024. [Online]. Available:
https://osm.etsi.org

[8] G. Venâncio et al., “Beyond vnfm: Filling the gaps of the etsi vnf
manager to fully support vnf life cycle operations,” Int. Journal of
Network Management, vol. 31, 2021.

[9] A. Huff et al., “A holistic approach to define service chains using click-
on-osv on different nfv platforms,” in Global Communications Conf.,
2018.

[10] T. Tavares et al., “Niep: Nfv infrastructure emulation platform,” in Int.
Conf. on Advanced Information Networking and Applications, 2018.

[11] A. Huff et al., “Building multi-domain service function chains based on
multiple nfv orchestrators,” in Conf. on Network Function Virtualization
and Software Defined Networks, 2020.

[12] V. Fulber-Garcia et al., “Customizable deployment of nfv services,”
Journal of Network and Systems Management, vol. 29, 2021.

[13] M. Luizelli et al., “The actual cost of software switching for nfv
chaining,” in Symp. on Integrated Network and Service Management,
2017.

[14] P. Ngatchou et al., “Pareto multi objective optimization,” in Int. Conf.
on Intelligent Systems Application to Power Systems, 2005.

[15] YAML Organization, “Yaml: Yaml ain’t markup language,” 2024.
[Online]. Available: https://yaml.org

[16] V. Fulber-Garcia et al., “Cusco: a customizable solution for nfv
composition,” in Int. Conf. on Advanced Information Networking and
Applications, 2020.

[17] Platypus Organization, “Platypus - multiobjective optimization in
python,” 2024. [Online]. Available: https://platypus.readthedocs.io

[18] A. Seshadri, “A fast elitist multiobjective genetic algorithm: Nsga-ii,”
MATLAB Central, vol. 182, 2006.

[19] J. Chacón et al., “Analysis and enhancement of simulated binary
crossover,” in Congress on Evolutionary Computation, 2018.

[20] A. Lotov et al., “Visualizing the pareto frontier,” in Multiobjective
Optimization: Interactive and Evolutionary Approaches, 2008.

[21] V. Fulber-Garcia et al., “Customizable mapping of virtualized network
services in multi-datacenter environments based on genetic metaheuris-
tics,” Journal of Network and Systems Management, vol. 31, 2023.

[22] P. Rodis et al., “Intelligent network service embedding using genetic
algorithms,” in Symp. on Computers and Communications, 2021.

[23] Z. Chen et al., “Delay optimization oriented service function chain
migration and re-deployment in operator network,” ACTA ELECTONICA
SINICA, vol. 46, 2018.

[24] G. Miotto et al., “Adaptive placement & chaining of virtual network
functions with nfv-pear,” Journal of Internet Services and Applications,
vol. 10, 2019.

61


