Combinatorial Dual Bounds on the Least Cost Influence Problem

Abstract

The Least Cost Influence Problem is a combinatorial optimization problem that appears in the context of social networks. The objective is to give incentives to individuals of a network, such that some information spreads to a desired fraction of the network at minimum cost. We introduce a problem-dependent algorithm in a branch-and-bound scheme to compute a dual bound for this problem. The idea is to exploit the connectivity properties of sub-graphs of the input graph associated with each node of the branch-and-bound tree and use it to increase each sub-problem’s lower bound. Our algorithm works well and finds a lower bound tighter than the LP-relaxation in linear time in the size of the graph. Computational experiments with synthetic graphs and real-world social networks show improvements in using our proposed bounds. The improvements are gains in running time or gap reduction for exact solutions to the problem.

Publication
In Pesquisa Operacional 2023, Volume 43
André Vignatti
André Vignatti
Associate Professor